Publications

Found 15 results
Filters: Author is H.S. Zhu  [Clear All Filters]
2013
J. F. Wen, Huo, J. L., Chen, H. X., Ma, C. H., Jiang, H., Zhu, H. S., Zhou, H., and Deng, M. H., Cloning and bioinformatic analysis of full-length novel pepper (Capsicum annuum) genes TAF10 and TAF13, vol. 12, pp. 6947-6956, 2013.
M. H. Deng, Huo, J. L., Zhu, H. S., Zhou, H., and Wen, J. F., Molecular cloning and tissue expression analyses of two novel pepper genes: heterotrimeric G protein beta 2 subunit and ArcA1, vol. 12, pp. 1223-1231, 2013.
Arnold K, Bordoli L, Kopp J and Schwede T (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. http://dx.doi.org/10.1093/bioinformatics/bti770 PMid:16301204   Bassi MT, Ramesar RS, Caciotti B, Winship IM, et al. (1999). X-linked late-onset sensorineural deafness caused by a deletion involving OA1 and a novel gene containing WD-40 repeats. Am. J. Hum. Genet. 64: 1604-1616. http://dx.doi.org/10.1086/302408 PMid:10330347 PMCid:1377903   Bendtsen JD, Nielsen H, von Heijne G and Brunak S (2004). Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783-795. http://dx.doi.org/10.1016/j.jmb.2004.05.028 PMid:15223320   Deng M-H, Wen J-F, Huo J-L, Zhu H-S, et al. (2011). Relationship of metabolism of reactive oxygen species with cytoplasmic male sterility in pepper (Capsicum annuum L.). Sci. Hortic. 134: 232-236. http://dx.doi.org/10.1016/j.scienta.2011.10.027   Deng W, Tan Y, Wang X, Xi D, et al. (2009). Molecular cloning, sequence characteristics, and polymorphism analyses of the tyrosinase-related protein 2 / DOPAchrome tautomerase gene of black-boned sheep (Ovis aries). Genome 52: 1001-1011. http://dx.doi.org/10.1139/G09-078 PMid:19953128   Fong HK, Hurley JB, Hopkins RS, Miake-Lye R, et al. (1986). Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc. Natl. Acad. Sci. U. S. A. 83: 2162-2166. http://dx.doi.org/10.1073/pnas.83.7.2162 PMid:3083416 PMCid:323251   Guex N and Peitsch MC (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714-2723. http://dx.doi.org/10.1002/elps.1150181505 PMid:9504803   Hunziker AT (2001). Genera Solanacearum: The Genera of Solanaceae Illustrated, Arranged According to a New System. Gantner Verlag, Ruggell, Liechtenstein. 516.   Hurowitz EH, Melnyk JM, Chen YJ, Kouros-Mehr H, et al. (2000). Genomic characterization of the human heterotrimeric G protein alpha, beta, and gamma subunit genes. DNA Res. 7: 111-120. http://dx.doi.org/10.1093/dnares/7.2.111 PMid:10819326   Ishida S, Takahashi Y and Nagata T (1993). Isolation of cDNA of an auxin-regulated gene encoding a G protein beta subunit-like protein from tobacco BY-2 cells. Proc. Natl. Acad. Sci. U. S. A. 90: 11152-11156. http://dx.doi.org/10.1073/pnas.90.23.11152 PMid:8248221 PMCid:47940   Ishida S, Takahashi Y and Nagata T (1996). The mode of expression and promoter analysis of the arcA gene, an auxin-regulated gene in tobacco BY-2 cells. Plant Cell Physiol. 37: 439-448. http://dx.doi.org/10.1093/oxfordjournals.pcp.a028965 PMid:8759913   Kiyosue T and Ryan CA (1999). Molecular cloning of two cDNAs encoding G-protein beta-subunit-like proteins from tomato (Accession Nos. AB022686 and AB022687). Plant Physiol. 119: 1567.   Knapp S (2002). Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J. Exp. Bot. 53: 2001-2022. http://dx.doi.org/10.1093/jxb/erf068 PMid:12324525   Kwon O, Georgellis D and Lin EC (2000). Phosphorelay as the sole physiological route of signal transmission by the arc two-component system of Escherichia coli. J. Bacteriol. 182: 3858-3862. http://dx.doi.org/10.1128/JB.182.13.3858-3862.2000 PMid:10851007 PMCid:94563   Letunic I, Doerks T and Bork P (2012). SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 40: D302-D305. http://dx.doi.org/10.1093/nar/gkr931 PMid:22053084 PMCid:3245027   Liliental J and Chang DD (1998). Rack1, a receptor for activated protein kinase C, interacts with integrin beta subunit. J. Biol. Chem. 273: 2379-2383. http://dx.doi.org/10.1074/jbc.273.4.2379 PMid:9442085   Lynch AS and Lin ECC (1996). Responses to Molecular Oxygen. ASM Press, Washington.   Nakai K and Horton P (1999). PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24: 34-36. http://dx.doi.org/10.1016/S0968-0004(98)01336-X   Neer EJ, Schmidt CJ, Nambudripad R and Smith TF (1994). The ancient regulatory-protein family of WD-repeat proteins. Nature 371: 297-300. http://dx.doi.org/10.1038/371297a0 PMid:8090199   Reece J and Campbell N (2002). Biology. Benjamin Cummings, San Francisco.   Schultz J, Milpetz F, Bork P and Ponting CP (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. U. S. A. 95: 5857-5864. http://dx.doi.org/10.1073/pnas.95.11.5857 PMid:9600884 PMCid:34487   Schwede T, Kopp J, Guex N and Peitsch MC (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385. http://dx.doi.org/10.1093/nar/gkg520 PMid:12824332 PMCid:168927   Yu H, Chen S, Xi D, He Y, et al. (2010). Molecular cloning, sequence characterization and tissue transcription profile analyses of two novel genes: LCK and CDK2 from the Black-boned sheep (Ovis aries). Mol. Biol. Rep. 37: 39-45. http://dx.doi.org/10.1007/s11033-009-9532-4 PMid:19340603
2012
H. P. Li, Guo, Y. J., Zhu, H. S., Zhong, K., Zha, G. M., Wang, L. F., Wang, Y. L., Lu, W. F., Wang, Y. Y., and Yang, G. Y., IL-8 mRNA expression in the mouse mammary glands during pregnancy and lactation, vol. 11, pp. 4746-4753, 2012.
