Publications

Found 24 results
Filters: Author is Y.L. Wang  [Clear All Filters]
2016
Q. Y. Dong, Liu, X. M., Liang, C. G., Du, W. H., Wang, Y. L., Li, W. X., Gao, G. Q., Dong, Q. Y., Liu, X. M., Liang, C. G., Du, W. H., Wang, Y. L., Li, W. X., and Gao, G. Q., Association between -1082G/A, -819C/T, and -592C/A genetic polymorphisms in IL-10 and risk of type 2 diabetes mellitus in a Chinese population, vol. 15, p. -, 2016.
Q. Y. Dong, Liu, X. M., Liang, C. G., Du, W. H., Wang, Y. L., Li, W. X., Gao, G. Q., Dong, Q. Y., Liu, X. M., Liang, C. G., Du, W. H., Wang, Y. L., Li, W. X., and Gao, G. Q., Association between -1082G/A, -819C/T, and -592C/A genetic polymorphisms in IL-10 and risk of type 2 diabetes mellitus in a Chinese population, vol. 15, p. -, 2016.
H. J. Yuan, Wang, Y. L., Wei, Z. X., Xu, Q. J., Zeng, X. Q., Tang, Y. W., and Nyima, T. S., NJ cluster analysis of the SnRK2, PYR/PYL/RCAR, and ABF genes in Tibetan hulless barley, vol. 15, no. 4. GeneticsMR, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the following funding sources: the National Program on Key Basic Research Project (#2012CB723006), the National Science and Technology Support Program (#2012BAD03B01), and the Tibet Autonomous Region Financial Special Fund (#2014CZZX001).REFERENCESCao J, Jiang M, Li P, Chu Z, et al (2016). Genome-wide identification and evolutionary analyses of the PP2C gene family with their expression profiling in response to multiple stresses in Brachypodium distachyon. BMC Genomics 17: 175. http://dx.doi.org/10.1186/s12864-016-2526-4 Chen L, Han J, Deng X, Tan S, et al (2016). Expansion and stress responses of AP2/EREBP superfamily in Brachypodium distachyon. Sci. Rep. 6: 21623. http://dx.doi.org/10.1038/srep21623 Dai F, Nevo E, Wu D, Comadran J, et al (2012). Tibet is one of the centers of domestication of cultivated barley. Proc. Natl. Acad. Sci. USA 109: 16969-16973. http://dx.doi.org/10.1073/pnas.1215265109 de Zelicourt A, Colcombet J and Hirt H (2016). The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci. pii: S1360-1385(16)30006-1. doi: http://dx.doi.org/10.1016/j.tplants.2016.04.004. Georg-Kraemer JE, Ferreira CA, Cavalli SS, et al (2011). Differential gene expression patterns in the autogamous plant Hordeum euclaston (Poaceae). Genet. Mol. Res. 10: 295-310. http://dx.doi.org/10.4238/vol10-1gmr1017 Genome Assembly. The Arabidopsis Information Resource. Accessed March 29, 2016. Fan W, Zhao M, Li S, Bai X, et al (2016). Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC Plant Biol. 16: 99. http://dx.doi.org/10.1186/s12870-016-0764-x Hauser F, Waadt R, Schroeder JI, et al (2011). Evolution of abscisic acid synthesis and signaling mechanisms. Curr. Biol. 21: R346-R355. http://dx.doi.org/10.1016/j.cub.2011.03.015 International Brachypodium Initiativeet al (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: 763-768. http://dx.doi.org/10.1038/nature08747 Ji L, Wang J, Ye M, Li Y, et al (2013). Identification and characterization of the Populus AREB/ABF subfamily. J. Integr. Plant Biol. 55: 177-186. http://dx.doi.org/10.1111/j.1744-7909.2012.01183.x Merilo E, Laanemets K, Hu H, Xue S, et al (2013). PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Plant Physiol. 162: 1652-1668. http://dx.doi.org/10.1104/pp.113.220608 Ng LM, Melcher K, Teh BT, Xu HE, et al (2014). Abscisic acid perception and signaling: structural mechanisms and applications. Acta Pharmacol. Sin. 35: 567-584. http://dx.doi.org/10.1038/aps.2014.5 Saha J, Chatterjee C, Sengupta A, Gupta K, et al (2014). Genome-wide analysis and evolutionary study of sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family members in Arabidopsis and Oryza. Comput. Biol. Chem. 49: 59-70. http://dx.doi.org/10.1016/j.compbiolchem.2013.09.005 Tajdel M, Mituła F, Ludwików A, et al (2016). Regulation of Arabidopsis MAPKKK18 by ABI1 and SnRK2, components of the ABA signaling pathway. Plant Signal. Behav. 