Publications

Found 17 results
Filters: Author is L.F. Wang  [Clear All Filters]
2012
L. Q. Han, Pang, K., Li, H. J., Zhu, S. B., Wang, L. F., Wang, Y. B., Yang, G. Q., and Yang, G. Y., Conjugated linoleic acid-induced milk fat reduction associated with depressed expression of lipogenic genes in lactating Holstein mammary glands, vol. 11, pp. 4754-4764, 2012.
Barber MC, Vallance AJ, Kennedy HT and Travers MT (2003). Induction of transcripts derived from promoter III of the acetyl-CoA carboxylase-alpha gene in mammary gland is associated with recruitment of SREBP-1 to a region of the proximal promoter defined by a DNase I hypersensitive site. Biochem. J. 375: 489-501. http://dx.doi.org/10.1042/BJ20030480 PMid:12871210 PMCid:1223696   Bauman DE and Griinari JM (2003). Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 23: 203-227. http://dx.doi.org/10.1146/annurev.nutr.23.011702.073408 PMid:12626693   Bauman DE, Perfield JW, Harvatine KJ and Baumgard LH (2008). Regulation of fat synthesis by conjugated linoleic acid: lactation and the ruminant model. J. Nutr. 138: 403-409. Baumgard LH, Corl BA, Dwyer DA, Saebo A, et al. (2000). Identification of the conjugated linoleic acid isomer that inhibits milk fat synthesis. Am. J. Physiol. Regul. Integr. Comp Physiol. 278: R179-R184.   Baumgard LH, Sangster JK and Bauman DE (2001). Milk fat synthesis in dairy cows is progressively reduced by increasing supplemental amounts of trans-10, cis-12 conjugated linoleic acid (CLA). J. Nutr. 131: 1764-1769. PMid:11385065   Baumgard LH, Matitashvili E, Corl BA, Dwyer DA, et al. (2002). trans-10, cis-12 conjugated linoleic acid decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows. J. Dairy Sci. 85: 2155-2163. http://dx.doi.org/10.3168/jds.S0022-0302(02)74294-X   Belury MA (2002). Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Annu. Rev. Nutr. 22: 505-531. http://dx.doi.org/10.1146/annurev.nutr.22.021302.121842 PMid:12055356   Bernard L, Leroux C and Chilliard Y (2008). Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv. Exp. Med. Biol. 606: 67-108. http://dx.doi.org/10.1007/978-0-387-74087-4_2 PMid:18183925   Bionaz M and Loor JJ (2008). Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC. Genomics 9: 366. http://dx.doi.org/10.1186/1471-2164-9-366 PMid:18671863 PMCid:2547860   Chouinard PY, Corneau L, Barbano DM, Metzger LE, et al. (1999). Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. J Nutr. 129: 1579-1584. PMid:10419994   Gervais R, McFadden JW, Lengi AJ, Corl BA, et al. (2009). Effects of intravenous infusion of trans-10, cis-12 18:2 on mammary lipid metabolism in lactating dairy cows. J. Dairy Sci. 92: 5167-5177. http://dx.doi.org/10.3168/jds.2009-2281 PMid:19762835   Giesy JG, McGuire MA, Shafii B and Hanson TW (2002). Effect of dose of calcium salts of conjugated linoleic acid (CLA) on percentage and fatty acid content of milk fat in midlactation holstein cows. J. Dairy Sci. 85: 2023-2029. http://dx.doi.org/10.3168/jds.S0022-0302(02)74279-3   Griinari JM, Corl BA, Lacy SH, Chouinard PY, et al. (2000). Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Delta(9)-desaturase. J. Nutr. 130: 2285-2291. PMid:10958825   Harvatine KJ and Bauman DE (2006). SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J. Nutr. 136: 2468-2474. PMid:16988111   Huang Y, Schoonmaker JP, Bradford BJ and Beitz DC (2008). Response of milk fatty acid composition to dietary supplementation of soy oil, conjugated linoleic acid, or both. J. Dairy Sci. 91: 260-270. http://dx.doi.org/10.3168/jds.2007-0344 PMid:18096948   Kadegowda AK, Bionaz M, Thering B, Piperova LS, et al. (2009). Identification of internal control genes for quantitative polymerase chain reaction in mammary tissue of lactating cows receiving lipid supplements. J. Dairy Sci. 92: 2007-2019. http://dx.doi.org/10.3168/jds.2008-1655 PMid:19389958   Kadegowda AK, Connor EE, Teter BB, Sampugna J, et al. (2010). Dietary trans fatty acid isomers differ in their effects on mammary lipid metabolism as well as lipogenic gene expression in lactating mice. J. Nutr. 140: 919-924. http://dx.doi.org/10.3945/jn.109.110890 PMid:20220207   Khan SA and Vanden Heuvel JP (2003). Role of nuclear receptors in the regulation of gene expression by dietary fatty acids (review). J. Nutr. Biochem. 