Baggiolini M (2001). Chemokines in pathology and medicine. J. Intern. Med. 250: 91-104. http://dx.doi.org/10.1046/j.1365-2796.2001.00867.x PMid:11489059   Baggiolini M, Dewald B and Moser B (1994). Interleukin-8 and related chemotactic cytokines - CXC and CC chemokines. Adv. Immunol. 55: 97-179. http://dx.doi.org/10.1016/S0065-2776(08)60509-X   Bek EL, McMillen MA, Scott P, Angus LD, et al. (2002). The effect of diabetes on endothelin, interleukin-8 and vascular endothelial growth factor-mediated angiogenesis in rats. Clin. Sci. 103 (Suppl 48): 424S-429S. PMid:12193137   Ben-Baruch A, Michiel DF and Oppenheim JJ (1995). Signals and receptors involved in recruitment of inflammatory cells. J. Biol. Chem. 270: 11703-11706. http://dx.doi.org/10.1074/jbc.270.20.11703 PMid:7744810   Bruun JM, Verdich C, Toubro S, Astrup A, et al. (2003). Association between measures of insulin sensitivity and circulating levels of interleukin-8, interleukin-6 and tumor necrosis factor-alpha. Effect of weight loss in obese men. Eur. J. Endocrinol. 148: 535-542. http://dx.doi.org/10.1530/eje.0.1480535 PMid:12720537   Dinarello CA (1989). Interleukin-1 and its biologically related cytokines. Adv. Immunol. 44: 153-205. http://dx.doi.org/10.1016/S0065-2776(08)60642-2   Gelaleti GB, Jardim BV, Leonel C, Moschetta MG, et al. (2012). Interleukin-8 as a prognostic serum marker in canine mammary gland neoplasias. Vet. Immunol. Immunopathol. 146: 106-112. http://dx.doi.org/10.1016/j.vetimm.2012.02.005 PMid:22405680   Hallgren J and Gurish MF (2011). Mast cell progenitor trafficking and maturation. Adv. Exp. Med. Biol. 716: 14-28. http://dx.doi.org/10.1007/978-1-4419-9533-9_2 PMid:21713649 PMCid:3554263   Hamed EA, Zakhary MM and Maximous DW (2012). Apoptosis, angiogenesis, inflammation, and oxidative stress: basic interactions in patients with early and metastatic breast cancer. J. Cancer Res. Clin. Oncol. 138: 999-1009. http://dx.doi.org/10.1007/s00432-012-1176-4 PMid:22362301   Hoffmann E, Dittrich-Breiholz O, Holtmann H and Kracht M (2002). Multiple control of interleukin-8 gene expression. J. Leukoc. Biol. 72: 847-855. PMid:12429706   Hunt KM, Williams JE, Shafii B, Hunt MK, et al. (2012). Mastitis Is Associated with Increased Free Fatty Acids, Somatic Cell Count, and Interleukin-8 Concentrations in Human Milk. Breastfeed. Med. [Ahed of Print].   Ju D, Sun D, Xiu L, Meng X, et al. (2012). Interleukin-8 is associated with adhesion, migration and invasion in human gastric cancer SCG-7901 cells. Med. Oncol. 29: 91-99. http://dx.doi.org/10.1007/s12032-010-9780-0 PMid:21191670   Kaplan AP (2001). Chemokines, chemokine receptors and allergy. Int. Arch. Allergy Immunol. 124: 423-431. http://dx.doi.org/10.1159/000053777 PMid:11340325   Kitadai Y, Takahashi Y, Haruma K, Naka K, et al. (1999). Transfection of interleukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cells in nude mice. Br. J. Cancer 81: 647-653. http://dx.doi.org/10.1038/sj.bjc.6690742 PMid:10574250 PMCid:2362886   Koçak H, Oner-Iyidogan Y, Kocak T and Oner P (2004). Determination of diagnostic and prognostic values of urinary interleukin-8, tumor necrosis factor-alpha, and leukocyte arylsulfatase-A activity in patients with bladder cancer. Clin. Biochem. 37: 673-678. http://dx.doi.org/10.1016/j.clinbiochem.2004.02.005 PMid:15302609   Liskmann S, Vihalemm T, Salum O, Zilmer K, et al. (2006). Correlations between clinical parameters and interleukin-6 and interleukin-10 levels in saliva from totally edentulous patients with peri-implant disease. Int. J. Oral Maxillofac. Implants 21: 543-550. PMid:16955604   Matsuo Y, Ochi N, Sawai H, Yasuda A, et al. (2009). CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer. Int. J. Cancer 124: 853-861. http://dx.doi.org/10.1002/ijc.24040 PMid:19035451 PMCid:2684108   Meade KG, O'Gorman GM, Narciandi F, Machugh DE, et al. (2012). Functional characterisation of bovine interleukin 8 promoter haplotypes in vitro. Mol. Immunol. 50: 108-116. http://dx.doi.org/10.1016/j.molimm.2011.12.011 PMid:22244152   Ning Y, Manegold PC, Hong YK, Zhang W, et al. (2011). Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int. J. Cancer 128: 2038-2049. http://dx.doi.org/10.1002/ijc.25562 PMid:20648559 PMCid:3039715   Ramírez-Santana C, Perez-Cano FJ, Audi C, Castell M, et al. (2012). Effects of cooling and freezing storage on the stability of bioactive factors in human colostrum. J. Dairy Sci. 95: 2319-2325. http://dx.doi.org/10.3168/jds.2011-5066 PMid:22541460   Sabroe I, Lloyd CM, Whyte MK, Dower SK, et al. (2002). Chemokines, innate and adaptive immunity, and respiratory disease. Eur. Respir. J. 19: 350-355. http://dx.doi.org/10.1183/09031936.02.00253602 PMid:11871367 PMCid:3428840   Sagnak L, Ersoy H, Ozok U, Senturk B, et al. (2009). Predictive value of urinary interleukin-8 cutoff point for recurrences after transurethral resection plus induction bacillus Calmette-Guerin treatment in non-muscle-invasive bladder