11: e1139277. http://dx.doi.org/10.1080/15592324.2016.1139277 Tamura K, Stecher G, Peterson D, Filipski A, et al (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. http://dx.doi.org/10.1093/molbev/mst197 Wang L, Hu W, Sun J, Liang X, et al (2015). Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9. Plant Sci. 237: 33-45. http://dx.doi.org/10.1016/j.plantsci.2015.05.008 Wen F, Zhu H, Li P, Jiang M, et al (2014). Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon. DNA Res. 21: 327-339. http://dx.doi.org/10.1093/dnares/dst060 Yoshida T, Fujita Y, Maruyama K, Mogami J, et al (2015). Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ. 38: 35-49. http://dx.doi.org/10.1111/pce.12351 Yuan HJ, Luo XM, Nyima TS, Wang YL, et al (2015). Cloning and characterization of up-regulated HbSINA4 gene induced by drought stress in Tibetan hulless barley. Genet. Mol. Res. 14: 15312-15319. http://dx.doi.org/10.4238/2015.November.30.7 Zeng X, Long H, Wang Z, Zhao S, et al (2015). The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proc. Natl. Acad. Sci. USA 112: 1095-1100. http://dx.doi.org/10.1073/pnas.1423628112 Zeng X, Bai L, Wei Z, Yuan H, et al (2016). Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. BMC Genomics 17: 386. http://dx.doi.org/10.1186/s12864-016-2685-3 Zhou C, Ma ZY, Zhu L, Guo JS, et al (2015). Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynthesis and increases drought resistance in alfalfa (Medicago sativa L.). Genet. Mol. Res. 14: 17204-17218. http://dx.doi.org/10.4238/2015.December.16.20 Zohary D and Hopf M (2000). Domestication of plants in the Old World: The origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. 3rd edn. Oxford University Press, New York.    
2015
Y. L. Wang, Kong, H., Xie, W. P., and Wang, H., Association of vitamin D-binding protein variants with chronic obstructive pulmonary disease: a meta-analysis, vol. 14, pp. 10774-10785, 2015.
Q. Li, Wang, Y. L., Xie, J., Sun, W. J., Zhu, M., He, L., and Wang, Q., Characterization and expression of DDX6 during gametogenesis in the Chinese mitten crab Eriocheir sinensis, vol. 14, pp. 4420-4437, 2015.
J. Zuo, Zhang, C. W., Zhou, X., Wei, W., and Wang, Y. L., Characterization of abnormal epithelium after laser-assisted subepithelial keratectomy using in vivo confocal microscopy, vol. 14, pp. 4749-4756, 2015.
H. J. Yuan, Luo, X. M., Nyima, T. S., Wang, Y. L., Xu, Q. J., and Zeng, X. Q., Cloning and characterization of up-regulated HbSINA4 gene induced by drought stress in Tibetan hulless barley, vol. 14. pp. 15312-15319, 2015.
Y. L. Wang, Lv, H. Y., and Zhang, Q., Effect of flavonoid compounds extracted from Iris species in prevention of carbon tetrachloride-induced liver fibrosis in rats, vol. 14, pp. 10973-10979, 2015.
J. Z. Gao, Wang, Y. L., Li, J., and Wei, L. X., Effects of VEGF/VEGFR/K-ras signaling pathways on miRNA21 levels in hepatocellular carcinoma tissues in rats, vol. 14, pp. 671-679, 2015.
W. H. Yu, Wang, Y. X., Guo, J. Q., Wang, Y. L., Zheng, J. S., and Zhu, K. X., Genetic variability of ERCC1 and ERCC2 influences treatment outcomes in gastric cancer, vol. 14, pp. 17529-17535, 2015.
X. L. Yang, Luo, Q., Song, H. X., Wang, Y. L., Yao, Y. N., and Xia, H., Related factors and prevalence of Parkinson’s disease among Uygur residents in Hetian, Xinjiang Uygur Autonomous Region, vol. 14, pp. 8539-8546, 2015.
Y. L. Wang, Dai, X., Li, Y. D., Cheng, R. X., Deng, B., Geng, X. X., and Zhang, H. J., Study of PIK3CA, BRAF, and KRAS mutations in breast carcinomas among Chinese women in Qinghai, vol. 14, pp. 14840-14846, 2015.
2012
R. H. Yu, Wang, Y. L., Sun, Y., and Liu, B., Analysis of genetic distance by SSR in waxy maize, vol. 11, pp. 254-260, 2012.
