Found 1 results
Filters: Author is N. Zang  [Clear All Filters]
Q. Y. Ning, Wu, J. Z., Zang, N., Liang, J., Hu, Y. L., and Mo, Z. N., Key pathways involved in prostate cancer based on gene set enrichment analysis and meta analysis, vol. 10, pp. 3856-3887, 2011.
Aalinkeel R, Hu Z, Nair BB, Sykes DE, et al. (2010). Genomic Analysis Highlights the Role of the JAK-STAT Signaling in the Anti-proliferative Effects of Dietary Flavonoid-"Ashwagandha" in Prostate Cancer Cells. Evid. Based Complement. Alternat. Med. 7: 177-187. PMid:18955307 PMCid:2862933   Balda MS and Matter K (2003). Epithelial cell adhesion and the regulation of gene expression. Trends Cell Biol. 13: 310-318.   Brown BM (1975). A Method for combining non-independent, one-sided tests of significance. Biometrics 31: 987-992.   Chandran UR, Ma C, Dhir R, Bisceglia M, et al. (2007). Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 7: 64. PMid:17430594 PMCid:1865555   Endo T, Uzawa K, Suzuki H, Tanzawa H, et al. (2009). Characteristic gene expression profiles of benign prostatic hypertrophy and prostate cancer. Int. J. Oncol. 35: 499-509. PMid:19639170   Franzen CA, Amargo E, Todorovic V, Desai BV, et al. (2009). The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer Prev. Res. 2: 830-841. PMid:19737984   Huang D, Casale GP, Tian J, Lele SM, et al. (2010). Udp-glucose dehydrogenase as a novel field-specific candidate biomarker of prostate cancer. Int. J. Cancer 126: 315-327. PMid:19676054 PMCid:2794918   Iwata T, Schultz D, Hicks J, Hubbard GK, et al. (2010). MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS One 5: e9427. PMid:20195545 PMCid:2828486   Kaper F, Dornhoefer N and Giaccia AJ (2006). Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions. Cancer Res. 66: 1561-1569. PMid:16452213   Lee EK, Cho H and Kim CW (2011). Proteomic analysis of cancer stem cells in human prostate cancer cells. Biochem. Biophys. Res. Commun. 412: 279-285. PMid:21820414   Liang CH, Liu Q, Zhou FJ, Gao X, et al. (2007). Etiologic correlations of prostate cancer in Guangdong, China to family history of cancers, and sexual and marital factors-a case-control study. Ai Zheng 26: 484-488. PMid:17672937   Migita T, Ruiz S, Fornari A, Fiorentino M, et al. (2009). Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J. Natl. Cancer Inst. 101: 519-532. PMid:19318631 PMCid:2664091   Mitra S, Annamalai L, Chakraborty S, Johnson K, et al. (2006). Androgen-regulated formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. Mol. Biol. Cell 17: 5400-5416. PMid:17050739 PMCid:1679700   Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34: 267-273. PMid:12808457   Nadiminty N, Chun JY, Lou W, Lin X, et al. (2008). NF-kappaB2/p52 enhances androgen-independent growth of human LNCaP cells via protection from apoptotic cell death and cell cycle arrest induced by androgen-deprivation. Prostate 68: 1725-1733. PMid:18781579   Nadiminty N, Dutt S, Tepper C and Gao AC (2010). Microarray analysis reveals potential target genes of NF-kappaB2/ p52 in LNCaP prostate cancer cells. Prostate 70: 276-287. PMid:19827050   Nanni S, Priolo C, Grasselli A, D'Eletto M, et al. (2006). Epithelial-restricted gene profile of primary cultures from human prostate tumors: a molecular approach to predict clinical behavior of prostate cancer. Mol. Cancer Res. 4: 79-92. PMid:16513839   Ouyang DY, Ji YH, Saltis M, Xu LH, et al. (2011). Valproic acid synergistically enhances the cytotoxicity of gossypol in DU145 prostate cancer cells: an iTRTAQ-based quantitative proteomic analysis. J. Proteomics 74: 2180-2193. PMid:21726675   Pettazzoni P, Ciamporcero E, Medana C, Pizzimenti S, et al. (2011). Nuclear factor erythroid 2-related factor-2 activity controls 4-hydroxynonenal metabolism and activity in prostate cancer cells. Free Radic. Biol. Med. 51: 1610-1618. PMid:21816220   Rebbeck TR, Rennert H, Walker AH, Panossian S, et al. (2008). Joint effects of inflammation and androgen metabolism on prostate cancer severity. Int. J. Cancer 123: 1385-1389. PMid:18566991 PMCid:2700293   Revenu C, Athman R, Robine S and Louvard D (2004). The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 5: 635-646. PMid:15366707   Romanuik TL, Ueda T, Le N, Haile S, et al. (2009). Novel biomarkers for prostate cancer including noncoding transcripts. Am. J. Pathol. 175: 2264-2276. PMid:19893039 PMCid:2789638   Shah GV, Thomas S, Muralidharan A, Liu Y, et al. (2008). Calcitonin promotes in vivo metastasis of prostate cancer cells by altering cell signaling, adhesion, and inflammatory pathways. Endocr. Relat. Cancer 15: 953-964. PMid:18784182   Singh D, Febbo PG, Ross K, Jackson DG, et al. (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1: 203-209.   Skvortsova I, Skvortsov S, Stasyk T, Raju U, et al. (2008). Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics 8: 4521-4533. PMid:18821526   Song K, Wang H, Krebs TL, Wang B, et al. (2010). DHT selectively reverses Smad3-mediated/TGF-beta-induced responses through transcriptional down-regulation of Smad3 in prostate epithelial cells. Mol. Endocrinol. 24: 2019-2029. PMid:20739403 PMCid:2954637   Suarez-Farinas M, Lowes MA, Zaba LC and Krueger JG (2010). Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA). PLoS One 5: e10247. PMid:20422035 PMCid:2857878   Subramanian A, Tamayo P, Mootha VK, Mukherjee S, et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102: 15545-15550. PMid:16199517 PMCid:1239896   Takeda K and Ichijo H (2002). Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells 7: 1099-1111. PMid:12390245   Tate AW, Lung T, Radhakrishnan A, Lim SD, et al. (2006). Changes in gap junctional connexin isoforms during prostate cancer progression. Prostate 66: 19-31. PMid:16114058   Veeramani S, Igawa T, Yuan TC, Lin FF, et al. (2005). Expression of p66(Shc) protein correlates with proliferation of human prostate cancer cells. Oncogene 24: 7203-7212. PMid:16170380   Vellaichamy A, Sreekumar A, Strahler JR, Rajendiran T, et al. (2009). Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases. PLoS One 4: e7075. PMid:19763266 PMCid:2740864   Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, et al. (2010). Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer. Prostate 70: 443-455. PMid:19902470 PMCid:2935631   Wallace TA, Prueitt RL, Yi M, Howe TM, et al. (2008). Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res. 68: 927-936. PMid:18245496   Wu T, Giovannucci E, Welge J, Mallick P, et al. (2011). Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: a meta-analysis. Br. J. Cancer 105: 65-73. PMid:21654682 PMCid:3137397   Yang J, Wahdan-Alaswad R and Danielpour D (2009). Critical role of Smad2 in tumor suppression and transforming growth factor-beta-induced apoptosis of prostate epithelial cells. Cancer Res. 69: 2185-2190. PMid:19276350 PMCid:3345028   Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, et al. (2008). DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 68: 8954-8967. PMid:18974140 PMCid:2577392