Publications

Found 14 results
Filters: Author is J. Liang  [Clear All Filters]
2016
J. R. Lin, Qin, H. H., Wang, Y., Liang, J., Xu, J. H., Lin, J. R., Qin, H. H., Wang, Y., Liang, J., and Xu, J. H., Analysis of interleukin 19 serum levels and single nucleotide polymorphisms in systemic lupus erythematosus, vol. 15, p. -, 2016.
J. R. Lin, Qin, H. H., Wang, Y., Liang, J., Xu, J. H., Lin, J. R., Qin, H. H., Wang, Y., Liang, J., and Xu, J. H., Analysis of interleukin 19 serum levels and single nucleotide polymorphisms in systemic lupus erythematosus, vol. 15, p. -, 2016.
X. Liu, Wang, L. G., Zhang, L. C., Yan, H., Zhao, K. B., Liang, J., Li, N., Pu, L., Zhang, T., Wang, L. X., Liu, X., Wang, L. G., Zhang, L. C., Yan, H., Zhao, K. B., Liang, J., Li, N., Pu, L., Zhang, T., and Wang, L. X., Molecular cloning, tissue expression pattern, and copy number variation of porcine SCUBE3, vol. 15, p. -, 2016.
X. Liu, Wang, L. G., Zhang, L. C., Yan, H., Zhao, K. B., Liang, J., Li, N., Pu, L., Zhang, T., Wang, L. X., Liu, X., Wang, L. G., Zhang, L. C., Yan, H., Zhao, K. B., Liang, J., Li, N., Pu, L., Zhang, T., and Wang, L. X., Molecular cloning, tissue expression pattern, and copy number variation of porcine SCUBE3, vol. 15, p. -, 2016.
L. Pu, Zhang, L. C., Zhang, J. S., Song, X., Wang, L. G., Liang, J., Zhang, Y. B., Liu, X., Yan, H., Zhang, T., Yue, J. W., Li, N., Wu, Q. Q., Wang, L. X., Pu, L., Zhang, L. C., Zhang, J. S., Song, X., Wang, L. G., Liang, J., Zhang, Y. B., Liu, X., Yan, H., Zhang, T., Yue, J. W., Li, N., Wu, Q. Q., and Wang, L. X., Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake, vol. 15, p. -, 2016.
L. Pu, Zhang, L. C., Zhang, J. S., Song, X., Wang, L. G., Liang, J., Zhang, Y. B., Liu, X., Yan, H., Zhang, T., Yue, J. W., Li, N., Wu, Q. Q., Wang, L. X., Pu, L., Zhang, L. C., Zhang, J. S., Song, X., Wang, L. G., Liang, J., Zhang, Y. B., Liu, X., Yan, H., Zhang, T., Yue, J. W., Li, N., Wu, Q. Q., and Wang, L. X., Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake, vol. 15, p. -, 2016.
W. Chen, Liang, J., He, Z., Jiang, W., Chen, W., Liang, J., He, Z., and Jiang, W., Preliminary study on total protein extraction methods from Enterococcus faecalis biofilm, vol. 15, p. -, 2016.
W. Chen, Liang, J., He, Z., Jiang, W., Chen, W., Liang, J., He, Z., and Jiang, W., Preliminary study on total protein extraction methods from Enterococcus faecalis biofilm, vol. 15, p. -, 2016.
2012
F. H. Bai, Wang, N. J., Wang, J., Yang, L., Zhang, F. M., Yin, F., Liang, J., Wu, K. C., and Fan, D. M., Screening and identification of peritoneal metastasis-related genes of gastric adenocarcinoma using a cDNA microarray, vol. 11, pp. 1682-1689, 2012.