Fu TL (1995). The analysis of genetic principal component and distance of 33 glutinous maize inbred lines. Sci. Agric. Sin. 28: 46-53. Liu YJ, Huang YB, Rong TZ, Tian ML, et al. (2005). Comparative analysis of genetic diversity in landraces of waxy maize from Yunnan and Guizhou using SSR markers. Sci. Agric. Sin. 4: 648-653. Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 Novy RG, Vorsa N, Kobak C and Goffreda J (1994). RAPDs identify varietal misclassification and regional divergence in cranberry [Vaccinium macrocarpon (Ait.) Pursh]. Theor. Appl. Genet. 88: 1004-1010. http://dx.doi.org/10.1007/BF00220808 Reif JC, Melchinger AE, Xia XC, Warburton ML, et al. (2003a). Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci. 43: 1275-1282. http://dx.doi.org/10.2135/cropsci2003.1275 Reif JC, Melchinger AE, Xia XC, Warburton ML, et al. (2003b). Use of SSRs for establishing heterotic groups in subtropical maize. Theor. Appl. Genet. 107: 947-957. http://dx.doi.org/10.1007/s00122-003-1333-x PMid:12830388 Senior ML, Murphy JP, Goodman MM and Stuber CW (1998). Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci. 38: 1088-1098. http://dx.doi.org/10.2135/cropsci1998.0011183X003800040034x Shehata AI, Al-Ghethar HA and Al-Homaidan AA (2009). Application of simple sequence repeat (SSR) markers for molecular diversity and heterozygosity analysis in maize inbred lines. Saudi J. Biol. Sci. 16: 57-62. http://dx.doi.org/10.1016/j.sjbs.2009.10.001 Smith JSC and Weissinger H (1984). Rapid monitoring of purity in seed lots of hybrid maize: modifications of current technologies. Maize Genet. Coop. Newslett. 2: 103-105. Smith JSC, Chin ECL, Shu H, Smith OS, et al. (1997). An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays): Comparisons with data from RFLPs and pedigree. Theor. Appl. Genet. 95: 163-173. http://dx.doi.org/10.1007/s001220050544 Wang C, Bian K, Zhang H-X and Zhou Z-M (1994). Polyacrylamide gel electrophoresis of salt-soluble proteins for maize variety identification and genetic purity assessment. Seed Sci. Technol. 22: 51-57. Wu MS, Dai JR and Wang SC (1999). Application of RAPD in cultivar identification and purity test in maize. Acta Agron. Sin. 25: 489-493. Xia XC, Hoisington DA and Warburton ML (2004). Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: I. Lowland tropical maize. Crop Sci. 44: 2230-2237. http://dx.doi.org/10.2135/cropsci2004.2230 Yao Q, Yang K, Pan G and Rong T (2007). Genetic diversity of maize (Zea mays L.) landraces from southwest China based on SSR data. J. Genet. Genomics 34: 851-859. http://dx.doi.org/10.1016/S1673-8527(07)60096-4
H. P. Li, Guo, Y. J., Zhu, H. S., Zhong, K., Zha, G. M., Wang, L. F., Wang, Y. L., Lu, W. F., Wang, Y. Y., and Yang, G. Y., IL-8 mRNA expression in the mouse mammary glands during pregnancy and lactation, vol. 11, pp. 4746-4753, 2012.
Baggiolini M (2001). Chemokines in pathology and medicine. J. Intern. Med. 250: 91-104. http://dx.doi.org/10.1046/j.1365-2796.2001.00867.x PMid:11489059   Baggiolini M, Dewald B and Moser B (1994). Interleukin-8 and related chemotactic cytokines - CXC and CC chemokines. Adv. Immunol. 55: 97-179. http://dx.doi.org/10.1016/S0065-2776(08)60509-X   Bek EL, McMillen MA, Scott P, Angus LD, et al. (2002). The effect of diabetes on endothelin, interleukin-8 and vascular endothelial growth factor-mediated angiogenesis in rats. Clin. Sci. 103 (Suppl 48): 424S-429S. PMid:12193137   Ben-Baruch A, Michiel DF and Oppenheim JJ (1995). Signals and receptors involved in recruitment of inflammatory cells. J. Biol. Chem. 270: 11703-11706. http://dx.doi.org/10.1074/jbc.270.20.11703 PMid:7744810   Bruun JM, Verdich C, Toubro S, Astrup A, et al. (2003). Association between measures of insulin sensitivity and circulating levels of interleukin-8, interleukin-6 and tumor necrosis factor-alpha. Effect of weight loss in obese men. Eur. J. Endocrinol. 148: 535-542. http://dx.doi.org/10.1530/eje.0.1480535 PMid:12720537   Dinarello CA (1989). Interleukin-1 and its biologically related cytokines. Adv. Immunol. 44: 153-205. http://dx.doi.org/10.1016/S0065-2776(08)60642-2   Gelaleti GB, Jardim BV, Leonel C, Moschetta MG, et al. (2012). Interleukin-8 as a prognostic serum marker in canine mammary gland neoplasias. Vet. Immunol. Immunopathol. 146: 106-112. http://dx.doi.org/10.1016/j.vetimm.2012.02.005 PMid:22405680   Hallgren J and Gurish MF (2011). Mast cell progenitor trafficking and maturation. Adv. Exp. Med. Biol. 716: 14-28. http://dx.doi.org/10.1007/978-1-4419-9533-9_2 PMid:21713649 PMCid:3554263   Hamed EA, Zakhary MM and Maximous DW (2012). Apoptosis, angiogenesis, inflammation, and oxidative stress: basic interactions in patients with early and metastatic breast cancer. J. Cancer Res. Clin. Oncol. 