14: 554-567. http://dx.doi.org/10.1016/S0955-2863(03)00098-6   Lock AL, Teles BM, Perfield JW, Bauman DE, et al. (2006). A conjugated linoleic acid supplement containing trans-10, cis-12 reduces milk fat synthesis in lactating sheep. J. Dairy Sci. 89: 1525-1532. http://dx.doi.org/10.3168/jds.S0022-0302(06)72220-2   Loor JJ, Ferlay A, Ollier A, Doreau M, et al. (2005). Relationship among trans and conjugated fatty acids and bovine milk fat yield due to dietary concentrate and linseed oil. J. Dairy Sci. 88: 726-740. http://dx.doi.org/10.3168/jds.S0022-0302(05)72736-3   Perfield JW, Bernal-Santos G, Overton TR and Bauman DE (2002). Effects of dietary supplementation of rumen-protected conjugated linoleic acid in dairy cows during established lactation. J. Dairy Sci. 85: 2609-2617. http://dx.doi.org/10.3168/jds.S0022-0302(02)74346-4   Peterson DG, Baumgard LH and Bauman DE (2002). Milk fat response to low doses of trans-10, cis-12 conjugated linoleic acid(CLA). J. Dairy Sci. 85: 1764-1766. http://dx.doi.org/10.3168/jds.S0022-0302(02)74250-1   Peterson DG, Matitashvili EA and Bauman DE (2004). The inhibitory effect of trans-10, cis-12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP-1. J. Nutr. 134: 2523-2527. PMid:15465741   Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. http://dx.doi.org/10.1093/nar/29.9.e45 PMid:11328886 PMCid:55695   Piperova LS, Teter BB, Bruckental I, Sampugna J, et al. (2000). Mammary lipogenic enzyme activity, trans fatty acids and conjugated linoleic acids are altered in lactating dairy cows fed a milk fat-depressing diet. J. Nutr. 130: 2568-2574. PMid:11015491   Vandesompele J, De Preter K, Pattyn F, Poppe B, et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: RESEARCH0034.   Viswanadha S, Giesy JG, Hanson TW and McGuire MA (2003). Dose response of milk fat to intravenous administration of the trans-10, cis-12 isomer of conjugated linoleic acid. J. Dairy Sci. 86: 3229-3236. http://dx.doi.org/10.3168/jds.S0022-0302(03)73926-5   Yang T, Espenshade PJ, Wright ME, Yabe D, et al. (2002). Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110: 489-500. http://dx.doi.org/10.1016/S0092-8674(02)00872-3
J. L. Li, Wang, L. F., Wang, H. Y., Bai, L. Y., and Yuan, Z. M., High-accuracy splice site prediction based on sequence component and position features, vol. 11, pp. 3432-3451, 2012.
Asa BH, Cheng SO and Sonnenburg S (2008). Support vector machines and kernels for computational biology. PLoS 4: 1-10.   Baten AK, Chang BC, Halgamuge SK and Li J (2006). Splice site identification using probabilistic parameters and SVM classification. BMC Bioinformatics 7 (Suppl 5): S15. http://dx.doi.org/10.1186/1471-2105-7-S5-S15 PMid:17254299 PMCid:1764471   Baten AK, Halgamuge SK, Chang B and Wickramarachchi N (2007). Biological sequence data preprocessing for classification: A case study in splice site identification. Adv. Neural Netw. 4492: 1221-1230.   Baten AK, Halgamuge SK and Chang BC (2008). Fast splice site detection using information content and feature reduction. BMC Bioinformatics 9 (Suppl 12): S8. http://dx.doi.org/10.1186/1471-2105-9-S12-S8 PMid:19091031 PMCid:2638148   Burset M, Seledtsov IA and Solovyev VV (2000). Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res. 28: 4364-4375. http://dx.doi.org/10.1093/nar/28.21.4364 PMid:11058137 PMCid:113136   Cai D, Delcher A, Kao B and Kasif S (2000). Modeling splice sites with Bayes networks. Bioinformatics 16: 152-158. http://dx.doi.org/10.1093/bioinformatics/16.2.152 PMid:10842737   Chang CC and Lin CJ (2011). LIBSVM: a library for support vector machines. Trans. Intell. Syst. Technol. 2: 278-289.   Chen TM, Lu CC and Li WH (2005). Prediction of splice sites with dependency graphs and their expanded Bayesian networks. Bioinformatics 21: 471-482. http://dx.doi.org/10.1093/bioinformatics/bti025 PMid:15374869   Crooks GE, Hon G, Chandonia JM and Brenner SE (2004). WebLogo: a sequence logo generator. Genome Res. 14: 1188- 1190. http://dx.doi.org/10.1101/gr.849004 PMid:15173120 PMCid:419797   Davis J and Goadrich M (2006). The Relationship Between Precision-Recall and ROC Curves. In: Proceedings of the 23rd International Conference on Machine Learning (ICML), New York, 233-240. http://dx.doi.org/10.1145/1143844.1143874   Durbin R, Eddy S, Krogh A and Mitchison G (1998). Biological Sequence Analysis Probabilistic Models of Proteins and Nucleic Acids Cambridge. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511790492   Fawcett T (2003). ROC Graphs: Notes and Practical Considerations for Data Mining Researchers. Technical Report HPL- 2003-4, HP Laboratories, Palo Alto.   Kahn AB, Ryan MC, Liu H, Zeeberg BR, et al. (2007). SpliceMiner: a high-throughput database implementation of the NCBI evidence viewer for microarray splice variant analysis. BMC Bioinformatics 8: 75. http://dx.doi.org/10.1186/1471-2105-8-75 PMid:17338820 PMCid:1839109   Mareshi SA, Eslahchi C and Pezechk H (2008). Impact of RNA structure on the prediction of donor and acceptor splice sites. BMC Bioinformatics 7: 297. http://dx.doi.org/10.1186/1471-2105-7-297 PMid:16772025 PMCid:1526458   Muller KR, Mika S and Ratsch G (2001). An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12: 181-201. http://dx.doi.org/10.1109/72.914517 PMid:18244377   Pertea M, Lin X and Salzberg SL (2001). GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res. 29: 1185-1190. http://dx.doi.org/10.1093/nar/29.5.1185 PMid:11222768 PMCid:29713   Pollastro P and Rampone S (2002). HS3D, a dataset of Homo sapiens splice regions, and its extraction procedure from a major public database. Int. J. Mod. Phys. C 13: 1105-1117. http://dx.doi.org/10.1142/S0129183102003796   Rätsch G and Sonnenburg S (2004). Accurate Splice Site Detection for Caenorhabditis Elegans. In: Kernel Methods in Computational Biology (Schölkopf KT and Vert JP, eds.). MIT Press, Cambridge.   