Arboleda MJ, Lyons JF and Kabbinavar FF (2003). Overexpression of AKT2/protein kinase Bh leads to up-regulation of h1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res. 63: 196-206. PMid:12517798   Bai F, Liang J, Wang J, Shi Y, et al. (2007). Inhibitory effects of a specific phage-displayed peptide on high peritoneal metastasis of gastric cancer. J. Mol. Med. 85: 169-180. http://dx.doi.org/10.1007/s00109-006-0115-8 PMid:17043801   Brito M, Malta-Vacas J, Carmona B, Aires C, et al. (2005). Polyglycine expansions in eRF3/GSPT1 are associated with gastric cancer susceptibility. Carcinogenesis 26: 2046-2049. http://dx.doi.org/10.1093/carcin/bgi168 PMid:15987717   Cho YG, Nam SW, Kim TY, Kim YS, et al. (2003). Overexpression of S100A4 is closely related to the aggressiveness of gastric cancer. APMIS 111: 539-545. http://dx.doi.org/10.1034/j.1600-0463.2003.1110502.x PMid:12887505   Choi MG, Sung CO, Noh JH, Kim KM, et al. (2010). Mucinous gastric cancer presents with more advanced tumor stage and weaker beta-catenin expression than nonmucinous cancer. Ann. Surg. Oncol. 17: 3053-3058. http://dx.doi.org/10.1245/s10434-010-1184-z PMid:20645013   Davidson B, Zhang Z, Kleinberg L, Li M, et al. (2006). Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from diffuse malignant peritoneal mesothelioma. Clin. Cancer Res. 12: 5944-5950. http://dx.doi.org/10.1158/1078-0432.CCR-06-1059 PMid:17062665   Hippo Y, Yashiro M, Ishii M, Taniguchi H, et al. (2001). Differential gene expression profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph nodes. Cancer Res. 61: 889-895. PMid:11221876   Huerta S, Harris DM, Jazirehi A, Bonavida B, et al. (2003). Gene expression profile of metastatic colon cancer cells resistant to cisplatin-induced apoptosis. Int. J. Oncol. 22: 663-670. PMid:12579322   Jemal A, Murray T, Ward E, Samuels A, et al. (2005). Cancer statistics, 2005. CA Cancer J. Clin. 55: 10-30. http://dx.doi.org/10.3322/canjclin.55.1.10 PMid:15661684   Kang YH, Lee HS and Kim WH (2002). Promoter methylation and silencing of PTEN in gastric carcinoma. Lab. Invest. 82: 285-291. http://dx.doi.org/10.1038/labinvest.3780422 PMid:11896207   Lazăr D, Raica M, Sporea I, Tăban S, et al. (2006). Tumor angiogenesis in gastric cancer. Rom. J. Morphol. Embryol. 47: 5-13. PMid:16838051   Lee SS, Jeong HE, Liu KH, Ryu JY, et al. (2005). Identification and functional characterization of novel CYP2J2 variants: G312R variant causes loss of enzyme catalytic activity. Pharmacogenet. Genomics 15: 105-113. http://dx.doi.org/10.1097/01213011-200502000-00006 PMid:15861034   Li DW, Wu Q, Peng ZH, Yang ZR, et al. (2007). Expression and significance of Notch1 and PTEN in gastric cancer. Ai Zheng 26: 1183-1187. PMid:17991315   Li J, Wu Y, Qian X and Sha B (2006). Crystal structure of yeast Sis1 peptide-binding fragment and Hsp70 Ssa1 C-terminal complex. Biochem. J. 398: 353-360. http://dx.doi.org/10.1042/BJ20060618 PMid:16737444 PMCid:1559466   Mori K, Aoyagi K, Ueda T, Danjoh I, et al. (2004). Highly specific marker genes for detecting minimal gastric cancer cells in cytology negative peritoneal washings. Biochem. Biophys. Res. Commun. 