138: 999-1009. http://dx.doi.org/10.1007/s00432-012-1176-4 PMid:22362301   Hoffmann E, Dittrich-Breiholz O, Holtmann H and Kracht M (2002). Multiple control of interleukin-8 gene expression. J. Leukoc. Biol. 72: 847-855. PMid:12429706   Hunt KM, Williams JE, Shafii B, Hunt MK, et al. (2012). Mastitis Is Associated with Increased Free Fatty Acids, Somatic Cell Count, and Interleukin-8 Concentrations in Human Milk. Breastfeed. Med. [Ahed of Print].   Ju D, Sun D, Xiu L, Meng X, et al. (2012). Interleukin-8 is associated with adhesion, migration and invasion in human gastric cancer SCG-7901 cells. Med. Oncol. 29: 91-99. http://dx.doi.org/10.1007/s12032-010-9780-0 PMid:21191670   Kaplan AP (2001). Chemokines, chemokine receptors and allergy. Int. Arch. Allergy Immunol. 124: 423-431. http://dx.doi.org/10.1159/000053777 PMid:11340325   Kitadai Y, Takahashi Y, Haruma K, Naka K, et al. (1999). Transfection of interleukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cells in nude mice. Br. J. Cancer 81: 647-653. http://dx.doi.org/10.1038/sj.bjc.6690742 PMid:10574250 PMCid:2362886   Koçak H, Oner-Iyidogan Y, Kocak T and Oner P (2004). Determination of diagnostic and prognostic values of urinary interleukin-8, tumor necrosis factor-alpha, and leukocyte arylsulfatase-A activity in patients with bladder cancer. Clin. Biochem. 37: 673-678. http://dx.doi.org/10.1016/j.clinbiochem.2004.02.005 PMid:15302609   Liskmann S, Vihalemm T, Salum O, Zilmer K, et al. (2006). Correlations between clinical parameters and interleukin-6 and interleukin-10 levels in saliva from totally edentulous patients with peri-implant disease. Int. J. Oral Maxillofac. Implants 21: 543-550. PMid:16955604   Matsuo Y, Ochi N, Sawai H, Yasuda A, et al. (2009). CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer. Int. J. Cancer 124: 853-861. http://dx.doi.org/10.1002/ijc.24040 PMid:19035451 PMCid:2684108   Meade KG, O'Gorman GM, Narciandi F, Machugh DE, et al. (2012). Functional characterisation of bovine interleukin 8 promoter haplotypes in vitro. Mol. Immunol. 50: 108-116. http://dx.doi.org/10.1016/j.molimm.2011.12.011 PMid:22244152   Ning Y, Manegold PC, Hong YK, Zhang W, et al. (2011). Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int. J. Cancer 128: 2038-2049. http://dx.doi.org/10.1002/ijc.25562 PMid:20648559 PMCid:3039715   Ramírez-Santana C, Perez-Cano FJ, Audi C, Castell M, et al. (2012). Effects of cooling and freezing storage on the stability of bioactive factors in human colostrum. J. Dairy Sci. 95: 2319-2325. http://dx.doi.org/10.3168/jds.2011-5066 PMid:22541460   Sabroe I, Lloyd CM, Whyte MK, Dower SK, et al. (2002). Chemokines, innate and adaptive immunity, and respiratory disease. Eur. Respir. J. 19: 350-355. http://dx.doi.org/10.1183/09031936.02.00253602 PMid:11871367 PMCid:3428840   Sagnak L, Ersoy H, Ozok U, Senturk B, et al. (2009). Predictive value of urinary interleukin-8 cutoff point for recurrences after transurethral resection plus induction bacillus Calmette-Guerin treatment in non-muscle-invasive bladder tumors. Clin. Genitourin. Cancer 7: E16-E23. http://dx.doi.org/10.3816/CGC.2009.n.016 PMid:19692317   Sheryka E, Wheeler MA, Hausladen DA and Weiss RM (2003). Urinary interleukin-8 levels are elevated in subjects with transitional cell carcinoma. Urology 62: 162-166. http://dx.doi.org/10.1016/S0090-4295(03)00134-1   Song JH, Kim SG, Jung SA, Lee MK, et al. (2010). The interleukin-8-251 AA genotype is associated with angiogenesis in gastric carcinogenesis in Helicobacter pylori-infected Koreans. Cytokine 51: 158-165. http://dx.doi.org/10.1016/j.cyto.2010.05.001 PMid:20621718   Sordillo LM and Streicher KL (2002). Mammary gland immunity and mastitis susceptibility. J. Mammary Gland. Biol. Neoplasia 7: 135-146. http://dx.doi.org/10.1023/A:1020347818725 PMid:12463736   Taub DD and Oppenheim JJ (1994). Chemokines, inflammation and the immune system. Ther. Immunol. 1: 229-246. PMid:7584498   Vernay MC, Wellnitz O, Kreipe L, van Dorland HA, et al. (2012). Local and systemic response to intramammary lipopolysaccharide challenge during long-term manipulated plasma glucose and insulin concentrations in dairy cows. J. Dairy Sci. 95: 2540-2549. http://dx.doi.org/10.3168/jds.2011-5188 PMid:22541481   Zhu YH, Liu PQ, Weng XG, Zhuge ZY, et al. (2012). Short communication: Pheromonicin-SA affects mRNA expression of toll-like receptors, cytokines, and lactoferrin by Staphylococcus aureus-infected bovine mammary epithelial cells. J. Dairy Sci. 95: 759-764. http://dx.doi.org/10.3168/jds.2011-4703 PMid:22281341   Zuccari DA, Leonel C, Castro R, Gelaleti GB, et al. (2012). An immunohistochemical study of interleukin-8 (IL-8) in breast cancer. Acta Histochem. 114: 571-576. http://dx.doi.org/10.1016/j.acthis.2011.10.007 PMid:22244449
2011
Y. Y. Wang, Wang, Y. L., Li, H. P., Zhu, H. S., Jiang, Q. D., Zhang, L., Wang, L. F., Han, L. Q., Zhong, K., Guo, Y. J., Lu, W. F., Li, H. J., and Yang, G. Y., Leptin mRNA expression in the rat mammary gland at different activation stages, vol. 10, pp. 3657-3663, 2011.