Rätsch G, Sonnenburg S and Schölkopf B (2005). RASE: recognition of alternatively spliced exons in C. elegans. Bioinformatics 21: i369-i377. http://dx.doi.org/10.1093/bioinformatics/bti1053 PMid:15961480   Rätsch G, Sonnenburg S, Srinivasan J, Witte H, et al. (2007). Improving the Caenorhabditis elegans genome annotation using machine learning. PLoS Comput. Biol. 3: e20. http://dx.doi.org/10.1371/journal.pcbi.0030020 PMid:17319737 PMCid:1808025   Reese MG, Eeckman F, Kupl D and Haussler D (1997). Improved splice site detection in Genie. J. Comp. Biol. 4: 311-324. http://dx.doi.org/10.1089/cmb.1997.4.311 PMid:9278062   Schneider TD and Stephens RM (1990). Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18: 6097-6100. http://dx.doi.org/10.1093/nar/18.20.6097 PMid:2172928 PMCid:332411   Sonnenburg S, Schweikert G, Philips P, Behr J, et al. (2007). Accurate splice site prediction using support vector machines. BMC Bioinformatics 8 (Suppl 10): S7. http://dx.doi.org/10.1186/1471-2105-8-S10-S7 PMid:18269701 PMCid:2230508   Staden R (1984). Computer methods to locate signals in nucleic acid sequences. Nucleic Acids Res. 12: 505-519. http://dx.doi.org/10.1093/nar/12.1Part2.505 PMid:6364039 PMCid:321067   Sun ZX, Sang LJ and Ju LN (2008). Splice site prediction based on splicing information and motif sequences character. Chin. Sci. Bull. 53: 2298-2306.   Tavares LG, Lopes HS and Lima CRE (2009). Evaluation of weight matrix models in the splice junction recognition problem. Bioinform. Biomed. Workshop 1: 14-19.   Vapnik VN (1995). The Nature of Statistical Learning Theory. Springer Verlag, New York. PMid:8555380   Wang K, Ussery DW and Brunak S (2009). Analysis and prediction of gene splice sites in four Aspergillus genomes. Fungal Genet. Biol. 4: 14-18. http://dx.doi.org/10.1016/j.fgb.2008.09.010 PMid:18948220   Zhang QW, Peng QK and Xu T (2009). DNA splice site sequences clustering method for conservativeness analysis. Prog. Nat. Sci. 19: 511-516. http://dx.doi.org/10.1016/j.pnsc.2008.06.021   Zhang QW, Peng QK and Zhang Q (2010). Splice sites prediction of human genome using length-variable Markov model and feature selection. Expert Syst. Appl. 37: 2771-2782. http://dx.doi.org/10.1016/j.eswa.2009.09.014   Zhang Y, Chu CH and Chen YX (2006). Splice site prediction using support vector machines with a Beyes kernel. Expert Syst. Appl. 30: 73-81. http://dx.doi.org/10.1016/j.eswa.2005.09.052   Zien A, Rätsch G and Mika S (2000). Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16: 799-19. http://dx.doi.org/10.1093/bioinformatics/16.9.799 PMid:11108702
H. P. Li, Guo, Y. J., Zhu, H. S., Zhong, K., Zha, G. M., Wang, L. F., Wang, Y. L., Lu, W. F., Wang, Y. Y., and Yang, G. Y., IL-8 mRNA expression in the mouse mammary glands during pregnancy and lactation, vol. 11, pp. 4746-4753, 2012.
Baggiolini M (2001). Chemokines in pathology and medicine. J. Intern. Med. 250: 91-104. http://dx.doi.org/10.1046/j.1365-2796.2001.00867.x PMid:11489059   Baggiolini M, Dewald B and Moser B (1994). Interleukin-8 and related chemotactic cytokines - CXC and CC chemokines. Adv. Immunol. 55: 97-179. http://dx.doi.org/10.1016/S0065-2776(08)60509-X   Bek EL, McMillen MA, Scott P, Angus LD, et al. (2002). The effect of diabetes on endothelin, interleukin-8 and vascular endothelial growth factor-mediated angiogenesis in rats. Clin. Sci. 103 (Suppl 48): 424S-429S. PMid:12193137   Ben-Baruch A, Michiel DF and Oppenheim JJ (1995). Signals and receptors involved in recruitment of inflammatory cells. J. Biol. Chem. 270: 11703-11706. http://dx.doi.org/10.1074/jbc.270.20.11703 PMid:7744810   Bruun JM, Verdich C, Toubro S, Astrup A, et al. (2003). Association between measures of insulin sensitivity and circulating levels of interleukin-8, interleukin-6 and tumor necrosis factor-alpha. Effect of weight loss in obese men. Eur. J. Endocrinol. 148: 535-542. http://dx.doi.org/10.1530/eje.0.1480535 PMid:12720537   Dinarello CA (1989). Interleukin-1 and its biologically related cytokines. Adv. Immunol. 44: 153-205. http://dx.doi.org/10.1016/S0065-2776(08)60642-2   Gelaleti GB, Jardim BV, Leonel C, Moschetta MG, et al. (2012). Interleukin-8 as a prognostic serum marker in canine mammary gland neoplasias. Vet. Immunol. Immunopathol. 146: 106-112. http://dx.doi.org/10.1016/j.vetimm.2012.02.005 PMid:22405680   Hallgren J and Gurish MF (2011). Mast cell progenitor trafficking and maturation. Adv. Exp. Med. Biol. 716: 14-28. http://dx.doi.org/10.1007/978-1-4419-9533-9_2 PMid:21713649 PMCid:3554263   Hamed EA, Zakhary MM and Maximous DW (2012). Apoptosis, angiogenesis, inflammation, and oxidative stress: basic interactions in patients with early and metastatic breast cancer. J. Cancer Res. Clin. Oncol. 