tumors. Clin. Genitourin. Cancer 7: E16-E23. http://dx.doi.org/10.3816/CGC.2009.n.016 PMid:19692317   Sheryka E, Wheeler MA, Hausladen DA and Weiss RM (2003). Urinary interleukin-8 levels are elevated in subjects with transitional cell carcinoma. Urology 62: 162-166. http://dx.doi.org/10.1016/S0090-4295(03)00134-1   Song JH, Kim SG, Jung SA, Lee MK, et al. (2010). The interleukin-8-251 AA genotype is associated with angiogenesis in gastric carcinogenesis in Helicobacter pylori-infected Koreans. Cytokine 51: 158-165. http://dx.doi.org/10.1016/j.cyto.2010.05.001 PMid:20621718   Sordillo LM and Streicher KL (2002). Mammary gland immunity and mastitis susceptibility. J. Mammary Gland. Biol. Neoplasia 7: 135-146. http://dx.doi.org/10.1023/A:1020347818725 PMid:12463736   Taub DD and Oppenheim JJ (1994). Chemokines, inflammation and the immune system. Ther. Immunol. 1: 229-246. PMid:7584498   Vernay MC, Wellnitz O, Kreipe L, van Dorland HA, et al. (2012). Local and systemic response to intramammary lipopolysaccharide challenge during long-term manipulated plasma glucose and insulin concentrations in dairy cows. J. Dairy Sci. 95: 2540-2549. http://dx.doi.org/10.3168/jds.2011-5188 PMid:22541481   Zhu YH, Liu PQ, Weng XG, Zhuge ZY, et al. (2012). Short communication: Pheromonicin-SA affects mRNA expression of toll-like receptors, cytokines, and lactoferrin by Staphylococcus aureus-infected bovine mammary epithelial cells. J. Dairy Sci. 95: 759-764. http://dx.doi.org/10.3168/jds.2011-4703 PMid:22281341   Zuccari DA, Leonel C, Castro R, Gelaleti GB, et al. (2012). An immunohistochemical study of interleukin-8 (IL-8) in breast cancer. Acta Histochem. 114: 571-576. http://dx.doi.org/10.1016/j.acthis.2011.10.007 PMid:22244449
M. H. Deng, Wen, J. F., Huo, J. L., Zhu, H. S., Dai, X. Z., Zhang, Z. Q., Zhou, H., and Zou, X. X., Molecular cloning, sequence characterization of a novel pepper gene NADP-ICDH and its effect on cytoplasmic male sterility, vol. 11, pp. 3020-3031, 2012.
Balk J and Leaver CJ (2001). The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13: 1803-1818. PMid:11487694 PMCid:139137   Bartoli CG, Pastori GM and Foyer CH (2000). Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol. 123: 335-344. http://dx.doi.org/10.1104/pp.123.1.335 PMid:10806250 PMCid:59007   Bendtsen JD, Nielsen H, von HG and Brunak S (2004). Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783-795. http://dx.doi.org/10.1016/j.jmb.2004.05.028 PMid:15223320   Benkert P, Biasini M and Schwede T (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27: 343-350. http://dx.doi.org/10.1093/bioinformatics/btq662 PMid:21134891 PMCid:3031035   Bergman P, Edqvist J, Farbos I and Glimelius K (2000). Male-sterile tobacco displays abnormal mitochondrial atp1 transcript accumulation and reduced floral ATP/ADP ratio. Plant Mol. Biol. 42: 531-544. http://dx.doi.org/10.1023/A:1006388814458 PMid:10798621   Camacho M, Rodriguez-Arnedo A and Bonete MJ (2002). NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii: cloning, sequence determination and overexpression in Escherichia coli. FEMS Microbiol. Lett. 209: 155-160. http://dx.doi.org/10.1111/j.1574-6968.2002.tb11125.x PMid:12007799   Carlsson J, Lagercrantz U, Sundstrom J, Teixeira R, et al. (2007). Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. Plant J. 49: 452-462. http://dx.doi.org/10.1111/j.1365-313X.2006.02975.x PMid:17217466   Connett MB and Hanson MR (1990). Differential mitochondrial electron transport through the cyanide-sensitive and cyanide-insensitive pathways in isonuclear lines of cytoplasmic male sterile, male fertile, and restored petunia. Plant Physiol. 93: 1634-1640. http://dx.doi.org/10.1104/pp.93.4.1634 PMid:16667667 PMCid:1062722   Corpas FJ, Barroso JB, Sandalio LM, Palma JM, et al. (1999). Peroxisomal NADP-Dependent Isocitrate Dehydrogenase. Characterization and Activity Regulation during Natural Senescence. Plant Physiol. 121: 921-928. http://dx.doi.org/10.1104/pp.121.3.921 PMid:10557241 PMCid:59455   Ducos E, Touzet P and Boutry M (2001). The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J. 26: 171-180. http://dx.doi.org/10.1046/j.1365-313x.2001.01017.x PMid:11389758   Dutilleul C, Garmier M, Noctor G, Mathieu C, et al. (2003). Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15: 1212-1226. http://dx.doi.org/10.1105/tpc.009464 PMid:12724545 PMCid:153727   Fieuw S, Muller-Rober B, Galvez S and Willmitzer L (1995). Cloning and expression analysis of the cytosolic NADP(+)- dependent isocitrate dehydrogenase from potato. Implications for nitrogen metabolism. Plant Physiol. 