313: 931-937. http://dx.doi.org/10.1016/j.bbrc.2003.12.025 PMid:14706632   Motoori M, Takemasa I, Doki Y, Saito S, et al. (2006). Prediction of peritoneal metastasis in advanced gastric cancer by gene expression profiling of the primary site. Eur. J. Cancer 42: 1897-1903. http://dx.doi.org/10.1016/j.ejca.2006.04.007 PMid:16831544   Ong CK, Ng CY, Leong C, Ng CP, et al. (2004). Genomic structure of human OKL38 gene and its differential expression in kidney carcinogenesis. J. Biol. Chem. 279: 743-754. http://dx.doi.org/10.1074/jbc.M308668200 PMid:14570898   Retterspitz MF, Monig SP, Schreckenberg S, Schneider PM, et al. (2010). Expression of {beta}-catenin, MUC1 and c-met in diffuse-type gastric carcinomas: correlations with tumour progression and prognosis. Anticancer Res. 30: 4635-4641. PMid:21115917   Schena M, Shalon D, Davis RW and Brown PO (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470. http://dx.doi.org/10.1126/science.270.5235.467 PMid:7569999   Schieren G, Rumberger B, Klein M, Kreutz C, et al. (2006). Gene profiling of polycystic kidneys. Nephrol. Dial. Transplant 21: 1816-1824. http://dx.doi.org/10.1093/ndt/gfl071 PMid:16520345   Shapira M, Ben-Izhak O, Bishara B, Futerman B, et al. (2004). Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma. Cancer 100: 1615-1621. http://dx.doi.org/10.1002/cncr.20172 PMid:15073847   Wang J, Wu K, Bai F, Zhai H, et al. (2006). Celecoxib could reverse the hypoxia-induced Angiopoietin-2 upregulation in gastric cancer. Cancer Lett. 242: 20-27. http://dx.doi.org/10.1016/j.canlet.2005.10.030 PMid:16338068   Wang YY, Ye ZY, Zhao ZS, Tao HQ, et al. (2010). High-level expression of S100A4 correlates with lymph node metastasis and poor prognosis in patients with gastric cancer. Ann. Surg. Oncol. 17: 89-97. http://dx.doi.org/10.1245/s10434-009-0722-z PMid:19820999   Yanagihara K, Takigahira M, Tanaka H, Komatsu T, et al. (2005). Development and biological analysis of peritoneal metastasis mouse models for human scirrhous stomach cancer. Cancer Sci. 96: 323-332. http://dx.doi.org/10.1111/j.1349-7006.2005.00054.x PMid:15958054   Yonemura Y, Endou Y, Kimura K, Fushida S, et al. (2000). Inverse expression of S100A4 and E-cadherin is associated with metastatic potential in gastric cancer. Clin. Cancer Res. 6: 4234-4242. PMid:11106237   Yonemura Y, Endo Y, Obata T and Sasaki T (2007). Recent advances in the treatment of peritoneal dissemination of gastrointestinal cancers by nucleoside antimetabolites. Cancer Sci. 98: 11-18. http://dx.doi.org/10.1111/j.1349-7006.2006.00350.x PMid:17052255   Yoon CS, Hyung WJ, Lee JH, Chae YS, et al. (2008). Expression of S100A4, E-cadherin, alpha- and beta-catenin in gastric adenocarcinoma. Hepatogastroenterology 55: 1916-1920. PMid:19102422   Yoshikawa T, Yanoma S, Tsuburaya A, Kobayashi O, et al. (2006). Expression of MMP-7 and MT1-MMP in peritoneal dissemination of gastric cancer. Hepatogastroenterology 53: 964-967. PMid:17153464
2011
H. B. Ma, Lu, Q., Liang, J., and Zhang, X. Y., Functional analysis of the cellulose gene of the pine wood nematode, Bursaphelenchus xylophilus, using RNA interference, vol. 10, pp. 1931-1941, 2011.