Ahima RS and Flier JS (2000). Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11: 327-332. http://dx.doi.org/10.1016/S1043-2760(00)00301-5   Amico JA, Thomas A, Crowley RS and Burmeister LA (1998). Concentrations of leptin in the serum of pregnant, lactating, and cycling rats and of leptin messenger ribonucleic acid in rat placental tissue. Life Sci. 63: 1387-1395. http://dx.doi.org/10.1016/S0024-3205(98)00405-6   Aoki N, Kawamura M and Matsuda T (1999). Lactation-dependent down regulation of leptin production in mouse mammary gland. Biochim. Biophys. Acta 1427: 298-306. http://dx.doi.org/10.1016/S0304-4165(99)00029-X   Baratta M, Grolli S and Tamanini C (2003). Effect of leptin in proliferating and differentiated HC11 mouse mammary cells. Regul. Pept. 113: 101-107. http://dx.doi.org/10.1016/S0167-0115(03)00006-5   Bartha T, Sayed-Ahmed A and Rudas P (2005). Expression of leptin and its receptors in various tissues of ruminants. Domest. Anim. Endocrinol. 29: 193-202. http://dx.doi.org/10.1016/j.domaniend.2005.03.010 PMid:15878255   Bonnet M, Gourdou I, Leroux C, Chilliard Y, et al. (2002). Leptin expression in the ovine mammary gland: putative sequential involvement of adipose, epithelial, and myoepithelial cells during pregnancy and lactation. J. Anim. Sci. 80: 723-728. PMid:11890408   Butte NF, Hopkinson JM, Mehta N, Moon JK, et al. (1999). Adjustments in energy expenditure and substrate utilization during late pregnancy and lactation. Am. J. Clin. Nutr. 69: 299-307. PMid:9989696   Clevenger CV and Plank TL (1997). Prolactin as an autocrine/paracrine factor in breast tissue. J. Mammary Gland. Biol. Neoplasia 2: 59-68. http://dx.doi.org/10.1023/A:1026325630359 PMid:10887520   Elias JJ, Pitelka DR and Armstrong RC (1973). Changes in fat cell morphology during lactation in the mouse. Anat. Rec. 177: 533-547. http://dx.doi.org/10.1002/ar.1091770407 PMid:4762729   Farooqi IS, Keogh JM, Kamath S, Jones S, et al. (2001). Partial leptin deficiency and human adiposity. Nature 414: 34-35. http://dx.doi.org/10.1038/35102112 PMid:11689931   Feuermann Y, Mabjeesh SJ and Shamay A (2004). Leptin affects prolactin action on milk protein and fat synthesis in the bovine mammary gland. J. Dairy Sci. 87: 2941-2946. http://dx.doi.org/10.3168/jds.S0022-0302(04)73425-6   Houseknecht KL, Baile CA, Matteri RL and Spurlock ME (1998). The biology of leptin: a review. J. Anim. Sci. 76: 1405- 1420. PMid:9621947   Hu X, Juneja SC, Maihle NJ and Cleary MP (2002). Leptin - a growth factor in normal and malignant breast cells and for normal mammary gland development. J. Natl. Cancer Inst. 94: 1704-1711. http://dx.doi.org/10.1093/jnci/94.22.1704 PMid:12441326   Jin LL, Zhang S, Burguera BG, Couce ME, et al. (2000). Leptin and leptin receptor expression in rat and mouse pituitary cells. Endocrinology 141: 333-339. http://dx.doi.org/10.1210/en.141.1.333 PMid:10614655   Lin Y and Li Q (2007). Expression and function of leptin and its receptor in mouse mammary gland. Sci. China C Life Sci. 50: 669-675. http://dx.doi.org/10.1007/s11427-007-0077-2 PMid:17879067   Malik NM, Carter ND, Murray JF, Scaramuzzi RJ, et al. (2001). Leptin requirement for conception, implantation, and gestation in the mouse. Endocrinology 142: 5198-5202. http://dx.doi.org/10.1210/en.142.12.5198 PMid:11713215   Mol JA, Lantinga-van L, I, van Garderen E and Rijnberk A (2000). Progestin-induced mammary growth hormone (GH) production. Adv. Exp. Med. Biol. 480: 71-76. http://dx.doi.org/10.1007/0-306-46832-8_8 PMid:10959411   Neville MC, McFadden TB and Forsyth I (2002). Hormonal regulation of mammary differentiation and milk secretion. J. Mammary Gland. Biol. Neoplasia 7: 49-66. http://dx.doi.org/10.1023/A:1015770423167 PMid:12160086   O'Brien SN, Welter BH and Price TM (1999). Presence of leptin in breast cell lines and breast tumors. Biochem. Biophys. Res. Commun. 