107: 905-913. http://dx.doi.org/10.1104/pp.107.3.905 PMid:7716247 PMCid:157207   Fujii S, Komatsu S and Toriyama K (2007). Retrograde regulation of nuclear gene expression in CW-CMS of rice. Plant Mol. Biol. 63: 405-417. http://dx.doi.org/10.1007/s11103-006-9097-8 PMid:17086445   Gálvez S and Gadal P (1995). On the function of the NADP-dependent isocitrate dehydrogenase isoenzymes in living organisms. Plant Sci. 105: 1-14. http://dx.doi.org/10.1016/0168-9452(94)04041-E   Gálvez S, Roche O, Bismuth E, Brown S, et al. (1998). Mitochondrial localization of a NADP-dependent [corrected] isocitrate dehydrogenase isoenzyme by using the green fluorescent protein as a marker. Proc. Natl. Acad. Sci. U. S. A. 95: 7813-7818. http://dx.doi.org/10.1073/pnas.95.13.7813 PMid:9636233 PMCid:22766   Gibon Y, Blaesing OE, Hannemann J, Carillo P, et al. (2004). A Robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16: 3304-3325. http://dx.doi.org/10.1105/tpc.104.025973 PMid:15548738 PMCid:535875   Gueguen V, Macherel D, Jaquinod M, Douce R, et al. (2000). Fatty acid and lipoic acid biosynthesis in higher plant mitochondria. J. Biol. Chem. 275: 5016-5025. http://dx.doi.org/10.1074/jbc.275.7.5016 PMid:10671542   Karpova OV, Kuzmin EV, Elthon TE and Newton KJ (2002). Differential expression of alternative oxidase genes in maize mitochondrial mutants. Plant Cell 14: 3271-3284. http://dx.doi.org/10.1105/tpc.005603 PMid:12468742 PMCid:151217   Kirimura K, Yoda M, Kumatani M, Ishii Y, et al. (2002). Cloning and expression of Aspergillus niger icdA gene encoding mitochondrial NADP+-specific isocitrate dehydrogenase. J. Biosci. Bioeng. 93: 136-144. PMid:16233178   Linke B and Börner T (2005). Mitochondrial effects on flower and pollen development. Mitochondrion 5: 389-402. http://dx.doi.org/10.1016/j.mito.2005.10.001 PMid:16275170   Maxwell DP, Nickels R and McIntosh L (2002). Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J. 29: 269-279. http://dx.doi.org/10.1046/j.1365-313X.2002.01216.x PMid:11844105   Moller S, Croning MD and Apweiler R (2001). Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17: 646-653. http://dx.doi.org/10.1093/bioinformatics/17.7.646 PMid:11448883   Nakai K and Horton P (1999). PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24: 34-36. http://dx.doi.org/10.1016/S0968-0004(98)01336-X   Rhoads DM, Umbach AL, Subbaiah CC and Siedow JN (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 141: 357-366. http://dx.doi.org/10.1104/pp.106.079129 PMid:16760488 PMCid:1475474   Sabar M, Gagliardi D, Balk J and Leaver CJ (2003). ORFB is a subunit of F1F(O)-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. EMBO Rep. 4: 381-386. http://dx.doi.org/10.1038/sj.embor.embor800 PMid:12671689 PMCid:1319156   Sassi S, Gonzalez EM, Aydi S, Arrese-Igor C, et al. (2008). Tolerance of common bean to long-term osmotic stress is related to nodule carbon flux and antioxidant defenses: evidence from two cultivars with contrasting tolerance. Plant Soil 312: 39-48. http://dx.doi.org/10.1007/s11104-008-9613-5   Sienkiewicz-Porzucek A, Sulpice R, Osorio S, Krahnert I, et al. (2010). Mild reductions in mitochondrial NAD-dependent isocitrate dehydrogenase activity result in altered nitrate assimilation and pigmentation but do not impact growth. Mol. Plant 3: 156-173. http://dx.doi.org/10.1093/mp/ssp101 PMid:20035036 PMCid:2807928   Sun Q, Hu C, Hu J, Li S, et al. (2009). Quantitative proteomic analysis of CMS-related changes in Honglian CMS rice anther. Protein J. 28: 341-348. http://dx.doi.org/10.1007/s10930-009-9199-7 PMid:19756991   Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, et al. (2002). The impact of oxidative stress on Arabidopsis mitochondria. Plant J. 32: 891-904. http://dx.doi.org/10.1046/j.1365-313X.2002.01474.x PMid:12492832   Tadege M and Kuhlemeier C (1997). Aerobic fermentation during tobacco pollen development. Plant Mol. Biol. 35: 343-354. http://dx.doi.org/10.1023/A:1005837112653 PMid:9349258   Teixeira RT, Knorpp C and Glimelius K (2005). Modified sucrose, starch, and ATP levels in two alloplasmic male-sterile lines of B. napus. J. Exp. Bot. 56: 1245-1253. http://dx.doi.org/10.1093/jxb/eri120 PMid:15753110   Touzet P and Budar F (2004). Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility? Trends Plant Sci. 9: 568-570. http://dx.doi.org/10.1016/j.tplants.2004.10.001 PMid:15564120   Wang Y, Addess KJ, Chen J, Geer LY, et al. (2007). MMDB: annotating protein sequences with Entrez's 3D-structure database. Nucleic Acids Res. 35: D298-D300. http://dx.doi.org/10.1093/nar/gkl952 PMid:17135201 PMCid:1751549   Wise RP and Pring DR (2002). Nuclear-mediated mitochondrial gene regulation and male fertility in higher plants: Light at the end of the tunnel? Proc. Natl. Acad. Sci. U. S. A. 99: 10240-10242. http://dx.doi.org/10.1073/pnas.172388899 PMid:12149484 PMCid:124896   Yui R, Iketani S, Mikami T and Kubo T (2003). Antisense inhibition of mitochondrial pyruvate dehydrogenase E1α subunit in anther tapetum causes male sterility. Plant J. 34: 57-66. http://dx.doi.org/10.1046/j.1365-313X.2003.01704.x PMid:12662309
2011
H. S. Zhu, Wang, Y. Y., Lin, M. W., Du, J. X., Hang, L. Q., Chen, Y., and Wang, L. F., Carnitine and carnitine orotate affect the expression of the prolactin-releasing peptide gene, vol. 10, pp. 3013-3019, 2011.