Bakhetia M, Urwin PE and Atkinson HJ (2007). QPCR analysis and RNAi define pharyngeal gland cell-expressed genes of Heterodera glycines required for initial interactions with the host. Mol. Plant Microbe Interact. 20: 306-312. http://dx.doi.org/10.1094/MPMI-20-3-0306 PMid:17378433 Chen Q, Rehman S, Smant G and Jones JT (2005). Functional analysis of pathogenicity proteins of the potato cyst nematode Globodera rostochiensis using RNAi. Mol. Plant Microbe Interact. 18: 621-625. http://dx.doi.org/10.1094/MPMI-18-0621 PMid:16042007 Cheng XY, Dai SM, Xiao L and Xie BY (2010). Influence of cellulase gene knochdown by dsRNA interference on the development and reproduction of the pine wood nematode, Bursaphelenchus xylophilus. Nematology 12: 225-233. http://dx.doi.org/10.1163/138855409X12469541205044 Fanelli E, Di Vito M, Jones JT and De Giorgi C (2005). Analysis of chitin synthase function in a plant parasitic nematode, Meloidogyne artiellia, using RNAi. Gene 349: 87-95. http://dx.doi.org/10.1016/j.gene.2004.11.045 PMid:15777697 Fire A, Xu S, Montgomery MK, Kostas SA, et al. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811. http://dx.doi.org/10.1038/35888 PMid:9486653 Guo S and Kemphues KJ (1995). Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81: 611-620. http://dx.doi.org/10.1016/0092-8674(95)90082-9 Huang G, Allen R, Davis EL, Baum TJ, et al. (2006). Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc. Natl. Acad. Sci. U. S. A. 103: 14302-14306. http://dx.doi.org/10.1073/pnas.0604698103 PMid:16985000    PMCid:1570184 Jones JT, Moens M, Mota M, Li H, et al. (2008). Bursaphelenchus xylophilus: opportunities in comparative genomics and molecular host-parasite interactions. Mol. Plant Pathol. 9: 357-368. http://dx.doi.org/10.1111/j.1364-3703.2007.00461.x PMid:18705876 Kikuchi T, Jones JT, Aikawa T, Kosaka H, et al. (2004). A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. FEBS Lett. 572: 201-205. http://dx.doi.org/10.1016/j.febslet.2004.07.039 PMid:15304348 Kikuchi T, Shibuya H and Jones JT (2005). Molecular and biochemical characterization of an endo-β-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. Biochem. J. 389: 117-125. http://dx.doi.org/10.1042/BJ20042042 PMid:15727561    PMCid:1184544 Kikuchi T, Shibuya H, Aikawa T and Jones JT (2006). Cloning and characterization of pectate lyases expressed in the esophageal gland of the pine wood nematode Bursaphelenchus xylophilus. Mol. Plant Microbe Interact. 19: 280-287. http://dx.doi.org/10.1094/MPMI-19-0280 PMid:16570658 Kikuchi T, Aikawa T, Kosaka H, Pritchard L, et al. (2007). Expressed sequence tag (EST) analysis of the pine wood nematode Bursaphelenchus xylophilus and B. mucronatus. Mol. Biochem. Parasitol. 155: 9-17. http://dx.doi.org/10.1016/j.molbiopara.2007.05.002 PMid:17560668 Kiyohara T and Tokushige Y (1971). Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees. J. Jpn. For. Soc. 53: 210-218. Kuroda K (1989). Terpenoids causing tracheid-cavitation in Pinus thunbergii infected by the pine wood nematode (Bursaphelenchus xylophilus). Ann. Phytopath. Soc. Jpn. 55: 170-178. http://dx.doi.org/10.3186/jjphytopath.55.170 Li YH, Guo R, Yin QY, Ding M, et al. (2005). Purification and characterization of two endo-β-1,4-glucanases from mollusca, Ampullaria crossean. Acta Biochim. Biophys. Sin. 37: 702-708. http://dx.doi.org/10.1111/j.1745-7270.2005.00099.x PMid:16215638 Lilley CJ, Bakhetia M, Charlton WL and Urwin PE (2007). Recent progress in the development of RNA interference for plant parasitic nematodes. Mol. Plant Pathol. 