259: 695-698. http://dx.doi.org/10.1006/bbrc.1999.0843 PMid:10364481   Sayed-Ahmed A, Kulcsar M, Rudas P and Bartha T (2004). Expression and localisation of leptin and leptin receptor in the mammary gland of the dry and lactating non-pregnant cow. Acta Vet. Hung. 52: 97-111. http://dx.doi.org/10.1556/AVet.52.2004.1.10 PMid:15119791   Smith-Kirwin SM, O'Connor DM, De JJ, Lancey ED, et al. (1998). Leptin expression in human mammary epithelial cells and breast milk. J. Clin. Endocrinol. Metab. 83: 1810-1813. http://dx.doi.org/10.1210/jc.83.5.1810 PMid:9589698   Smith JL and Sheffield LG (2002). Production and regulation of leptin in bovine mammary epithelial cells. Domest. Anim. Endocrinol. 22: 145-154. http://dx.doi.org/10.1016/S0739-7240(02)00121-2   Woodside B, Abizaid A and Walker C (2000). Changes in leptin levels during lactation: implications for lactational hyperphagia and anovulation. Horm. Behav. 37: 353-365. http://dx.doi.org/10.1006/hbeh.2000.1598 PMid:10860679   Zhang Y, Proenca R, Maffei M, Barone M, et al. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432. http://dx.doi.org/10.1038/372425a0 PMid:7984236
H. S. Zhu, Du, J. X., Wang, Y. Y., Wang, L. F., Hang, L. Q., Yang, G. Y., and Wang, Y. L., Prolactin-releasing peptide mRNA expression in mouse medulla remains relatively stable during pregnancy and lactation, vol. 10, pp. 615-620, 2011.
Anderson ST, Kokay IC, Lang T, Grattan DR, et al. (2003). Quantification of prolactin-releasing peptide (PrRP) mRNA expression in specific brain regions of the rat during the oestrous cycle and in lactation. Brain Res. 973: 64-73. doi:10.1016/S0006-8993(03)02543-5 Feng Y, Zhao H, An XF, Ma SL, et al. (2007). Expression of brain prolactin releasing peptide (PrRP) changes in the estrous cycle of female rats. Neurosci. Lett. 419: 38-42. doi:10.1016/j.neulet.2007.03.069 PMid:17475403 Hinuma S, Habata Y, Fujii R, Kawamata Y, et al. (1998). A prolactin-releasing peptide in the brain. Nature 393: 272-276. doi:10.1038/30515 PMid:9607765 Ibata Y, Iijima N, Kataoka Y, Kakihara K, et al. (2000). Morphological survey of prolactin-releasing peptide and its receptor with special reference to their functional roles in the brain. Neurosci. Res. 38: 223-230. doi:10.1016/S0168-0102(00)00182-6 Kataoka Y, Iijima N, Yano T, Kakihara K, et al. (2001). Gonadal regulation of PrRP mRNA expression in the nucleus tractus solitarius and ventral and lateral reticular nuclei of the rat. Brain Res. Mol. Brain Res. 87: 42-47. doi:10.1016/S0169-328X(00)00280-1 Lawrence CB, Celsi F, Brennand J and Luckman SM (2000). Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat. Neurosci. 3: 645-646. doi:10.1038/76597 PMid:10862694 Lee Y, Yang SP, Soares MJ and Voogt JL (2000). Distribution of prolactin-releasing peptide mRNA in the rat brain. Brain Res. Bull. 51: 171-176. doi:10.1016/S0361-9230(99)00212-9 Maruyama M, Matsumoto H, Fujiwara K, Kitada C, et al. (1999). Immunocytochemical localization of prolactin-releasing peptide in the rat brain. Endocrinology 140: 2326-2333. doi:10.1210/en.140.5.2326 PMid:10218986 Morales T and Sawchenko PE (2003). Brainstem prolactin-releasing peptide neurons are sensitive to stress and lactation. Neuroscience 121: 771-778. doi:10.1016/S0306-4522(03)00522-0 Nieminen ML, Nystedt J and Panula P (2003). Expression of neuropeptide FF, prolactin-releasing peptide, and the receptor UHR1/GPR10 genes during embryogenesis in the rat. Dev. Dyn. 226: 561-569. doi:10.1002/dvdy.10261 PMid:12619141 Yamada M, Ozawa A, Ishii S, Shibusawa N, et al. (2001). Isolation and characterization of the rat prolactin-releasing peptide gene: multiple TATA boxes in the promoter region. Biochem. Biophys. Res. Commun. 281: 53-56. doi:10.1006/bbrc.2001.4308 Yamakawa K, Kudo K, Kanba S and Arita J (1999). Distribution of prolactin-releasing peptide-immunoreactive neurons in the rat hypothalamus. Neurosci. Lett. 267: 113-116. doi:10.1016/S0304-3940(99)00346-8 Yano T, Iijima N, Kataoka Y, Hinuma S, et al. (2001). Developmental expression of prolactin releasing peptide in the rat brain: localization of messenger ribonucleic acid and immunoreactive neurons. Brain Res. Dev. Brain Res. 128: 101-111. doi:10.1016/S0165-3806(01)00148-1
