Publications

Found 6 results
Filters: Author is J.R.B. Farias  [Clear All Filters]
2011
A. M. Polizel, Medri, M. E., Nakashima, K., Yamanaka, N., Farias, J. R. B., de Oliveira, M. C. N., Marin, S. R. R., Abdelnoor, R. V., Marcelino-Guimarães, F. C., Fuganti, R., Rodrigues, F. A., Stolf-Moreira, R., Beneventi, M. A., Rolla, A. A. P., Neumaier, N., Yamaguchi-Shinozaki, K., Carvalho, J. F. C., and Nepomuceno, A. L., Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance, vol. 10, pp. 3641-3656, 2011.
Aragão FJL, Sarokin L, Vianna GR and Rech EL (2000). Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101: 1-6. http://dx.doi.org/10.1007/s001220051441   Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, et al. (2007). Arabidopsis rd29A:DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep. 26: 1275-1282. http://dx.doi.org/10.1007/s00299-007-0360-5 PMid:17453213   Bianco RL, Rieger M and Sung SJS (2000). Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol. Plant. 108: 71-78. http://dx.doi.org/10.1034/j.1399-3054.2000.108001071.x   Bray EA (1997). Plant responses to water deficit. Trends Plant Sci. 2: 48-54. http://dx.doi.org/10.1016/S1360-1385(97)82562-9   Bray EA (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 55: 2331-2341. http://dx.doi.org/10.1093/jxb/erh270 PMid:15448178   Casagrande EC, Farias JRB, Neumaier N, Oya T, et al. (2001). Expressão gênica diferencial durante déficit hídrico em soja. Rev. Bras. Fisiol. Veg. 13: 168-184. http://dx.doi.org/10.1590/S0103-31312001000200006   Conab - Companhia Nacional de Abastecimento (2005). Available at [http://www.conab.gov.br]. Accessed......... Cornic G (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture - not by affecting ATP synthesis. Trends Plant Sci. 5: 187-188.   Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2004). Available at [http://www.cnpso.embrapa.br]. Accessed....... Fehr WR and Caviness CE (1977). Stages of Soybean Development. State University, Cooperative extension Service, Ames.   Flanders A, McKissick JC and Shepherd T (2007). Georgia economic losses due to 2007 drought. Center Rep. CR: 7-10.   Hasegawa PM, Bressan RA, Zhu JK and Bohnert HJ (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-499. http://dx.doi.org/10.1146/annurev.arplant.51.1.463 PMid:15012199   Hewitt EJ (1966). Sand and Water Culture Methods Used in the Study of Plant Nutrition. 2nd edn. Commonwealth Bureau of Horticulture and Plantation Crops, Maidstone.   Ingram J and Bartels D (1996). The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377-403. http://dx.doi.org/10.1146/annurev.arplant.47.1.377 PMid:15012294   Johansen DA (1940). Plant Microtechnique. McGraw-Hill Book Company, New York.   Jones HG (1992). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. 2nd edn. Cambridge University Press, Cambridge.   Kalefetoğlu T and Ekmekçi Y (2005). The effects of drought on plants and tolerance mechanisms. J. Sci. 18: 723-740.   Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, et al. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17: 287-291. http://dx.doi.org/10.1038/7036 PMid:10096298   Kasuga M, Miura S, Shinozaki K and Yamaguchi-Shinozaki K (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45: 346-350. http://dx.doi.org/10.1093/pcp/pch037 PMid:15047884   Kim JS, Jung HJ, Lee HJ, Kim KA, et al. (2008). Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J. 55: 455-466. http://dx.doi.org/10.1111/j.1365-313X.2008.03518.x PMid:18410480   Kim YO, Kim JS and Kang H (2005). Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J. 42: 890-900. http://dx.doi.org/10.1111/j.1365-313X.2005.02420.x PMid:15941401   Kwak KJ, Kim YO and Kang H (2005). Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. 56: 3007-3016. http://dx.doi.org/10.1093/jxb/eri298 PMid:16207746   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real time quantitative PCR and the 2_DDCT methods. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Maruyama K, Sakuma Y, Kasuga M, Ito Y, et al. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38: 982-993. http://dx.doi.org/10.1111/j.1365-313X.2004.02100.x PMid:15165189   Oh SJ, Song SI, Kim YS, Jang HJ, et al. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138: 341-351. http://dx.doi.org/10.1104/pp.104.059147 PMid:15834008 PMCid:1104188   Okamuro JK, Caster B, Villarroel R, Van MM, et al. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 94: 7076-7081. http://dx.doi.org/10.1073/pnas.94.13.7076 PMid:9192694 PMCid:21287   Oya T, Nepomuceno AL, Neumaier N, Farias JRB, et al. (2004). Drought tolerance characteristics of Brazilian soybean cultivars - evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prod. Sci. 7: 129-137. http://dx.doi.org/10.1626/pps.7.129   Panchuk II, Volkov RA and Schoffl F (2002). Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol. 129: 838-853. http://dx.doi.org/10.1104/pp.001362 PMid:12068123 PMCid:161705   Pellegrineschi A, Ribaut JM, Trethowan R, Yamaguchi-Shinozaki K, et al. (2002). Progress in the genetic engineering of wheat for water-limited conditions. JIRCAS Work. Rep. 23: 55-60.   Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, et al. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47: 493-500. http://dx.doi.org/10.1139/g03-140 PMid:15190366   Pfaffl MW, Horgan GW and Dempfle L (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36. http://dx.doi.org/10.1093/nar/30.9.e36 PMid:11972351 PMCid:113859   Qin F, Sakuma Y, Tran LSP, Maruyama K, et al. (2008). Arabidopsis DREB2A-Interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20: 1693-1707. http://dx.doi.org/10.1105/tpc.107.057380 PMid:18552202 PMCid:2483357   Rech EL, Vianna GR and Aragão FJL (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 3: 410-418. http://dx.doi.org/10.1038/nprot.2008.9 PMid:18323812   Sachetto-Martins G, Fernandes LD, Félix DB and de Oliveira DE (1995). Preferential transcriptional activity of a glycine-rich protein gene from Arabidopsis thaliana in protoderm -derived cells. Int. J. Plant Sci. 156: 460-470. http://dx.doi.org/10.1086/297268   Sakuma Y, Maruyama K, Osakabe Y, Qin F, et al. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18: 1292-1309. http://dx.doi.org/10.1105/tpc.105.035881 PMid:16617101 PMCid:1456870   Shinozaki K and Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327-334. http://dx.doi.org/10.1104/pp.115.2.327 PMid:12223810 PMCid:158490   Shinozaki K and Yamaguchi-Shinozaki K (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223. PMid:10837265   Taiz L and Zeiger E (2002). Plant Physiology, 3rd edn. Sinauer, Sunderland. PMCid:152206   Tasma IM, Brendel V, Whitham SA and Bhattacharyya MK (2008). Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol. Biochem. 46: 627-637. http://dx.doi.org/10.1016/j.plaphy.2008.04.015 PMid:18534862   Thomashow MF (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599. http://dx.doi.org/10.1146/annurev.arplant.50.1.571 PMid:15012220   Turner NC (1997). Further progress in crop water relations. Adv. Agron. 58: 293-338. http://dx.doi.org/10.1016/S0065-2113(08)60258-8   Wang CR, Yang AF, Yue GD, Gao Q, et al. (2008). Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227: 1127-1140. http://dx.doi.org/10.1007/s00425-007-0686-9 PMid:18214529   Zhu JK (2001). Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 4: 401-406. http://dx.doi.org/10.1016/S1369-5266(00)00192-8
S. S. Pereira, Guimarães, F. C. M., Carvalho, J. F. C., Stolf-Moreira, R., Oliveira, M. C. N., Rolla, A. A. P., Farias, J. R. B., Neumaier, N., and Nepomuceno, A. L., Transcription factors expressed in soybean roots under drought stress, vol. 10, pp. 3689-3701, 2011.