8: 701-711. http://dx.doi.org/10.1111/j.1364-3703.2007.00422.x PMid:20507531 Mamiya Y (1983). Pathology of pine wilt disease caused by Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 21: 201-220. http://dx.doi.org/10.1146/annurev.py.21.090183.001221 Mamiya Y and Enda N (1972). Transmission of Bursaphelenchus lignicola (Nematoda: Aphelenchoidae) by Monochamus alternatus (Coleopteran: Cerambycidae). Nematologica 18: 159-162. http://dx.doi.org/10.1163/187529272X00395 Mamiya Y and Kiyohara T (1972). Description of Bursaphelenchus lignicolus sp (Nematoda: Aphelenchoididae) from pine wood and histopathology of nematode-infested trees. Nematologica 18: 120-124. http://dx.doi.org/10.1163/187529272X00296 Matsunaga K and Togashi K (2004). Among-tree difference in the inhibition of systemic dispersal of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) by Pinus densiflora. Appl. Entomol. Zool. 39: 271-277. http://dx.doi.org/10.1303/aez.2004.271 Odani K, Sasaki S, Nishiyama Y and Yamamoto N (1985). Early symptom developments of the pine wilt disease by hydrolytic enzymes produced by the pine wood nematodes-cellulase as a possible candidate of the pathogen. J. Jpn. For. Soc. 67: 366-372. Park JE, Lee KY, Lee SJ, Oh WS, et al. (2008). The efficiency of RNA interference in Bursaphelenchus xylophilus. Mol. Cells 26: 81-86. PMid:18525237 Rosso MN, Favery B, Piotte C, Arthaud L, et al. (1999). Isolation of a cDNA encoding a β-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Mol. Plant Microbe Interact. 12: 585-591. http://dx.doi.org/10.1094/MPMI.1999.12.7.585 PMid:10478479 Rosso MN, Dubrana MP, Cimbolini N, Jaubert S, et al. (2005). Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Mol. Plant Microbe Interact. 18: 615-620. http://dx.doi.org/10.1094/MPMI-18-0615 PMid:16042006 Shingles J, Lilley CJ, Atkinson HJ and Urwin PE (2007). Meloidogyne incognita: molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp. Parasitol. 115: 114-120. http://dx.doi.org/10.1016/j.exppara.2006.07.008 PMid:16996059 Togashi K and Matsunaga K (2003). Between isolate difference in dispersal ability of Bursaphelenchus xylophilus and vulnerability to inhibition by Pinus densiflora. Nematology 5: 559-564. http://dx.doi.org/10.1163/156854103322683274 Tokushige Y and Kiyohara T (1969). Bursaphelenchus sp. in the wood of dead pine trees. J. Jpn. For. Soc. 51: 193-195. Urwin PE, Lilley CJ and Atkinson HJ (2002). Ingestion of double-stranded RNA by pre parasitic juvenile cyst nematodes leads to RNA interference. Mol. Plant Microbe Interact. 15: 747-752. http://dx.doi.org/10.1094/MPMI.2002.15.8.747 PMid:12182331 Wang SX, Niu BL, Shen WF and Weng HB (2007). RNA interference of RNA polymerase gene in Bursaphelenchus xylophilus. Zhejiang Agric. Sci. 6: 690-693. Zhang XY and Luo YQ (2006). Major Forest Disease and Insect Pests in China. Chinese Publishing House of Forestry, Beijing.
Q. Y. Ning, Wu, J. Z., Zang, N., Liang, J., Hu, Y. L., and Mo, Z. N., Key pathways involved in prostate cancer based on gene set enrichment analysis and meta analysis, vol. 10, pp. 3856-3887, 2011.