Anderson ST, Kokay IC, Lang T, Grattan DR, et al. (2003). Quantification of prolactin-releasing peptide (PrRP) mRNA expression in specific brain regions of the rat during the oestrous cycle and in lactation. Brain Res. 973: 64-73. http://dx.doi.org/10.1016/S0006-8993(03)02543-5 Birkenfeld C, Kluge H and Eder K (2006). L-carnitine supplementation of sows during pregnancy improves the suckling behaviour of their offspring. Br. J. Nutr. 96: 334-342. http://dx.doi.org/10.1079/BJN20061833 Feng Y, Zhao H, An XF, Ma SL, et al. (2007). Expression of brain prolactin releasing peptide (PrRP) changes in the estrous cycle of female rats. Neurosci. Lett. 419: 38-42. http://dx.doi.org/10.1016/j.neulet.2007.03.069 PMid:17475403 Hinuma S, Habata Y, Fujii R, Kawamata Y, et al. (1998). A prolactin-releasing peptide in the brain. Nature 393: 272-276. http://dx.doi.org/10.1038/30515 PMid:9607765 Mera T, Fujihara H, Saito J, Kawasaki M, et al. (2007). Downregulation of prolactin-releasing peptide gene expression in the hypothalamus and brainstem of diabetic rats. Peptides 28: 1596-1604. http://dx.doi.org/10.1016/j.peptides.2007.06.023 PMid:17681402 Morales T and Sawchenko PE (2003). Brainstem prolactin-releasing peptide neurons are sensitive to stress and lactation. Neuroscience 121: 771-778. http://dx.doi.org/10.1016/S0306-4522(03)00522-0 Nieminen ML, Nystedt J and Panula P (2003). Expression of neuropeptide FF, prolactin-releasing peptide, and the receptor UHR1/GPR10 genes during embryogenesis in the rat. Dev. Dyn. 226: 561-569. http://dx.doi.org/10.1002/dvdy.10261 PMid:12619141 Ramanau A, Kluge H, Spilke J and Eder K (2004). Supplementation of sows with L-carnitine during pregnancy and lactation improves growth of the piglets during the suckling period through increased milk production. J. Nutr. 134: 86-92. PMid:14704298 Ramanau A, Kluge H and Eder K (2005). Effects of L-carnitine supplementation on milk production, litter gains and back-fat thickness in sows with a low energy and protein intake during lactation. Br. J. Nutr. 93: 717-721. http://dx.doi.org/10.1079/BJN20041402 Sun B, Nemoto H, Fujiwara K, Adachi S, et al. (2005). Nicotine stimulates prolactin-releasing peptide (PrRP) cells and non-PrRP cells in the solitary nucleus. Regul. Pept. 126: 91-96. http://dx.doi.org/10.1016/j.regpep.2004.08.025 PMid:15620420 Xiao Y, Qing WX, Lan MS and Ying CB (2006). Sodium tanshinone IIA sulfonate derived from Slavia miltiorrhiza Bunge up-regulate the expression of prolactin releasing peptide (PrRP) in the medulla oblongata in ovariectomized rats. Biochem. Pharmacol. 72: 582-587. http://dx.doi.org/10.1016/j.bcp.2006.05.014 PMid:16846593 Yano T, Iijima N, Kataoka Y, Hinuma S, et al. (2001). Developmental expression of prolactin releasing peptide in the rat brain: localization of messenger ribonucleic acid and immunoreactive neurons. Brain. Res. Dev. Brain. Res. 128: 101-111. http://dx.doi.org/10.1016/S0165-3806(01)00148-1 Yao X, Wang XQ, Ma SL and Chen BY (2007). Electroacupuncture stimulates the expression of prolactin-releasing peptide (PrRP) in the medulla oblongata of ovariectomized rats. Neurosci. Lett. 411: 243-248. http://dx.doi.org/10.1016/j.neulet.2006.10.017 PMid:17084026
Y. Y. Wang, Wang, Y. L., Li, H. P., Zhu, H. S., Jiang, Q. D., Zhang, L., Wang, L. F., Han, L. Q., Zhong, K., Guo, Y. J., Lu, W. F., Li, H. J., and Yang, G. Y., Leptin mRNA expression in the rat mammary gland at different activation stages, vol. 10, pp. 3657-3663, 2011.