2010
L. Q. Han, Li, H. J., Wang, Y. Y., Zhu, H. S., Wang, L. F., Guo, Y. J., Lu, W. F., Wang, Y. L., and Yang, G. Y., mRNA abundance and expression of SLC27A, ACC, SCD, FADS, LPIN, INSIG, and PPARGC1 gene isoforms in mouse mammary glands during the lactation cycle, vol. 9, pp. 1250-1257, 2010.
Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, et al. (2000). The subcellular localization of acetyl-CoA carboxylase 2. Proc. Natl. Acad. Sci. U. S. A. 97: 1444-1449. http://dx.doi.org/10.1073/pnas.97.4.1444 PMid:10677481 PMCid:26453   Abu-Elheiga L, Matzuk MM, Abo-Hashema KA and Wakil SJ (2001). Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291: 2613-2616. http://dx.doi.org/10.1126/science.1056843 PMid:11283375   Bernard L, Leroux C and Chilliard Y (2008). Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv. Exp. Med. Biol. 606: 67-108. http://dx.doi.org/10.1007/978-0-387-74087-4_2 PMid:18183925   Bionaz M and Loor JJ (2008a). Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 9: 366. http://dx.doi.org/10.1186/1471-2164-9-366 PMid:18671863 PMCid:2547860   Bionaz M and Loor JJ (2008b). ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 138: 1019-1024. PMid:18492828   Cho HP, Nakamura MT and Clarke SD (1999a). Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J. Biol. Chem. 274: 471-477. http://dx.doi.org/10.1074/jbc.274.1.471 PMid:9867867   Cho HP, Nakamura M and Clarke SD (1999b). Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J. Biol. Chem. 274: 37335-37339. http://dx.doi.org/10.1074/jbc.274.52.37335 PMid:10601301   Donkor J, Sariahmetoglu M, Dewald J, Brindley DN, et al. (2007). Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J. Biol. Chem. 282: 3450-3457. http://dx.doi.org/10.1074/jbc.M610745200 PMid:17158099   Donkor J, Sparks LM, Xie H, Smith SR, et al. (2008). Adipose tissue lipin-1 expression is correlated with peroxisome proliferator-activated receptor alpha gene expression and insulin sensitivity in healthy young men. J. Clin. Endocrinol. Metab. 93: 233-239. http://dx.doi.org/10.1210/jc.2007-1535 PMid:17925338 PMCid:2190746   Harvatine KJ and Bauman DE (2006). SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J. Nutr. 136: 2468-2474. PMid:16988111   Kast-Woelbern HR, Dana SL, Cesario RM, Sun L, et al. (2004). Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis. J. Biol. Chem. 279: 23908-23915. http://dx.doi.org/10.1074/jbc.M403145200 PMid:15073165   Kgwatalala PM, Ibeagha-Awemu EM, Mustafa AF and Zhao X (2009). Influence of stearoyl-coenzyme A desaturase 1 genotype and stage of lactation on fatty acid composition of Canadian Jersey cows. J. Dairy Sci. 92: 1220-1228. http://dx.doi.org/10.3168/jds.2008-1471 PMid:19233815   Marquardt A, Stohr H, White K and Weber BH (2000). cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics 66: 175-183. http://dx.doi.org/10.1006/geno.2000.6196 PMid:10860662   Medina-Gomez G, Gray S and Vidal-Puig A (2007). Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutr. 10: 1132-1137. http://dx.doi.org/10.1017/S1368980007000614 PMid:17903321   Miyazaki M, Jacobson MJ, Man WC, Cohen P, et al. (2003). Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J. Biol. Chem. 278: 33904-33911. http://dx.doi.org/10.1074/jbc.M304724200 PMid:12815040   Ntambi JM, Miyazaki M and Dobrzyn A (2004). Regulation of stearoyl-CoA desaturase expression. Lipids 39: 1061-1065. http://dx.doi.org/10.1007/s11745-004-1331-2 PMid:15726820   Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. http://dx.doi.org/10.1093/nar/29.9.e45 PMid:11328886 PMCid:55695   Rudolph MC, McManaman JL, Phang T, Russell T, et al. (2007). Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol. Genomics 28: 323-336. http://dx.doi.org/10.1152/physiolgenomics.00020.2006 PMid:17105756   Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, et al. (2003). Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J. Lipid Res. 44: 1100-1112. http://dx.doi.org/10.1194/jlr.M300045-JLR200 PMid:12700340   Stahl A (2004). A current review of fatty acid transport proteins (SLC27). Pflugers Arch. 447: 722-727. http://dx.doi.org/10.1007/s00424-003-1106-z PMid:12856180   Sun LP, Li L, Goldstein JL and Brown MS (2005). Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J. Biol. Chem. 280: 26483-26490. http://dx.doi.org/10.1074/jbc.M504041200 PMid:15899885   Vandesompele J, De PK, Pattyn F, Poppe B, et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: RESEARCH0034.   Yabe D, Brown MS and Goldstein JL (2002). Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc. Natl. Acad. Sci. U. S. A. 99: 12753-12758. http://dx.doi.org/10.1073/pnas.162488899 PMid:12242332 PMCid:130532
L. Q. Han, Yang, G. Y., Zhu, H. S., Wang, Y. Y., Wang, L. F., Guo, Y. J., Lu, W. F., Li, H. J., and Wang, Y. L., Selection and use of reference genes in mouse mammary glands, vol. 9, pp. 449-456, 2010.
Bernard L, Leroux C, Bonnet M, Rouel J, et al. (2005). Expression and nutritional regulation of lipogenic genes in mammary gland and adipose tissues of lactating goats. J. Dairy Res. 72: 250-255. http://dx.doi.org/10.1017/S0022029905000786 PMid:15909692   Bionaz M and Loor JJ (2007). Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol. Genomics 29: 312-319. http://dx.doi.org/10.1152/physiolgenomics.00223.2006 PMid:17284669   Bionaz M and Loor JJ (2008). Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 9: 366. http://dx.doi.org/10.1186/1471-2164-9-366 PMid:18671863 PMCid:2547860   Bustin SA, Benes V, Nolan T and Pfaffl MW (2005). Quantitative real-time RT-PCR - a perspective. J. Mol. Endocrinol. 34: 597-601. http://dx.doi.org/10.1677/jme.1.01755 PMid:15956331   Goossens K, Van Poucke M, Van Soom A, Vandesompele J, et al. (2005). Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev. Biol. 5: 27. http://dx.doi.org/10.1186/1471-213X-5-27 PMid:16324220 PMCid:1315359   Heid CA, Stevens J, Livak KJ and Williams PM (1996). Real time quantitative PCR. Genome Res. 6: 986-994. http://dx.doi.org/10.1101/gr.6.10.986 PMid:8908518   Hembruff SL, Villeneuve DJ and Parissenti AM (2005). The optimization of quantitative reverse transcription PCR for verification of cDNA microarray data. Anal. Biochem. 345: 237-249. http://dx.doi.org/10.1016/j.ab.2005.07.014 PMid:16139235   Lisowski P, Pierzchala M, Goscik J, Pareek CS, et al. (2008). Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid. J. Appl. Genet. 49: 367-372. http://dx.doi.org/10.1007/BF03195635 PMid:19029684   Modha G, Blanchard A, Iwasiow B, Mao XJ, et al. (2004). Developmental changes in insulin-like growth factor I receptor gene expression in the mouse mammary gland. Endocr. Res. 30: 127-140. http://dx.doi.org/10.1081/ERC-120029892 PMid:15098926   Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. http://dx.doi.org/10.1093/nar/29.9.e45 PMid:11328886 PMCid:55695   Pfaffl MW, Wittmann SL, Meyer HH and Bruckmaier RM (2003). Gene expression of immunologically important factors in blood cells, milk cells, and mammary tissue of cows. J. Dairy Sci. 86: 538-545. http://dx.doi.org/10.3168/jds.S0022-0302(03)73632-7   Schmittgen TD and Zakrajsek BA (2000). Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J. Biochem. Biophys. Methods 46: 69-81. http://dx.doi.org/10.1016/S0165-022X(00)00129-9   Tramontana S, Bionaz M, Sharma A, Graugnard DE, et al. (2008). Internal controls for quantitative polymerase chain reaction of swine mammary glands during pregnancy and lactation. J. Dairy Sci. 91: 3057-3066. http://dx.doi.org/10.3168/jds.2008-1164 PMid:18650282   Tricarico C, Pinzani P, Bianchi S, Paglierani M, et al. (2002). Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal. Biochem. 309: 293-300. http://dx.doi.org/10.1016/S0003-2697(02)00311-1   Vandesompele J, De Preter K, Pattyn F, Poppe B, et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: 0034.1-0034-11.