138: 999-1009. http://dx.doi.org/10.1007/s00432-012-1176-4 PMid:22362301   Hoffmann E, Dittrich-Breiholz O, Holtmann H and Kracht M (2002). Multiple control of interleukin-8 gene expression. J. Leukoc. Biol. 72: 847-855. PMid:12429706   Hunt KM, Williams JE, Shafii B, Hunt MK, et al. (2012). Mastitis Is Associated with Increased Free Fatty Acids, Somatic Cell Count, and Interleukin-8 Concentrations in Human Milk. Breastfeed. Med. [Ahed of Print].   Ju D, Sun D, Xiu L, Meng X, et al. (2012). Interleukin-8 is associated with adhesion, migration and invasion in human gastric cancer SCG-7901 cells. Med. Oncol. 29: 91-99. http://dx.doi.org/10.1007/s12032-010-9780-0 PMid:21191670   Kaplan AP (2001). Chemokines, chemokine receptors and allergy. Int. Arch. Allergy Immunol. 124: 423-431. http://dx.doi.org/10.1159/000053777 PMid:11340325   Kitadai Y, Takahashi Y, Haruma K, Naka K, et al. (1999). Transfection of interleukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cells in nude mice. Br. J. Cancer 81: 647-653. http://dx.doi.org/10.1038/sj.bjc.6690742 PMid:10574250 PMCid:2362886   Koçak H, Oner-Iyidogan Y, Kocak T and Oner P (2004). Determination of diagnostic and prognostic values of urinary interleukin-8, tumor necrosis factor-alpha, and leukocyte arylsulfatase-A activity in patients with bladder cancer. Clin. Biochem. 37: 673-678. http://dx.doi.org/10.1016/j.clinbiochem.2004.02.005 PMid:15302609   Liskmann S, Vihalemm T, Salum O, Zilmer K, et al. (2006). Correlations between clinical parameters and interleukin-6 and interleukin-10 levels in saliva from totally edentulous patients with peri-implant disease. Int. J. Oral Maxillofac. Implants 21: 543-550. PMid:16955604   Matsuo Y, Ochi N, Sawai H, Yasuda A, et al. (2009). CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer. Int. J. Cancer 124: 853-861. http://dx.doi.org/10.1002/ijc.24040 PMid:19035451 PMCid:2684108   Meade KG, O'Gorman GM, Narciandi F, Machugh DE, et al. (2012). Functional characterisation of bovine interleukin 8 promoter haplotypes in vitro. Mol. Immunol. 50: 108-116. http://dx.doi.org/10.1016/j.molimm.2011.12.011 PMid:22244152   Ning Y, Manegold PC, Hong YK, Zhang W, et al. (2011). Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int. J. Cancer 128: 2038-2049. http://dx.doi.org/10.1002/ijc.25562 PMid:20648559 PMCid:3039715   Ramírez-Santana C, Perez-Cano FJ, Audi C, Castell M, et al. (2012). Effects of cooling and freezing storage on the stability of bioactive factors in human colostrum. J. Dairy Sci. 95: 2319-2325. http://dx.doi.org/10.3168/jds.2011-5066 PMid:22541460   Sabroe I, Lloyd CM, Whyte MK, Dower SK, et al. (2002). Chemokines, innate and adaptive immunity, and respiratory disease. Eur. Respir. J. 19: 350-355. http://dx.doi.org/10.1183/09031936.02.00253602 PMid:11871367 PMCid:3428840   Sagnak L, Ersoy H, Ozok U, Senturk B, et al. (2009). Predictive value of urinary interleukin-8 cutoff point for recurrences after transurethral resection plus induction bacillus Calmette-Guerin treatment in non-muscle-invasive bladder tumors. Clin. Genitourin. Cancer 7: E16-E23. http://dx.doi.org/10.3816/CGC.2009.n.016 PMid:19692317   Sheryka E, Wheeler MA, Hausladen DA and Weiss RM (2003). Urinary interleukin-8 levels are elevated in subjects with transitional cell carcinoma. Urology 62: 162-166. http://dx.doi.org/10.1016/S0090-4295(03)00134-1   Song JH, Kim SG, Jung SA, Lee MK, et al. (2010). The interleukin-8-251 AA genotype is associated with angiogenesis in gastric carcinogenesis in Helicobacter pylori-infected Koreans. Cytokine 51: 158-165. http://dx.doi.org/10.1016/j.cyto.2010.05.001 PMid:20621718   Sordillo LM and Streicher KL (2002). Mammary gland immunity and mastitis susceptibility. J. Mammary Gland. Biol. Neoplasia 7: 135-146. http://dx.doi.org/10.1023/A:1020347818725 PMid:12463736   Taub DD and Oppenheim JJ (1994). Chemokines, inflammation and the immune system. Ther. Immunol. 1: 229-246. PMid:7584498   Vernay MC, Wellnitz O, Kreipe L, van Dorland HA, et al. (2012). Local and systemic response to intramammary lipopolysaccharide challenge during long-term manipulated plasma glucose and insulin concentrations in dairy cows. J. Dairy Sci. 95: 2540-2549. http://dx.doi.org/10.3168/jds.2011-5188 PMid:22541481   Zhu YH, Liu PQ, Weng XG, Zhuge ZY, et al. (2012). Short communication: Pheromonicin-SA affects mRNA expression of toll-like receptors, cytokines, and lactoferrin by Staphylococcus aureus-infected bovine mammary epithelial cells. J. Dairy Sci. 95: 759-764. http://dx.doi.org/10.3168/jds.2011-4703 PMid:22281341   Zuccari DA, Leonel C, Castro R, Gelaleti GB, et al. (2012). An immunohistochemical study of interleukin-8 (IL-8) in breast cancer. Acta Histochem. 114: 571-576. http://dx.doi.org/10.1016/j.acthis.2011.10.007 PMid:22244449
2011
H. S. Zhu, Wang, Y. Y., Lin, M. W., Du, J. X., Hang, L. Q., Chen, Y., and Wang, L. F., Carnitine and carnitine orotate affect the expression of the prolactin-releasing peptide gene, vol. 10, pp. 3013-3019, 2011.