Ahima RS and Flier JS (2000). Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11: 327-332. http://dx.doi.org/10.1016/S1043-2760(00)00301-5   Amico JA, Thomas A, Crowley RS and Burmeister LA (1998). Concentrations of leptin in the serum of pregnant, lactating, and cycling rats and of leptin messenger ribonucleic acid in rat placental tissue. Life Sci. 63: 1387-1395. http://dx.doi.org/10.1016/S0024-3205(98)00405-6   Aoki N, Kawamura M and Matsuda T (1999). Lactation-dependent down regulation of leptin production in mouse mammary gland. Biochim. Biophys. Acta 1427: 298-306. http://dx.doi.org/10.1016/S0304-4165(99)00029-X   Baratta M, Grolli S and Tamanini C (2003). Effect of leptin in proliferating and differentiated HC11 mouse mammary cells. Regul. Pept. 113: 101-107. http://dx.doi.org/10.1016/S0167-0115(03)00006-5   Bartha T, Sayed-Ahmed A and Rudas P (2005). Expression of leptin and its receptors in various tissues of ruminants. Domest. Anim. Endocrinol. 29: 193-202. http://dx.doi.org/10.1016/j.domaniend.2005.03.010 PMid:15878255   Bonnet M, Gourdou I, Leroux C, Chilliard Y, et al. (2002). Leptin expression in the ovine mammary gland: putative sequential involvement of adipose, epithelial, and myoepithelial cells during pregnancy and lactation. J. Anim. Sci. 80: 723-728. PMid:11890408   Butte NF, Hopkinson JM, Mehta N, Moon JK, et al. (1999). Adjustments in energy expenditure and substrate utilization during late pregnancy and lactation. Am. J. Clin. Nutr. 69: 299-307. PMid:9989696   Clevenger CV and Plank TL (1997). Prolactin as an autocrine/paracrine factor in breast tissue. J. Mammary Gland. Biol. Neoplasia 2: 59-68. http://dx.doi.org/10.1023/A:1026325630359 PMid:10887520   Elias JJ, Pitelka DR and Armstrong RC (1973). Changes in fat cell morphology during lactation in the mouse. Anat. Rec. 177: 533-547. http://dx.doi.org/10.1002/ar.1091770407 PMid:4762729   Farooqi IS, Keogh JM, Kamath S, Jones S, et al. (2001). Partial leptin deficiency and human adiposity. Nature 414: 34-35. http://dx.doi.org/10.1038/35102112 PMid:11689931   Feuermann Y, Mabjeesh SJ and Shamay A (2004). Leptin affects prolactin action on milk protein and fat synthesis in the bovine mammary gland. J. Dairy Sci. 87: 2941-2946. http://dx.doi.org/10.3168/jds.S0022-0302(04)73425-6   Houseknecht KL, Baile CA, Matteri RL and Spurlock ME (1998). The biology of leptin: a review. J. Anim. Sci. 76: 1405- 1420. PMid:9621947   Hu X, Juneja SC, Maihle NJ and Cleary MP (2002). Leptin - a growth factor in normal and malignant breast cells and for normal mammary gland development. J. Natl. Cancer Inst. 94: 1704-1711. http://dx.doi.org/10.1093/jnci/94.22.1704 PMid:12441326   Jin LL, Zhang S, Burguera BG, Couce ME, et al. (2000). Leptin and leptin receptor expression in rat and mouse pituitary cells. Endocrinology 141: 333-339. http://dx.doi.org/10.1210/en.141.1.333 PMid:10614655   Lin Y and Li Q (2007). Expression and function of leptin and its receptor in mouse mammary gland. Sci. China C Life Sci. 50: 669-675. http://dx.doi.org/10.1007/s11427-007-0077-2 PMid:17879067   Malik NM, Carter ND, Murray JF, Scaramuzzi RJ, et al. (2001). Leptin requirement for conception, implantation, and gestation in the mouse. Endocrinology 142: 5198-5202. http://dx.doi.org/10.1210/en.142.12.5198 PMid:11713215   Mol JA, Lantinga-van L, I, van Garderen E and Rijnberk A (2000). Progestin-induced mammary growth hormone (GH) production. Adv. Exp. Med. Biol. 480: 71-76. http://dx.doi.org/10.1007/0-306-46832-8_8 PMid:10959411   Neville MC, McFadden TB and Forsyth I (2002). Hormonal regulation of mammary differentiation and milk secretion. J. Mammary Gland. Biol. Neoplasia 7: 49-66. http://dx.doi.org/10.1023/A:1015770423167 PMid:12160086   O'Brien SN, Welter BH and Price TM (1999). Presence of leptin in breast cell lines and breast tumors. Biochem. Biophys. Res. Commun. 259: 695-698. http://dx.doi.org/10.1006/bbrc.1999.0843 PMid:10364481   Sayed-Ahmed A, Kulcsar M, Rudas P and Bartha T (2004). Expression and localisation of leptin and leptin receptor in the mammary gland of the dry and lactating non-pregnant cow. Acta Vet. Hung. 52: 97-111. http://dx.doi.org/10.1556/AVet.52.2004.1.10 PMid:15119791   Smith-Kirwin SM, O'Connor DM, De JJ, Lancey ED, et al. (1998). Leptin expression in human mammary epithelial cells and breast milk. J. Clin. Endocrinol. Metab. 83: 1810-1813. http://dx.doi.org/10.1210/jc.83.5.1810 PMid:9589698   Smith JL and Sheffield LG (2002). Production and regulation of leptin in bovine mammary epithelial cells. Domest. Anim. Endocrinol. 22: 145-154. http://dx.doi.org/10.1016/S0739-7240(02)00121-2   Woodside B, Abizaid A and Walker C (2000). Changes in leptin levels during lactation: implications for lactational hyperphagia and anovulation. Horm. Behav. 37: 353-365. http://dx.doi.org/10.1006/hbeh.2000.1598 PMid:10860679   Zhang Y, Proenca R, Maffei M, Barone M, et al. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432. http://dx.doi.org/10.1038/372425a0 PMid:7984236
H. S. Zhu, Du, J. X., Wang, Y. Y., Wang, L. F., Hang, L. Q., Yang, G. Y., and Wang, Y. L., Prolactin-releasing peptide mRNA expression in mouse medulla remains relatively stable during pregnancy and lactation, vol. 10, pp. 615-620, 2011.