Aalinkeel R, Hu Z, Nair BB, Sykes DE, et al. (2010). Genomic Analysis Highlights the Role of the JAK-STAT Signaling in the Anti-proliferative Effects of Dietary Flavonoid-"Ashwagandha" in Prostate Cancer Cells. Evid. Based Complement. Alternat. Med. 7: 177-187. http://dx.doi.org/10.1093/ecam/nem184 PMid:18955307 PMCid:2862933   Balda MS and Matter K (2003). Epithelial cell adhesion and the regulation of gene expression. Trends Cell Biol. 13: 310-318. http://dx.doi.org/10.1016/S0962-8924(03)00105-3   Brown BM (1975). A Method for combining non-independent, one-sided tests of significance. Biometrics 31: 987-992. http://dx.doi.org/10.2307/2529826   Chandran UR, Ma C, Dhir R, Bisceglia M, et al. (2007). Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 7: 64. http://dx.doi.org/10.1186/1471-2407-7-64 PMid:17430594 PMCid:1865555   Endo T, Uzawa K, Suzuki H, Tanzawa H, et al. (2009). Characteristic gene expression profiles of benign prostatic hypertrophy and prostate cancer. Int. J. Oncol. 35: 499-509. PMid:19639170   Franzen CA, Amargo E, Todorovic V, Desai BV, et al. (2009). The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer Prev. Res. 2: 830-841. http://dx.doi.org/10.1158/1940-6207.CAPR-09-0066 PMid:19737984   Huang D, Casale GP, Tian J, Lele SM, et al. (2010). Udp-glucose dehydrogenase as a novel field-specific candidate biomarker of prostate cancer. Int. J. Cancer 126: 315-327. http://dx.doi.org/10.1002/ijc.24820 PMid:19676054 PMCid:2794918   Iwata T, Schultz D, Hicks J, Hubbard GK, et al. (2010). MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS One 5: e9427. http://dx.doi.org/10.1371/journal.pone.0009427 PMid:20195545 PMCid:2828486   Kaper F, Dornhoefer N and Giaccia AJ (2006). Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions. Cancer Res. 66: 1561-1569. http://dx.doi.org/10.1158/0008-5472.CAN-05-3375 PMid:16452213   Lee EK, Cho H and Kim CW (2011). Proteomic analysis of cancer stem cells in human prostate cancer cells. Biochem. Biophys. Res. Commun. 412: 279-285. http://dx.doi.org/10.1016/j.bbrc.2011.07.083 PMid:21820414   Liang CH, Liu Q, Zhou FJ, Gao X, et al. (2007). Etiologic correlations of prostate cancer in Guangdong, China to family history of cancers, and sexual and marital factors-a case-control study. Ai Zheng 26: 484-488. PMid:17672937   Migita T, Ruiz S, Fornari A, Fiorentino M, et al. (2009). Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J. Natl. Cancer Inst. 101: 519-532. http://dx.doi.org/10.1093/jnci/djp030 PMid:19318631 PMCid:2664091   Mitra S, Annamalai L, Chakraborty S, Johnson K, et al. (2006). Androgen-regulated formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. Mol. Biol. Cell 17: 5400-5416. http://dx.doi.org/10.1091/mbc.E06-04-0280 PMid:17050739 PMCid:1679700   Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34: 267-273. http://dx.doi.org/10.1038/ng1180 PMid:12808457   Nadiminty N, Chun JY, Lou W, Lin X, et al. (2008). NF-kappaB2/p52 enhances androgen-independent growth of human LNCaP cells via protection from apoptotic cell death and cell cycle arrest induced by androgen-deprivation. Prostate 68: 1725-1733. http://dx.doi.org/10.1002/pros.20839 PMid:18781579   Nadiminty N, Dutt S, Tepper C and Gao AC (2010). Microarray analysis reveals potential target genes of NF-kappaB2/ p52 in LNCaP prostate cancer cells. Prostate 70: 276-287. PMid:19827050   Nanni S, Priolo C, Grasselli A, D'Eletto M, et al. (2006). Epithelial-restricted gene profile of primary cultures from human prostate tumors: a molecular approach to predict clinical behavior of prostate cancer. Mol. Cancer Res. 4: 79-92. http://dx.doi.org/10.1158/1541-7786.MCR-05-0098 PMid:16513839   Ouyang DY, Ji YH, Saltis M, Xu LH, et al. (2011). Valproic acid synergistically enhances the cytotoxicity of gossypol in DU145 prostate cancer cells: an iTRTAQ-based quantitative proteomic analysis. J. Proteomics 74: 2180-2193. http://dx.doi.org/10.1016/j.jprot.2011.06.016 PMid:21726675   Pettazzoni P, Ciamporcero E, Medana C, Pizzimenti S, et al. (2011). Nuclear factor erythroid 2-related factor-2 