Agarwal P, Arora R, Ray S, Singh AK, et al. (2007). Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol. Biol. 65: 467-485. http://dx.doi.org/10.1007/s11103-007-9199-y PMid:17610133   Andrade AB (2006). Inibição do Crescimento de Raízes de Soja pela Mimosina: Lignificação e Enzimas Relacionadas. Thesis, Universidade Estadual de Maringá, Maringá.   Chen BJ, Wang Y, Hu YL, Wu Q, et al. (2005). Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia. Plant Sci. 168: 493-500. http://dx.doi.org/10.1016/j.plantsci.2004.09.013   Conab - Companhia Nacional de Abastecimento (2005). Available at [http://www.conab.gov.br]. Accessed......... dos Santos WD, Ferrarese ML, Nakamura CV, Mourao KS, et al. (2008). Soybean (Glycine max) root lignification induced by ferulic acid. The possible mode of action. J. Chem. Ecol. 34: 1230-1241.   Du H, Zhang L, Liu L, Tang XF, et al. (2009). Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry 74: 1-11. PMid:19232042   Dubos C, Stracke R, Grotewold E, Weisshaar B, et al. (2010). MYB transcription factors in Arabidopsis. Trends Plant Sci. 15: 573-581. http://dx.doi.org/10.1016/j.tplants.2010.06.005 PMid:20674465   Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2004). Available at [http://www.cnpso.embrapa.br]. Accessed....... Fan L, Linker R, Gepstein S, Tanimoto E, et al. (2006). Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol. 140: 603-612.   Fornale S, Sonbol FM, Maes T, Capellades M, et al. (2006). Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Mol. Biol. 62: 809-823. http://dx.doi.org/10.1007/s11103-006-9058-2 PMid:16941210   Guo Y and Gan S (2006). AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 46: 601-612. http://dx.doi.org/10.1111/j.1365-313X.2006.02723.x PMid:16640597   Hu Wen-Jing, Harding SA, Lung J, Popko JL, et al. (1999). Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol. 17: 808-812. http://dx.doi.org/10.1038/11758 PMid:10429249   Jain D, Roy N and Chattopadhyay D (2009). CaZF, a plant transcription factor functions through and parallel to HOG and calcineurin pathways in Saccharomyces cerevisiae to provide osmotolerance. PLoS One 4: e5154. http://dx.doi.org/10.1371/journal.pone.0005154 PMid:19365545 PMCid:2664467   Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, et al. (2002). bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7: 106-111. http://dx.doi.org/10.1016/S1360-1385(01)02223-3   Kizis D, Lumbreras V and Pagès M (2001). Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett. 498: 187-189. http://dx.doi.org/10.1016/S0014-5793(01)02460-7   Kunieda T, Mitsuda N, Ohme-Takagi M, Takeda S, et al. (2008). NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. Plant Cell 20: 2631-2642. http://dx.doi.org/10.1105/tpc.108.060160 PMid:18849494 PMCid:2590734   Liu JX, Srivastava R and Howell SH (2008). Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis. Plant Cell Environ. 31: 1735-1743. http://dx.doi.org/10.1111/j.1365-3040.2008.01873.x PMid:18721266   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.   Nijhawan A, Jain M, Tyagi AK and Khurana JP (2008). Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 146: 333-350. http://dx.doi.org/10.1104/pp.107.112821 PMid:18065552 PMCid:2245831   Olsen AN, Ernst HA, Leggio LL and Skriver K (2005). NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10: 79-87. http://dx.doi.org/10.1016/j.tplants.2004.12.010 PMid:15708345   Sakamoto H, Maruyama K, Sakuma Y, Meshi T, et al. (2004). Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 136: 2734-2746. http://dx.doi.org/10.1104/pp.104.046599 PMid:15333755 PMCid:523337   Schenk PM, Kazan K, Manners JM, Anderson JP, et al. (2003). Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol. 132: 999-1010. http://dx.doi.org/10.1104/pp.103.021683 PMid:12805628 PMCid:167038   Seo PJ, Xiang F, Qiao M, Park JY, et al. (2009). The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol. 151: 275-289. http://dx.doi.org/10.1104/pp.109.144220 PMid:19625633 PMCid:2735973   Shinozaki K (2004) Arabidopsis Cys2/His2-Type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 136: 2734-2746. http://dx.doi.org/10.1104/pp.104.046599 PMid:15333755 PMCid:523337   Shinozaki K and Yamaguchi-Shinozaki K (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227. http://dx.doi.org/10.1093/jxb/erl164 PMid:17075077   Stolf-Moreira R, Lemos EGM, Carareto AL, Marcondes J, et al. (2011a). Transcriptional profiles of roots of different soybean genotypes subjected to drought stress. Plant Mol. Biol. Rep. 29: 19-34. http://dx.doi.org/10.1007/s11105-010-0203-3   Stolf-Moreira R, Lemos EGM, Abdelnoor RV, Beneventi MA, et al. (2011b). Identification of reference genes for expression analysis by real-time quantitative PCR in drought-stressed soybean. Pesq. Agropec. Bras. 46: 58-65. http://dx.doi.org/10.1590/S0100-204X2011000100008   Sugano S, Kaminaka H, Rybka Z, Catala R, et al. (2003). Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J. 36: 830-841. http://dx.doi.org/10.1046/j.1365-313X.2003.01924.x PMid:14675448   Sun SJ, Guo SQ, Yang X, Bao YM, et al. (2010). Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J. Exp. Bot. 61: 2807-2818. http://dx.doi.org/10.1093/jxb/erq120 PMid:20460361 PMCid:2882275   Takatsuji H (1999). Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol. Biol. 39: 1073-1078. http://dx.doi.org/10.1023/A:1006184519697 PMid:10380795   Tian ZD, Zhang Y, Liu J and Xie CH (2010). Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance. Plant Biol. 12: 689-697. http://dx.doi.org/10.1111/j.1438-8677.2009.00276.x PMid:20701691   Wilkins O, Nahal H, Foong J, Provart NJ, et al. (2009). Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol. 149: 981-993. http://dx.doi.org/10.1104/pp.108.132795 PMid:19091872 PMCid:2633813   Xu S, Wang X and Chen J (2007). Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His- 2-type transcription factor involved in drought and salt stress. Plant Cell Rep. 26: 497-506. http://dx.doi.org/10.1007/s00299-006-0248-9 PMid:17024447   Yoshimura K, Masuda A, Kuwano M, Yokota A, et al. (2008). Programmed proteome response for drought avoidance/ tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol. 49: 226-241. http://dx.doi.org/10.1093/pcp/pcm180 PMid:18178965
2010
R. Stolf-Moreira, Medri, M. E., Neumaier, N., Lemos, N. G., Brogin, R. L., Marcelino, F. C., de Oliveira, M. C. N., Farias, J. R. B., Abdelnoor, R. V., and Nepomuceno, A. L., Cloning and quantitative expression analysis of drought-induced genes in soybean, vol. 9, pp. 858-867, 2010.
Baker SS, Wilhelm KS and Thomashow MF (1994). The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 24: 701-713. http://dx.doi.org/10.1007/BF00029852 PMid:8193295   Bray EA (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 55: 2331-2341. http://dx.doi.org/10.1093/jxb/erh270 PMid:15448178   Downie B, Gurusinghe S, Dahal P, Thacker RR, et al. (2003). Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol. 131: 1347-1359. http://dx.doi.org/10.1104/pp.016386 PMid:12644684 PMCid:166894   Ewing B, Hillier L, Wendl MC and Green P (1998). Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res. 8: 175-185. PMid:9521921   Fowler S and Thomashow MF (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675-1690. http://dx.doi.org/10.1105/tpc.003483 PMid:12172015 PMCid:151458   Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, et al. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16: 433-442. http://dx.doi.org/10.1046/j.1365-313x.1998.00310.x PMid:9881163   Haake V, Cook D, Riechmann JL, Pineda O, et al. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 130: 639-648. http://dx.doi.org/10.1104/pp.006478 PMid:12376631 PMCid:166593   Haritatos E, Medville R and Turgeon R (2000). Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211: 105-111. http://dx.doi.org/10.1007/s004250000268 PMid:10923710   Johansson I, Karlsson M, Johanson U, Larsson C, et al. (2000). The role of aquaporins in cellular and whole plant water balance. Biochim. Biophys. Acta 1465: 324-342. http://dx.doi.org/10.1016/S0005-2736(00)00147-4   Kaldenhoff R, Grote K, Zhu JJ and Zimmermann U (1998). Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. Plant J. 14: 121-128. http://dx.doi.org/10.1046/j.1365-313X.1998.00111.x PMid:9681029   Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, et al. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17: 287-291. http://dx.doi.org/10.1038/7036 PMid:10096298   Kasuga M, Miura S, Shinozaki K and Yamaguchi-Shinozaki K (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45: 346-350. http://dx.doi.org/10.1093/pcp/pch037 PMid:15047884   Kizis D, Lumbreras V and Pages M (2001). Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett. 498: 187-189. http://dx.doi.org/10.1016/S0014-5793(01)02460-7   Kumar S, Tamura K and Nei M (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 5: 150-163. http://dx.doi.org/10.1093/bib/5.2.150 PMid:15260895   Liu JJ, Krenz DC, Galvez AF and de Lumen BO (1998). Galactinol synthase (GS): increased enzyme activity and levels of mRNA due to cold and desiccation. Plant Sci. 134: 11-20. http://dx.doi.org/10.1016/S0168-9452(98)00042-9   Maitra N and Cushman JC (1998). Characterization of a drought-induced soybean cDNA encoding a plant defensin. Plant Physiol. 118: 1536.   Martre P, Morillon R, Barrieu F, North GB, et al. (2002). Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol. 130: 2101-2110. http://dx.doi.org/10.1104/pp.009019 PMid:12481094 PMCid:166722   Maurel C and Chrispeels MJ (2001). Aquaporins. A molecular entry into plant water relations. Plant Physiol. 125: 135-138. http://dx.doi.org/10.1104/pp.125.1.135 PMid:11154316 PMCid:1539345   Miller EM and Nickoloff JA (1995). Escherichia coli Electrotransformation. In: Electroporation Protocols for Microorganisms (Nickoloff JA, ed.). Humana Press, Totowa, 105-114. http://dx.doi.org/10.1385/0-89603-310-4:105 PMid:7550724   Pfaffl MW, Horgan GW and Dempfle L (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36. http://dx.doi.org/10.1093/nar/30.9.e36 PMid:11972351 PMCid:113859   Schenk PM, Kazan K, Manners JM, Anderson JP, et al. (2003). Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol. 132: 999-1010. http://dx.doi.org/10.1104/pp.103.021683 PMid:12805628 PMCid:167038   Seki M, Narusaka M, Abe H, Kasuga M, et al. (2001). Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 61-72. PMid:11158529 PMCid:102214   Shinozaki K and Yamaguchi-Shinozaki K (1996). Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7: 161-167. http://dx.doi.org/10.1016/S0958-1669(96)80007-3   Shinozaki K and Yamaguchi-Shinozaki K (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223. PMid:10837265   Shinozaki K and Yamaguchi-Shinozaki K (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227. http://dx.doi.org/10.1093/jxb/erl164 PMid:17075077   Shukla VK and Chrispeels MJ (1998). Aquaporins their Role and Regulation in Cellular Water Movement. In: Cellular Integrations of Signalling Pathways in Plant Development. (Lo Schiavo E, Lat KL, Morelli G and Raikhel NV, eds.). Series Vol. H 104. North Atlantic Treaty Organization Advanced Study Institute. Springer-Verlag, Berlin, 11-21.   Siefritz F, Biela A, Eckert M, Otto B, et al. (2001). The tobacco plasma membrane aquaporin NtAQP1. J. Exp. Bot. 52: 1953-1957. http://dx.doi.org/10.1093/jexbot/52.363.1953 PMid:11559730   Stolf R (2007). Identificação e Análise da Expressão de Genes Relacionados com Tolerância à Seca em Soja Através de Microarranjos de DNA e PCR em Tempo Real. Doctoral thesis, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal.   Tyerman SD, Bohnert HJ, Maurel C, Steudle E, et al. (1999). Plant aquaporins: their molecular biology, biophysics, and significance for plant water relations. J. Exp. Bot. 50: 1055-1071.   Volkov RA, Panchuk II and Schoffl F (2003). Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J. Exp. Bot. 54: 2343-2349. http://dx.doi.org/10.1093/jxb/erg244 PMid:14504302   Yamada S, Komori T and Imaseki H (1997). cDNA cloning of gamma-thionin from Nicotiana excelsior. Plant Physiol. 115: 314.   Yamaguchi-Shinozaki K and Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251-264. PMid:8148648 PMCid:160431   Zhang JZ, Creelman RA and Zhu JK (2004). From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol. 135: 615-621. http://dx.doi.org/10.1104/pp.104.040295 PMid:15173567 PMCid:514097
R. Stolf-Moreira, Medri, M. E., Neumaier, N., Lemos, N. G., Pimenta, J. A., Tobita, S., Brogin, R. L., Marcelino-Guimarães, F. C., Oliveira, M. C. N., Farias, J. R. B., Abdelnoor, R. V., and Nepomuceno, A. L., Soybean physiology and gene expression during drought, vol. 9, pp. 1946-1956, 2010.