Anderson ST, Kokay IC, Lang T, Grattan DR, et al. (2003). Quantification of prolactin-releasing peptide (PrRP) mRNA expression in specific brain regions of the rat during the oestrous cycle and in lactation. Brain Res. 973: 64-73. http://dx.doi.org/10.1016/S0006-8993(03)02543-5 Birkenfeld C, Kluge H and Eder K (2006). L-carnitine supplementation of sows during pregnancy improves the suckling behaviour of their offspring. Br. J. Nutr. 96: 334-342. http://dx.doi.org/10.1079/BJN20061833 Feng Y, Zhao H, An XF, Ma SL, et al. (2007). Expression of brain prolactin releasing peptide (PrRP) changes in the estrous cycle of female rats. Neurosci. Lett. 419: 38-42. http://dx.doi.org/10.1016/j.neulet.2007.03.069 PMid:17475403 Hinuma S, Habata Y, Fujii R, Kawamata Y, et al. (1998). A prolactin-releasing peptide in the brain. Nature 393: 272-276. http://dx.doi.org/10.1038/30515 PMid:9607765 Mera T, Fujihara H, Saito J, Kawasaki M, et al. (2007). Downregulation of prolactin-releasing peptide gene expression in the hypothalamus and brainstem of diabetic rats. Peptides 28: 1596-1604. http://dx.doi.org/10.1016/j.peptides.2007.06.023 PMid:17681402 Morales T and Sawchenko PE (2003). Brainstem prolactin-releasing peptide neurons are sensitive to stress and lactation. Neuroscience 121: 771-778. http://dx.doi.org/10.1016/S0306-4522(03)00522-0 Nieminen ML, Nystedt J and Panula P (2003). Expression of neuropeptide FF, prolactin-releasing peptide, and the receptor UHR1/GPR10 genes during embryogenesis in the rat. Dev. Dyn. 226: 561-569. http://dx.doi.org/10.1002/dvdy.10261 PMid:12619141 Ramanau A, Kluge H, Spilke J and Eder K (2004). Supplementation of sows with L-carnitine during pregnancy and lactation improves growth of the piglets during the suckling period through increased milk production. J. Nutr. 134: 86-92. PMid:14704298 Ramanau A, Kluge H and Eder K (2005). Effects of L-carnitine supplementation on milk production, litter gains and back-fat thickness in sows with a low energy and protein intake during lactation. Br. J. Nutr. 93: 717-721. http://dx.doi.org/10.1079/BJN20041402 Sun B, Nemoto H, Fujiwara K, Adachi S, et al. (2005). Nicotine stimulates prolactin-releasing peptide (PrRP) cells and non-PrRP cells in the solitary nucleus. Regul. Pept. 126: 91-96. http://dx.doi.org/10.1016/j.regpep.2004.08.025 PMid:15620420 Xiao Y, Qing WX, Lan MS and Ying CB (2006). Sodium tanshinone IIA sulfonate derived from Slavia miltiorrhiza Bunge up-regulate the expression of prolactin releasing peptide (PrRP) in the medulla oblongata in ovariectomized rats. Biochem. Pharmacol. 72: 582-587. http://dx.doi.org/10.1016/j.bcp.2006.05.014 PMid:16846593 Yano T, Iijima N, Kataoka Y, Hinuma S, et al. (2001). Developmental expression of prolactin releasing peptide in the rat brain: localization of messenger ribonucleic acid and immunoreactive neurons. Brain. Res. Dev. Brain. Res. 128: 101-111. http://dx.doi.org/10.1016/S0165-3806(01)00148-1 Yao X, Wang XQ, Ma SL and Chen BY (2007). Electroacupuncture stimulates the expression of prolactin-releasing peptide (PrRP) in the medulla oblongata of ovariectomized rats. Neurosci. Lett. 411: 243-248. http://dx.doi.org/10.1016/j.neulet.2006.10.017 PMid:17084026
Y. Y. Wang, Wang, Y. L., Li, H. P., Zhu, H. S., Jiang, Q. D., Zhang, L., Wang, L. F., Han, L. Q., Zhong, K., Guo, Y. J., Lu, W. F., Li, H. J., and Yang, G. Y., Leptin mRNA expression in the rat mammary gland at different activation stages, vol. 10, pp. 3657-3663, 2011.
