Publications

Found 7 results
Filters: Author is X.Y. Yang  [Clear All Filters]
2011
R. L. Sun, Wang, H. Y., Yang, X. Y., Sheng, Z. J., Li, L. M., Wang, L., Wang, Z. G., and Fei, J., Resistance to lipopolysaccharide-induced endotoxic shock in heterozygous Zfp191 gene-knockout mice, vol. 10, pp. 3712-3721, 2011.
Albanese V, Biguet NF, Kiefer H, Bayard E, et al. (2001). Quantitative effects on gene silencing by allelic variation at a tetranucleotide microsatellite. Hum. Mol. Genet. 10: 1785-1792. http://dx.doi.org/10.1093/hmg/10.17.1785 PMid:11532988   Edelstein LC and Collins T (2005). The SCAN domain family of zinc finger transcription factors. Gene 359: 1-17. http://dx.doi.org/10.1016/j.gene.2005.06.022 PMid:16139965   Halees AS, Leyfer D and Weng Z (2003). PromoSer: A large-scale mammalian promoter and transcription start site identification service. Nucleic Acids Res. 31: 3554-3559. http://dx.doi.org/10.1093/nar/gkg549 PMid:12824364 PMCid:168956   Han ZG, Zhang QH, Ye M, Kan LX, et al. (1999). Molecular cloning of six novel Kruppel-like zinc finger genes from hematopoietic cells and identification of a novel transregulatory domain KRNB. J. Biol. Chem. 274: 35741-35748. http://dx.doi.org/10.1074/jbc.274.50.35741 PMid:10585455   Harper J, Yan L, Loureiro RM, Wu I, et al. (2007). Repression of vascular endothelial growth factor expression by the zinc finger transcription factor ZNF24. Cancer Res. 67: 8736-8741. http://dx.doi.org/10.1158/0008-5472.CAN-07-1617 PMid:17875714   Khalfallah O, Faucon-Biguet N, Nardelli J, Meloni R, et al. (2008). Expression of the transcription factor Zfp191 during embryonic development in the mouse. Gene Expr. Patterns 8: 148-154. http://dx.doi.org/10.1016/j.gep.2007.11.002 PMid:18096443   Khalfallah O, Ravassard P, Lagache CS, Fligny C, et al. (2009). Zinc finger protein 191 (ZNF191/Zfp191) is necessary to maintain neural cells as cycling progenitors. Stem Cells 27: 1643-1653. http://dx.doi.org/10.1002/stem.88 PMid:19544452   Kyriakis JM and Avruch J (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81: 807-869. PMid:11274345   Lee JC, Kassis S, Kumar S, Badger A, et al. (1999). p38 mitogen-activated protein kinase inhibitors-mechanisms and therapeutic potentials. Pharmacol. Ther. 82: 389-397. http://dx.doi.org/10.1016/S0163-7258(99)00008-X   Li J, Chen X, Yang H, Wang S, et al. (2006). The zinc finger transcription factor 191 is required for early embryonic development and cell proliferation. Exp. Cell Res. 312: 3990-3998. http://dx.doi.org/10.1016/j.yexcr.2006.08.020 PMid:17064688   Li J, Chen X, Gong X, Liu Y, et al. (2009). A transcript profiling approach reveals the zinc finger transcription factor ZNF191 is a pleiotropic factor. BMC Genomics 10: 241. http://dx.doi.org/10.1186/1471-2164-10-241 PMid:19463170 PMCid:2694838   Lu D, Searles MA and Klug A (2003). Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature 426: 96-100. http://dx.doi.org/10.1038/nature02088 PMid:14603324   Mannel DN (2007). Advances in sepsis research derived from animal models. Int. J. Med. Microbiol. 297: 393-400. http://dx.doi.org/10.1016/j.ijmm.2007.03.005 PMid:17452126   Manthey CL, Wang SW, Kinney SD and Yao Z (1998). SB202190, a selective inhibitor of p38 mitogen-activated protein kinase, is a powerful regulator of LPS-induced mRNAs in monocytes. J. Leukoc. Biol. 64: 409-417. PMid:9738669   Moriyama M, Matsukawa A, Kudoh S, Takahashi T, et al. (2006). The neuropeptide neuromedin U promotes IL-6 production from macrophages and endotoxin shock. Biochem. Biophys. Res. Commun. 341: 1149-1154. http://dx.doi.org/10.1016/j.bbrc.2006.01.075 PMid:16466693   Noll L, Peterson FC, Hayes PL, Volkman BF, et al. (2008). Heterodimer formation of the myeloid zinc finger 1 SCAN domain and association with promyelocytic leukemia nuclear bodies. Leuk. Res. 32: 1582-1592. http://dx.doi.org/10.1016/j.leukres.2008.03.024 PMid:18472161   Prost JF, Negre D, Cornet-Javaux F, Cortay JC, et al. (1999). Isolation, cloning, and expression of a new murine zinc finger encoding gene. Biochim. Biophys. Acta 1447: 278-283. http://dx.doi.org/10.1016/S0167-4781(99)00157-8   Remick DG and Ward PA (2005). Evaluation of endotoxin models for the study of sepsis. Shock 24 (Suppl 1): 7-11. http://dx.doi.org/10.1097/01.shk.0000191384.34066.85 PMid:16374366   Roth K, Chen WM and Lin TJ (2008). Positive and negative regulatory mechanisms in high-affinity IgE receptor-mediated mast cell activation. Arch. Immunol. Ther. Exp. 56: 385-399. http://dx.doi.org/10.1007/s00005-008-0041-2 PMid:19082920   Silvestri C, Narimatsu M, von B, I, Liu Y, et al. (2008). Genome-wide identification of Smad/Foxh1 targets reveals a role for Foxh1 in retinoic acid regulation and forebrain development. Dev. Cell 14: 411-423. http://dx.doi.org/10.1016/j.devcel.2008.01.004 PMid:18331719   Sriskandan S and Altmann DM (2008). The immunology of sepsis. J. Pathol. 214: 211-223. http://dx.doi.org/10.1002/path.2274 PMid:18161754   Tarca AL, Draghici S, Khatri P, Hassan SS, et al. (2009). A novel signaling pathway impact analysis. Bioinformatics 25: 75-82. http://dx.doi.org/10.1093/bioinformatics/btn577 PMid:18990722 PMCid:2732297   van der Poll T and van Deventer SJ (1999). Cytokines and anticytokines in the pathogenesis of sepsis. Infect. Dis. Clin. North Am. 13: 413-26, ix. http://dx.doi.org/10.1016/S0891-5520(05)70083-0   Wang H, Sun R, Liu G, Yao M, et al. (2008). Characterization of the target DNA sequence for the DNA-binding domain of zinc finger protein 191. Acta Biochim. Biophys. Sin. 40: 704-710.   Watanabe E, Hirasawa H, Oda S, Matsuda K, et al. (2005). Extremely high interleukin-6 blood levels and outcome in the critically ill are associated with tumor necrosis factor- and interleukin-1-related gene polymorphisms. Crit. Care Med. 33: 89-97. http://dx.doi.org/10.1097/01.CCM.0000150025.79100.7D PMid:15644653