activity controls 4-hydroxynonenal metabolism and activity in prostate cancer cells. Free Radic. Biol. Med. 51: 1610-1618. http://dx.doi.org/10.1016/j.freeradbiomed.2011.07.009 PMid:21816220   Rebbeck TR, Rennert H, Walker AH, Panossian S, et al. (2008). Joint effects of inflammation and androgen metabolism on prostate cancer severity. Int. J. Cancer 123: 1385-1389. http://dx.doi.org/10.1002/ijc.23687 PMid:18566991 PMCid:2700293   Revenu C, Athman R, Robine S and Louvard D (2004). The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 5: 635-646. http://dx.doi.org/10.1038/nrm1437 PMid:15366707   Romanuik TL, Ueda T, Le N, Haile S, et al. (2009). Novel biomarkers for prostate cancer including noncoding transcripts. Am. J. Pathol. 175: 2264-2276. http://dx.doi.org/10.2353/ajpath.2009.080868 PMid:19893039 PMCid:2789638   Shah GV, Thomas S, Muralidharan A, Liu Y, et al. (2008). Calcitonin promotes in vivo metastasis of prostate cancer cells by altering cell signaling, adhesion, and inflammatory pathways. Endocr. Relat. Cancer 15: 953-964. http://dx.doi.org/10.1677/ERC-08-0136 PMid:18784182   Singh D, Febbo PG, Ross K, Jackson DG, et al. (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1: 203-209. http://dx.doi.org/10.1016/S1535-6108(02)00030-2   Skvortsova I, Skvortsov S, Stasyk T, Raju U, et al. (2008). Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics 8: 4521-4533. http://dx.doi.org/10.1002/pmic.200800113 PMid:18821526   Song K, Wang H, Krebs TL, Wang B, et al. (2010). DHT selectively reverses Smad3-mediated/TGF-beta-induced responses through transcriptional down-regulation of Smad3 in prostate epithelial cells. Mol. Endocrinol. 24: 2019-2029. http://dx.doi.org/10.1210/me.2010-0165 PMid:20739403 PMCid:2954637   Suarez-Farinas M, Lowes MA, Zaba LC and Krueger JG (2010). Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA). PLoS One 5: e10247. http://dx.doi.org/10.1371/journal.pone.0010247 PMid:20422035 PMCid:2857878   Subramanian A, Tamayo P, Mootha VK, Mukherjee S, et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102: 15545-15550. http://dx.doi.org/10.1073/pnas.0506580102 PMid:16199517 PMCid:1239896   Takeda K and Ichijo H (2002). Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells 7: 1099-1111. http://dx.doi.org/10.1046/j.1365-2443.2002.00591.x PMid:12390245   Tate AW, Lung T, Radhakrishnan A, Lim SD, et al. (2006). Changes in gap junctional connexin isoforms during prostate cancer progression. Prostate 66: 19-31. http://dx.doi.org/10.1002/pros.20317 PMid:16114058   Veeramani S, Igawa T, Yuan TC, Lin FF, et al. (2005). Expression of p66(Shc) protein correlates with proliferation of human prostate cancer cells. Oncogene 24: 7203-7212. http://dx.doi.org/10.1038/sj.onc.1208852 PMid:16170380   Vellaichamy A, Sreekumar A, Strahler JR, Rajendiran T, et al. (2009). Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases. PLoS One 4: e7075. http://dx.doi.org/10.1371/journal.pone.0007075 PMid:19763266 PMCid:2740864   Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, et al. (2010). Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer. Prostate 70: 443-455. PMid:19902470 PMCid:2935631   Wallace TA, Prueitt RL, Yi M, Howe TM, et al. (2008). Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res. 68: 927-936. http://dx.doi.org/10.1158/0008-5472.CAN-07-2608 PMid:18245496   Wu T, Giovannucci E, Welge J, Mallick P, et al. (2011). Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: a meta-analysis. Br. J. Cancer 105: 65-73. http://dx.doi.org/10.1038/bjc.2011.143 PMid:21654682 PMCid:3137397   Yang J, Wahdan-Alaswad R and Danielpour D (2009). Critical role of Smad2 in tumor suppression and transforming growth factor-beta-induced apoptosis of prostate epithelial cells. Cancer Res. 69: 2185-2190. http://dx.doi.org/10.1158/0008-5472.CAN-08-3961 PMid:19276350 PMCid:3345028   Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, et al. (2008). DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 68: 8954-8967. http://dx.doi.org/10.1158/0008-5472.CAN-07-6088 PMid:18974140 PMCid:2577392