Anderson ST, Kokay IC, Lang T, Grattan DR, et al. (2003). Quantification of prolactin-releasing peptide (PrRP) mRNA expression in specific brain regions of the rat during the oestrous cycle and in lactation. Brain Res. 973: 64-73. doi:10.1016/S0006-8993(03)02543-5 Feng Y, Zhao H, An XF, Ma SL, et al. (2007). Expression of brain prolactin releasing peptide (PrRP) changes in the estrous cycle of female rats. Neurosci. Lett. 419: 38-42. doi:10.1016/j.neulet.2007.03.069 PMid:17475403 Hinuma S, Habata Y, Fujii R, Kawamata Y, et al. (1998). A prolactin-releasing peptide in the brain. Nature 393: 272-276. doi:10.1038/30515 PMid:9607765 Ibata Y, Iijima N, Kataoka Y, Kakihara K, et al. (2000). Morphological survey of prolactin-releasing peptide and its receptor with special reference to their functional roles in the brain. Neurosci. Res. 38: 223-230. doi:10.1016/S0168-0102(00)00182-6 Kataoka Y, Iijima N, Yano T, Kakihara K, et al. (2001). Gonadal regulation of PrRP mRNA expression in the nucleus tractus solitarius and ventral and lateral reticular nuclei of the rat. Brain Res. Mol. Brain Res. 87: 42-47. doi:10.1016/S0169-328X(00)00280-1 Lawrence CB, Celsi F, Brennand J and Luckman SM (2000). Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat. Neurosci. 3: 645-646. doi:10.1038/76597 PMid:10862694 Lee Y, Yang SP, Soares MJ and Voogt JL (2000). Distribution of prolactin-releasing peptide mRNA in the rat brain. Brain Res. Bull. 51: 171-176. doi:10.1016/S0361-9230(99)00212-9 Maruyama M, Matsumoto H, Fujiwara K, Kitada C, et al. (1999). Immunocytochemical localization of prolactin-releasing peptide in the rat brain. Endocrinology 140: 2326-2333. doi:10.1210/en.140.5.2326 PMid:10218986 Morales T and Sawchenko PE (2003). Brainstem prolactin-releasing peptide neurons are sensitive to stress and lactation. Neuroscience 121: 771-778. doi:10.1016/S0306-4522(03)00522-0 Nieminen ML, Nystedt J and Panula P (2003). Expression of neuropeptide FF, prolactin-releasing peptide, and the receptor UHR1/GPR10 genes during embryogenesis in the rat. Dev. Dyn. 226: 561-569. doi:10.1002/dvdy.10261 PMid:12619141 Yamada M, Ozawa A, Ishii S, Shibusawa N, et al. (2001). Isolation and characterization of the rat prolactin-releasing peptide gene: multiple TATA boxes in the promoter region. Biochem. Biophys. Res. Commun. 281: 53-56. doi:10.1006/bbrc.2001.4308 Yamakawa K, Kudo K, Kanba S and Arita J (1999). Distribution of prolactin-releasing peptide-immunoreactive neurons in the rat hypothalamus. Neurosci. Lett. 267: 113-116. doi:10.1016/S0304-3940(99)00346-8 Yano T, Iijima N, Kataoka Y, Hinuma S, et al. (2001). Developmental expression of prolactin releasing peptide in the rat brain: localization of messenger ribonucleic acid and immunoreactive neurons. Brain Res. Dev. Brain Res. 128: 101-111. doi:10.1016/S0165-3806(01)00148-1
2010
L. Q. Han, Li, H. J., Wang, Y. Y., Zhu, H. S., Wang, L. F., Guo, Y. J., Lu, W. F., Wang, Y. L., and Yang, G. Y., mRNA abundance and expression of SLC27A, ACC, SCD, FADS, LPIN, INSIG, and PPARGC1 gene isoforms in mouse mammary glands during the lactation cycle, vol. 9, pp. 1250-1257, 2010.
Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, et al. (2000). The subcellular localization of acetyl-CoA carboxylase 2. Proc. Natl. Acad. Sci. U. S. A. 97: 1444-1449. http://dx.doi.org/10.1073/pnas.97.4.1444 PMid:10677481 PMCid:26453   Abu-Elheiga L, Matzuk MM, Abo-Hashema KA and Wakil SJ (2001). Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291: 2613-2616. http://dx.doi.org/10.1126/science.1056843 PMid:11283375   Bernard L, Leroux C and Chilliard Y (2008). Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv. Exp. Med. Biol. 606: 67-108. http://dx.doi.org/10.1007/978-0-387-74087-4_2 PMid:18183925   Bionaz M and Loor JJ (2008a). Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 9: 366. http://dx.doi.org/10.1186/1471-2164-9-366 PMid:18671863 PMCid:2547860   Bionaz M and Loor JJ (2008b). ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 138: 1019-1024. PMid:18492828   Cho HP, Nakamura MT and Clarke SD (1999a). Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J. Biol. Chem. 274: 471-477. http://dx.doi.org/10.1074/jbc.274.1.471 PMid:9867867   Cho HP, Nakamura M and Clarke SD (1999b). Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J. Biol. Chem. 274: 37335-37339. http://dx.doi.org/10.1074/jbc.274.52.37335 PMid:10601301   Donkor J, Sariahmetoglu M, Dewald J, Brindley DN, et al. (2007). Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J. Biol. Chem. 282: 3450-3457. http://dx.doi.org/10.1074/jbc.M610745200 PMid:17158099   Donkor J, Sparks LM, Xie H, Smith SR, et al. (2008). Adipose tissue lipin-1 expression is correlated with peroxisome proliferator-activated receptor alpha gene expression and insulin sensitivity in healthy young men. J. Clin. Endocrinol. Metab. 93: 233-239. http://dx.doi.org/10.1210/jc.2007-1535 PMid:17925338 PMCid:2190746   Harvatine KJ and Bauman DE (2006). SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J. Nutr. 136: 2468-2474. PMid:16988111   Kast-Woelbern HR, Dana SL, Cesario RM, Sun L, et al. (2004). Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis. J. Biol. Chem. 279: 23908-23915. http://dx.doi.org/10.1074/jbc.M403145200 PMid:15073165   Kgwatalala PM, Ibeagha-Awemu EM, Mustafa AF and Zhao X (2009). Influence of stearoyl-coenzyme A desaturase 1 genotype and stage of lactation on fatty acid composition of Canadian Jersey cows. J. Dairy Sci. 92: 1220-1228. http://dx.doi.org/10.3168/jds.2008-1471 PMid:19233815   Marquardt A, Stohr H, White K and Weber BH (2000). cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics 66: 175-183. http://dx.doi.org/10.1006/geno.2000.6196 PMid:10860662   Medina-Gomez G, Gray S and Vidal-Puig A (2007). Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutr. 10: 1132-1137. http://dx.doi.org/10.1017/S1368980007000614 PMid:17903321   Miyazaki M, Jacobson MJ, Man WC, Cohen P, et al. (2003). Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J. Biol. Chem. 278: 33904-33911. http://dx.doi.org/10.1074/jbc.M304724200 PMid:12815040   Ntambi JM, Miyazaki M and Dobrzyn A (2004). Regulation of stearoyl-CoA desaturase expression. Lipids 39: 1061-1065. http://dx.doi.org/10.1007/s11745-004-1331-2 PMid:15726820   Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. http://dx.doi.org/10.1093/nar/29.9.e45 PMid:11328886 PMCid:55695   Rudolph MC, McManaman JL, Phang T, Russell T, et al. (2007). Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol. Genomics 28: 323-336. http://dx.doi.org/10.1152/physiolgenomics.00020.2006 PMid:17105756   Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, et al. (2003). Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J. Lipid Res. 44: 1100-1112. http://dx.doi.org/10.1194/jlr.M300045-JLR200 PMid:12700340   Stahl A (2004). A current review of fatty acid transport proteins (SLC27). Pflugers Arch. 447: 722-727. http://dx.doi.org/10.1007/s00424-003-1106-z PMid:12856180   Sun LP, Li L, Goldstein JL and Brown MS (2005). Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J. Biol. Chem. 280: 26483-26490. http://dx.doi.org/10.1074/jbc.M504041200 PMid:15899885   Vandesompele J, De PK, Pattyn F, Poppe B, et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: RESEARCH0034.   Yabe D, Brown MS and Goldstein JL (2002). Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc. Natl. Acad. Sci. U. S. A. 99: 12753-12758. http://dx.doi.org/10.1073/pnas.162488899 PMid:12242332 PMCid:130532
L. Q. Han, Yang, G. Y., Zhu, H. S., Wang, Y. Y., Wang, L. F., Guo, Y. J., Lu, W. F., Li, H. J., and Wang, Y. L., Selection and use of reference genes in mouse mammary glands, vol. 9, pp. 449-456, 2010.
Bernard L, Leroux C, Bonnet M, Rouel J, et al. (2005). Expression and nutritional regulation of lipogenic genes in mammary gland and adipose tissues of lactating goats. J. Dairy Res. 72: 250-255. http://dx.doi.org/10.1017/S0022029905000786 PMid:15909692   Bionaz M and Loor JJ (2007). Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol. Genomics 29: 312-319. http://dx.doi.org/10.1152/physiolgenomics.00223.2006 PMid:17284669   Bionaz M and Loor JJ (2008). Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 9: 366. http://dx.doi.org/10.1186/1471-2164-9-366 PMid:18671863 PMCid:2547860   Bustin SA, Benes V, Nolan T and Pfaffl MW (2005). Quantitative real-time RT-PCR - a perspective. J. Mol. Endocrinol. 34: 597-601. http://dx.doi.org/10.1677/jme.1.01755 PMid:15956331   Goossens K, Van Poucke M, Van Soom A, Vandesompele J, et al. (2005). Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev. Biol. 5: 27. http://dx.doi.org/10.1186/1471-213X-5-27 PMid:16324220 PMCid:1315359   Heid CA, Stevens J, Livak KJ and Williams PM (1996). Real time quantitative PCR. Genome Res. 6: 986-994. http://dx.doi.org/10.1101/gr.6.10.986 PMid:8908518   Hembruff SL, Villeneuve DJ and Parissenti AM (2005). The optimization of quantitative reverse transcription PCR for verification of cDNA microarray data. Anal. Biochem. 345: 237-249. http://dx.doi.org/10.1016/j.ab.2005.07.014 PMid:16139235   Lisowski P, Pierzchala M, Goscik J, Pareek CS, et al. (2008). Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid. J. Appl. Genet. 49: 367-372. http://dx.doi.org/10.1007/BF03195635 PMid:19029684   Modha G, Blanchard A, Iwasiow B, Mao XJ, et al. (2004). Developmental changes in insulin-like growth factor I receptor gene expression in the mouse mammary gland. Endocr. Res. 30: 127-140. http://dx.doi.org/10.1081/ERC-120029892 PMid:15098926   Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. http://dx.doi.org/10.1093/nar/29.9.e45 PMid:11328886 PMCid:55695   Pfaffl MW, Wittmann SL, Meyer HH and Bruckmaier RM (2003). Gene expression of immunologically important factors in blood cells, milk cells, and mammary tissue of cows. J. Dairy Sci. 86: 538-545. http://dx.doi.org/10.3168/jds.S0022-0302(03)73632-7   Schmittgen TD and Zakrajsek BA (2000). Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J. Biochem. Biophys. Methods 46: 69-81. http://dx.doi.org/10.1016/S0165-022X(00)00129-9   Tramontana S, Bionaz M, Sharma A, Graugnard DE, et al. (2008). Internal controls for quantitative polymerase chain reaction of swine mammary glands during pregnancy and lactation. J. Dairy Sci. 91: 3057-3066. http://dx.doi.org/10.3168/jds.2008-1164 PMid:18650282   Tricarico C, Pinzani P, Bianchi S, Paglierani M, et al. (2002). Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal. Biochem. 309: 293-300. http://dx.doi.org/10.1016/S0003-2697(02)00311-1   Vandesompele J, De Preter K, Pattyn F, Poppe B, et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: 0034.1-0034-11.