Aharon R, Shahak Y, Wininger S, Bendov R, et al. (2003). Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15: 439-447. http://dx.doi.org/10.1105/tpc.009225 PMid:12566583 PMCid:141212   Bayoumi TY, Eid MH and Metwali EM (2008). Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. Afr. J. Biotechnol. 7: 2341-2352.   Bocca SN, Magioli C, Mangeon A, Junqueira RM, et al. (2005). Survey of glycine-rich proteins (GRPs) in the Eucalyptus expressed sequence tag database (ForEST). Genet. Mol. Biol. 28: 608-624. http://dx.doi.org/10.1590/S1415-47572005000400016   Boeger AR and Wisniewski C (2002). Leaf structure and nutrient contents of six tree species from different successional stages at coastal plain from Paraná State, Brazil. Iheringia 57: 243-262.   Bohnert HJ, Nelson DE and Jensen RG (1995). Adaptations to environmental stresses. Plant Cell 7: 1099-1111. PMid:12242400 PMCid:160917   Chiariello NR, Mooney HA and Williams K (1991). Growth, Carbon Allocation and Cost of Plant Tissues. In: Plant Physiologic Ecology: Field Methods and Instrumentation (Pearcey RW, Ehleringer J, Mooney HA and Rundel PW, eds.). Chapman and Hall, New York, 327-365.   Chinnusamy V, Schumaker K and Zhu JK (2004). Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot. 55: 225-236. http://dx.doi.org/10.1093/jxb/erh005 PMid:14673035   Cornic G and Briantais JM (1991). Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. Planta 183: 178-184. http://dx.doi.org/10.1007/BF00197786   Downie B, Gurusinghe S, Dahal P, Thacker RR, et al. (2003). Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol. 131: 1347-1359. http://dx.doi.org/10.1104/pp.016386 PMid:12644684 PMCid:166894   Hannah MA, Wiese D, Freund S, Fiehn O, et al. (2006). Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol. 142: 98-112. http://dx.doi.org/10.1104/pp.106.081141 PMid:16844837 PMCid:1557609   Hewitt EJ (1963). Mineral Nutrition of Plants in Culture Media. In: Plant Physiology. Vol. III (Steward FC, ed.). Academic Press, New York, 97-133.   Hill AE, Shachar-Hill B and Shachar-Hill Y (2004). What are aquaporins for? J. Membr. Biol. 197: 1-32. http://dx.doi.org/10.1007/s00232-003-0639-6 PMid:15014915   Huang B and Fry JD (1998). Root anatomical, physiological, and morphological responses to drought stress for tall fescue cultivars. Crop Sci. 38: 1017-1022. http://dx.doi.org/10.2135/cropsci1998.0011183X003800040022x   Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K and Shinozaki K (2000). A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol. 123: 553-562. http://dx.doi.org/10.1104/pp.123.2.553 PMid:10859185 PMCid:59023   Jones HG (2007). Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 58: 119-130. http://dx.doi.org/10.1093/jxb/erl118 PMid:16980592   Kron AP, Souza GMR and Ribeiro RV (2008). Water deficiency at different developmental stages of Glycine max can improve drought tolerance. Bragantia 67: 43-49. http://dx.doi.org/10.1590/S0006-87052008000100005   Li XP, Tian AG, Luo GZ, Gong ZZ, et al. (2005). Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor. Appl. Genet. 110: 1355-1362. http://dx.doi.org/10.1007/s00122-004-1867-6 PMid:15841365   Machado-Filho JA, Campostrini E, Yamanishi OK and Fagundes GR (2006). Seasonal variation of leaf gas exchange in papaya plants grown under field condition. Bragantia 65: 185-196.   Maitra N and Cushman JC (1998). Characterization of a drought-induced soybean cDNA encoding a plant defensin. Plant Physiol. 118: 1536.   Maruyama K, Sakuma Y, Kasuga M, Ito Y, et al. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38: 982-993. http://dx.doi.org/10.1111/j.1365-313X.2004.02100.x PMid:15165189   Maurel C and Chrispeels MJ (2001). Aquaporins. A molecular entry into plant water relations. Plant Physiol. 