Ahima RS and Flier JS (2000). Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11: 327-332. http://dx.doi.org/10.1016/S1043-2760(00)00301-5   Amico JA, Thomas A, Crowley RS and Burmeister LA (1998). Concentrations of leptin in the serum of pregnant, lactating, and cycling rats and of leptin messenger ribonucleic acid in rat placental tissue. Life Sci. 63: 1387-1395. http://dx.doi.org/10.1016/S0024-3205(98)00405-6   Aoki N, Kawamura M and Matsuda T (1999). Lactation-dependent down regulation of leptin production in mouse mammary gland. Biochim. Biophys. Acta 1427: 298-306. http://dx.doi.org/10.1016/S0304-4165(99)00029-X   Baratta M, Grolli S and Tamanini C (2003). Effect of leptin in proliferating and differentiated HC11 mouse mammary cells. Regul. Pept. 113: 101-107. http://dx.doi.org/10.1016/S0167-0115(03)00006-5   Bartha T, Sayed-Ahmed A and Rudas P (2005). Expression of leptin and its receptors in various tissues of ruminants. Domest. Anim. Endocrinol. 29: 193-202. http://dx.doi.org/10.1016/j.domaniend.2005.03.010 PMid:15878255   Bonnet M, Gourdou I, Leroux C, Chilliard Y, et al. (2002). Leptin expression in the ovine mammary gland: putative sequential involvement of adipose, epithelial, and myoepithelial cells during pregnancy and lactation. J. Anim. Sci. 80: 723-728. PMid:11890408   Butte NF, Hopkinson JM, Mehta N, Moon JK, et al. (1999). Adjustments in energy expenditure and substrate utilization during late pregnancy and lactation. Am. J. Clin. Nutr. 69: 299-307. PMid:9989696   Clevenger CV and Plank TL (1997). Prolactin as an autocrine/paracrine factor in breast tissue. J. Mammary Gland. Biol. Neoplasia 2: 59-68. http://dx.doi.org/10.1023/A:1026325630359 PMid:10887520   Elias JJ, Pitelka DR and Armstrong RC (1973). Changes in fat cell morphology during lactation in the mouse. Anat. Rec. 177: 533-547. http://dx.doi.org/10.1002/ar.1091770407 PMid:4762729   Farooqi IS, Keogh JM, Kamath S, Jones S, et al. (2001). Partial leptin deficiency and human adiposity. Nature 414: 34-35. http://dx.doi.org/10.1038/35102112 PMid:11689931   Feuermann Y, Mabjeesh SJ and Shamay A (2004). Leptin affects prolactin action on milk protein and fat synthesis in the bovine mammary gland. J. Dairy Sci. 87: 2941-2946. http://dx.doi.org/10.3168/jds.S0022-0302(04)73425-6   Houseknecht KL, Baile CA, Matteri RL and Spurlock ME (1998). The biology of leptin: a review. J. Anim. Sci. 76: 1405- 1420. PMid:9621947   Hu X, Juneja SC, Maihle NJ and Cleary MP (2002). Leptin - a growth factor in normal and malignant breast cells and for normal mammary gland development. J. Natl. Cancer Inst. 94: 1704-1711. http://dx.doi.org/10.1093/jnci/94.22.1704 PMid:12441326   Jin LL, Zhang S, Burguera BG, Couce ME, et al. (2000). Leptin and leptin receptor expression in rat and mouse pituitary cells. Endocrinology 141: 333-339. http://dx.doi.org/10.1210/en.141.1.333 PMid:10614655   Lin Y and Li Q (2007). Expression and function of leptin and its receptor in mouse mammary gland. Sci. China C Life Sci. 50: 669-675. http://dx.doi.org/10.1007/s11427-007-0077-2 PMid:17879067   Malik NM, Carter ND, Murray JF, Scaramuzzi RJ, et al. (2001). Leptin requirement for conception, implantation, and gestation in the mouse. Endocrinology 142: 5198-5202. http://dx.doi.org/10.1210/en.142.12.5198 PMid:11713215   Mol JA, Lantinga-van L, I, van Garderen E and Rijnberk A (2000). Progestin-induced mammary growth hormone (GH) production. Adv. Exp. Med. Biol. 480: 71-76. http://dx.doi.org/10.1007/0-306-46832-8_8 PMid:10959411   Neville MC, McFadden TB and Forsyth I (2002). Hormonal regulation of mammary differentiation and milk secretion. J. Mammary Gland. Biol. Neoplasia 7: 49-66. http://dx.doi.org/10.1023/A:1015770423167 PMid:12160086   O'Brien SN, Welter BH and Price TM (1999). Presence of leptin in breast cell lines and breast tumors. Biochem. Biophys. Res. Commun. 259: 695-698. http://dx.doi.org/10.1006/bbrc.1999.0843 PMid:10364481   Sayed-Ahmed A, Kulcsar M, Rudas P and Bartha T (2004). Expression and localisation of leptin and leptin receptor in the mammary gland of the dry and lactating non-pregnant cow. Acta Vet. Hung. 52: 97-111. http://dx.doi.org/10.1556/AVet.52.2004.1.10 PMid:15119791   Smith-Kirwin SM, O'Connor DM, De JJ, Lancey ED, et al. (1998). Leptin expression in human mammary epithelial cells and breast milk. J. Clin. Endocrinol. Metab. 83: 1810-1813. http://dx.doi.org/10.1210/jc.83.5.1810 PMid:9589698   Smith JL and Sheffield LG (2002). Production and regulation of leptin in bovine mammary epithelial cells. Domest. Anim. Endocrinol. 22: 145-154. http://dx.doi.org/10.1016/S0739-7240(02)00121-2   Woodside B, Abizaid A and Walker C (2000). Changes in leptin levels during lactation: implications for lactational hyperphagia and anovulation. Horm. Behav. 37: 353-365. http://dx.doi.org/10.1006/hbeh.2000.1598 PMid:10860679   Zhang Y, Proenca R, Maffei M, Barone M, et al. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432. http://dx.doi.org/10.1038/372425a0 PMid:7984236
H. S. Zhu, Du, J. X., Wang, Y. Y., Wang, L. F., Hang, L. Q., Yang, G. Y., and Wang, Y. L., Prolactin-releasing peptide mRNA expression in mouse medulla remains relatively stable during pregnancy and lactation, vol. 10, pp. 615-620, 2011.
Anderson ST, Kokay IC, Lang T, Grattan DR, et al. (2003). Quantification of prolactin-releasing peptide (PrRP) mRNA expression in specific brain regions of the rat during the oestrous cycle and in lactation. Brain Res. 973: 64-73. doi:10.1016/S0006-8993(03)02543-5 Feng Y, Zhao H, An XF, Ma SL, et al. (2007). Expression of brain prolactin releasing peptide (PrRP) changes in the estrous cycle of female rats. Neurosci. Lett. 419: 38-42. doi:10.1016/j.neulet.2007.03.069 PMid:17475403 Hinuma S, Habata Y, Fujii R, Kawamata Y, et al. (1998). A prolactin-releasing peptide in the brain. Nature 393: 272-276. doi:10.1038/30515 PMid:9607765 Ibata Y, Iijima N, Kataoka Y, Kakihara K, et al. (2000). Morphological survey of prolactin-releasing peptide and its receptor with special reference to their functional roles in the brain. Neurosci. Res. 38: 223-230. doi:10.1016/S0168-0102(00)00182-6 Kataoka Y, Iijima N, Yano T, Kakihara K, et al. (2001). Gonadal regulation of PrRP mRNA expression in the nucleus tractus solitarius and ventral and lateral reticular nuclei of the rat. Brain Res. Mol. Brain Res. 87: 42-47. doi:10.1016/S0169-328X(00)00280-1 Lawrence CB, Celsi F, Brennand J and Luckman SM (2000). Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat. Neurosci. 3: 645-646. doi:10.1038/76597 PMid:10862694 Lee Y, Yang SP, Soares MJ and Voogt JL (2000). Distribution of prolactin-releasing peptide mRNA in the rat brain. Brain Res. Bull. 51: 171-176. doi:10.1016/S0361-9230(99)00212-9 Maruyama M, Matsumoto H, Fujiwara K, Kitada C, et al. (1999). Immunocytochemical localization of prolactin-releasing peptide in the rat brain. Endocrinology 140: 2326-2333. doi:10.1210/en.140.5.2326 PMid:10218986 Morales T and Sawchenko PE (2003). Brainstem prolactin-releasing peptide neurons are sensitive to stress and lactation. Neuroscience 121: 771-778. doi:10.1016/S0306-4522(03)00522-0 Nieminen ML, Nystedt J and Panula P (2003). Expression of neuropeptide FF, prolactin-releasing peptide, and the receptor UHR1/GPR10 genes during embryogenesis in the rat. Dev. Dyn. 226: 561-569. doi:10.1002/dvdy.10261 PMid:12619141 Yamada M, Ozawa A, Ishii S, Shibusawa N, et al. (2001). Isolation and characterization of the rat prolactin-releasing peptide gene: multiple TATA boxes in the promoter region. Biochem. Biophys. Res. Commun. 281: 53-56. doi:10.1006/bbrc.2001.4308 Yamakawa K, Kudo K, Kanba S and Arita J (1999). Distribution of prolactin-releasing peptide-immunoreactive neurons in the rat hypothalamus. Neurosci. Lett. 267: 113-116. doi:10.1016/S0304-3940(99)00346-8 Yano T, Iijima N, Kataoka Y, Hinuma S, et al. (2001). Developmental expression of prolactin releasing peptide in the rat brain: localization of messenger ribonucleic acid and immunoreactive neurons. Brain Res. Dev. Brain Res. 128: 101-111. doi:10.1016/S0165-3806(01)00148-1
2010
L. Q. Han, Li, H. J., Wang, Y. Y., Zhu, H. S., Wang, L. F., Guo, Y. J., Lu, W. F., Wang, Y. L., and Yang, G. Y., mRNA abundance and expression of SLC27A, ACC, SCD, FADS, LPIN, INSIG, and PPARGC1 gene isoforms in mouse mammary glands during the lactation cycle, vol. 9, pp. 1250-1257, 2010.
Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, et al. (2000). The subcellular localization of acetyl-CoA carboxylase 2. Proc. Natl. Acad. Sci. U. S. A. 97: 1444-1449. http://dx.doi.org/10.1073/pnas.97.4.1444 PMid:10677481 PMCid:26453   Abu-Elheiga L, Matzuk MM, Abo-Hashema KA and Wakil SJ (2001). Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291: 2613-2616. http://dx.doi.org/10.1126/science.1056843 PMid:11283375   Bernard L, Leroux C and Chilliard Y (2008). Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv. Exp. Med. Biol. 606: 67-108. http://dx.doi.org/10.1007/978-0-387-74087-4_2 PMid:18183925   Bionaz M and Loor JJ (2008a). Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 9: 366. http://dx.doi.org/10.1186/1471-2164-9-366 PMid:18671863 PMCid:2547860   Bionaz M and Loor JJ (2008b). ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 138: 1019-1024. PMid:18492828   Cho HP, Nakamura MT and Clarke SD (1999a). Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J. Biol. Chem. 274: 471-477. http://dx.doi.org/10.1074/jbc.274.1.471 PMid:9867867   Cho HP, Nakamura M and Clarke SD (1999b). Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J. Biol. Chem. 274: 37335-37339. http://dx.doi.org/10.1074/jbc.274.52.37335 PMid:10601301   Donkor J, Sariahmetoglu M, Dewald J, Brindley DN, et al. (2007). Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J. Biol. Chem. 282: 3450-3457. http://dx.doi.org/10.1074/jbc.M610745200 PMid:17158099   Donkor J, Sparks LM, Xie H, Smith SR, et al. (2008). Adipose tissue lipin-1 expression is correlated with peroxisome proliferator-activated receptor alpha gene expression and insulin sensitivity in healthy young men. J. Clin. Endocrinol. Metab. 93: 233-239. http://dx.doi.org/10.1210/jc.2007-1535 PMid:17925338 PMCid:2190746   Harvatine KJ and Bauman DE (2006). SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J. Nutr. 136: 2468-2474. PMid:16988111   Kast-Woelbern HR, Dana SL, Cesario RM, Sun L, et al. (2004). Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis. J. Biol. Chem. 279: 23908-23915. http://dx.doi.org/10.1074/jbc.M403145200 PMid:15073165   Kgwatalala PM, Ibeagha-Awemu EM, Mustafa AF and Zhao X (2009). Influence of stearoyl-coenzyme A desaturase 1 genotype and stage of lactation on fatty acid composition of Canadian Jersey cows. J. Dairy Sci. 92: 1220-1228. http://dx.doi.org/10.3168/jds.2008-1471 PMid:19233815   Marquardt A, Stohr H, White K and Weber BH (2000). cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics 66: 175-183. http://dx.doi.org/10.1006/geno.2000.6196 PMid:10860662   Medina-Gomez G, Gray S and Vidal-Puig A (2007). Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutr. 10: 1132-1137. http://dx.doi.org/10.1017/S1368980007000614 PMid:17903321   Miyazaki M, Jacobson MJ, Man WC, Cohen P, et al. (2003). Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J. Biol. Chem. 278: 33904-33911. http://dx.doi.org/10.1074/jbc.M304724200 PMid:12815040   Ntambi JM, Miyazaki M and Dobrzyn A (2004). Regulation of stearoyl-CoA desaturase expression. Lipids 39: 1061-1065. http://dx.doi.org/10.1007/s11745-004-1331-2 PMid:15726820   Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. http://dx.doi.org/10.1093/nar/29.9.e45 PMid:11328886 PMCid:55695   Rudolph MC, McManaman JL, Phang T, Russell T, et al. (2007). Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol. Genomics 28: 323-336. http://dx.doi.org/10.1152/physiolgenomics.00020.2006 PMid:17105756   Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, et al. (2003). Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J. Lipid Res. 44: 1100-1112. http://dx.doi.org/10.1194/jlr.M300045-JLR200 PMid:12700340   Stahl A (2004). A current review of fatty acid transport proteins (SLC27). Pflugers Arch. 447: 722-727. http://dx.doi.org/10.1007/s00424-003-1106-z PMid:12856180   Sun LP, Li L, Goldstein JL and Brown MS (2005). Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J. Biol. Chem. 280: 26483-26490. http://dx.doi.org/10.1074/jbc.M504041200 PMid:15899885   Vandesompele J, De PK, Pattyn F, Poppe B, et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: RESEARCH0034.   Yabe D, Brown MS and Goldstein JL (2002). Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc. Natl. Acad. Sci. U. S. A. 99: 12753-12758. http://dx.doi.org/10.1073/pnas.162488899 PMid:12242332 PMCid:130532
L. Q. Han, Yang, G. Y., Zhu, H. S., Wang, Y. Y., Wang, L. F., Guo, Y. J., Lu, W. F., Li, H. J., and Wang, Y. L., Selection and use of reference genes in mouse mammary glands, vol. 9, pp. 449-456, 2010.
Bernard L, Leroux C, Bonnet M, Rouel J, et al. (2005). Expression and nutritional regulation of lipogenic genes in mammary gland and adipose tissues of lactating goats. J. Dairy Res. 72: 250-255. http://dx.doi.org/10.1017/S0022029905000786 PMid:15909692   Bionaz M and Loor JJ (2007). Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol. Genomics 29: 312-319. http://dx.doi.org/10.1152/physiolgenomics.00223.2006 PMid:17284669   Bionaz M and Loor JJ (2008). Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 9: 366. http://dx.doi.org/10.1186/1471-2164-9-366 PMid:18671863 PMCid:2547860   Bustin SA, Benes V, Nolan T and Pfaffl MW (2005). Quantitative real-time RT-PCR - a perspective. J. Mol. Endocrinol. 34: 597-601. http://dx.doi.org/10.1677/jme.1.01755 PMid:15956331   Goossens K, Van Poucke M, Van Soom A, Vandesompele J, et al. (2005). Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev. Biol. 5: 27. http://dx.doi.org/10.1186/1471-213X-5-27 PMid:16324220 PMCid:1315359   Heid CA, Stevens J, Livak KJ and Williams PM (1996). Real time quantitative PCR. Genome Res. 6: 986-994. http://dx.doi.org/10.1101/gr.6.10.986 PMid:8908518   Hembruff SL, Villeneuve DJ and Parissenti AM (2005). The optimization of quantitative reverse transcription PCR for verification of cDNA microarray data. Anal. Biochem. 345: 237-249. http://dx.doi.org/10.1016/j.ab.2005.07.014 PMid:16139235   Lisowski P, Pierzchala M, Goscik J, Pareek CS, et al. (2008). Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid. J. Appl. Genet. 49: 367-372. http://dx.doi.org/10.1007/BF03195635 PMid:19029684   Modha G, Blanchard A, Iwasiow B, Mao XJ, et al. (2004). Developmental changes in insulin-like growth factor I receptor gene expression in the mouse mammary gland. Endocr. Res. 30: 127-140. http://dx.doi.org/10.1081/ERC-120029892 PMid:15098926   Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. http://dx.doi.org/10.1093/nar/29.9.e45 PMid:11328886 PMCid:55695   Pfaffl MW, Wittmann SL, Meyer HH and Bruckmaier RM (2003). Gene expression of immunologically important factors in blood cells, milk cells, and mammary tissue of cows. J. Dairy Sci. 86: 538-545. http://dx.doi.org/10.3168/jds.S0022-0302(03)73632-7   Schmittgen TD and Zakrajsek BA (2000). Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J. Biochem. Biophys. Methods 46: 69-81. http://dx.doi.org/10.1016/S0165-022X(00)00129-9   Tramontana S, Bionaz M, Sharma A, Graugnard DE, et al. (2008). Internal controls for quantitative polymerase chain reaction of swine mammary glands during pregnancy and lactation. J. Dairy Sci. 91: 3057-3066. http://dx.doi.org/10.3168/jds.2008-1164 PMid:18650282   Tricarico C, Pinzani P, Bianchi S, Paglierani M, et al. (2002). Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal. Biochem. 309: 293-300. http://dx.doi.org/10.1016/S0003-2697(02)00311-1   Vandesompele J, De Preter K, Pattyn F, Poppe B, et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: 0034.1-0034-11.