125: 135-138. http://dx.doi.org/10.1104/pp.125.1.135 PMid:11154316 PMCid:1539345   Monti A, Brugnoli E, Scartazza A and Amaducci MT (2006). The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.). J. Exp. Bot. 57: 1253-1262. http://dx.doi.org/10.1093/jxb/erj091 PMid:16467409   Oya T, Nepomuceno AL, Neumaier N, Farias JRB, et al. (2004). Drought tolerance characteristics of Brazilian soybean cultivars - evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prod. Sci. 7: 129-137. http://dx.doi.org/10.1626/pps.7.129   Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, et al. (2004). Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol. 136: 3148-3158. http://dx.doi.org/10.1104/pp.104.042606 PMid:15466240 PMCid:523375   Pfaffl MW, Horgan GW and Dempfle L (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36. http://dx.doi.org/10.1093/nar/30.9.e36 PMid:11972351 PMCid:113859   Porcel R, Aroca R, Azcon R and Ruiz-Lozano JM (2006). PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol. Biol. 60: 389-404. http://dx.doi.org/10.1007/s11103-005-4210-y PMid:16514562   Schafleitner R, Gaudin A, Rosales ROG, Aliaga CAA, et al. (2007). Proline accumulation and real time PCR expression analysis of genes encoding enzymes of proline metabolism in relation to drought tolerance in Andean potato. Acta Physiol. Plant. 29: 19-26. http://dx.doi.org/10.1007/s11738-006-0003-4   Shen YG, Zhang WK, Yan DQ, Du BX, et al. (2003). Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor. Appl. Genet. 107: 155-161. PMid:12677404   Schenk PM, Kazan K, Manners JM, Anderson JP, et al. (2003). Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol. 132: 999-1010. http://dx.doi.org/10.1104/pp.103.021683 PMid:12805628 PMCid:167038   Shinozaki K and Yamaguchi-Shinozaki K (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227. http://dx.doi.org/10.1093/jxb/erl164 PMid:17075077   Singh K, Foley RC and Onate-Sanchez L (2002). Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol. 5: 430-436. http://dx.doi.org/10.1016/S1369-5266(02)00289-3   Stolf R (2007). Identificação e Análise da Expressão de Genes Relacionados com Tolerância à Seca em Soja Através de Microarranjos de DNA e PCR em Tempo Real. Doctoral thesis, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal.   Sung DY, Vierling E and Guy CL (2001). Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol. 126: 789-800. http://dx.doi.org/10.1104/pp.126.2.789 PMid:11402207 PMCid:111169   Taji T, Seki M, Satou M, Sakurai T, et al. (2004). Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 135: 1697-1709. http://dx.doi.org/10.1104/pp.104.039909 PMid:15247402 PMCid:519083   Tang M, Sun J, Liu Y, Chen F, et al. (2007). Isolation and functional characterization of the JcERF gene, a putative AP2/ EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol. Biol. 63: 419-428. http://dx.doi.org/10.1007/s11103-006-9098-7 PMid:17103014   Vasquez-Robinet C, Mane SP, Ulanov AV, Watkinson JI, et al. (2008). Physiological and molecular adaptations to drought in Andean potato genotypes. J. Exp. Bot. 59: 2109-2123. http://dx.doi.org/10.1093/jxb/ern073 PMid:18535297 PMCid:2413284   Warren CR (2004). The photosynthetic limitation posed by internal conductance to CO2 movement is increased by nutrient supply. J. Exp. Bot. 55: 2313-2321. http://dx.doi.org/10.1093/jxb/erh239 PMid:15310814   Yamada K, Lim J, Dale JM, Chen H, et al. (2003). Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302: 842-846. http://dx.doi.org/10.1126/science.1088305 PMid:14593172   Yamaguchi-Shinozaki K and Shinozaki K (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10: 88-94. http://dx.doi.org/10.1016/j.tplants.2004.12.012 PMid:15708346