Publications

Found 7 results
Filters: Author is M.E. Medri  [Clear All Filters]
2011
E. A. Ruas, Ruas, C. F., Medri, P. S., Medri, C., Medri, M. E., Bianchini, E., Pimenta, J. A., Rodrigues, L. A., and Ruas, P. M., Anatomy and genetic diversity of two populations of Schinus terebinthifolius (Anacardiaceae) from the Tibagi River basin in Paraná, Brazil, vol. 10, pp. 526-536, 2011.
Armstrong W (1980). Aeration in higher plants. Adv. Bot. Res. 7: 225-332. http://dx.doi.org/10.1016/S0065-2296(08)60089-0   Armstrong W, Brändle R and Jackson MB (1994). Mechanisms of flood tolerance in plants. Acta. Bot. Neer. 43: 307-358.   Batista CUN, Medri ME, Bianchini E, Medri C, et al. (2008). Flood tolerance in Cecropia pachystachya Trec. (Cecropiaceae): ecophysiological and morpho-anatomical aspects. Acta Bot. Bras. 22: 91-98. http://dx.doi.org/10.1590/S0102-33062008000100012   Bianchini E, Medri ME, Pimenta JA, Giloni PC, et al. (2000). Anatomical alterations in plants of Chorisia speciosa A. St.- Hill. submitted to flooding. Interciencia 25: 436-411.   Blom CWPM, Voesenek LACJ, Banga M, Engelaar WMHG, et al. (1994). Physiological ecology of riverside species: adaptive responses of plants to submergence. Ann. Bot. 74: 253-263. http://dx.doi.org/10.1006/anbo.1994.1116   Bradford KJ and Yang SF (1980). Stress-induced ethylene production in the ethylene-requiring tomato mutant diageotropica. Plant Physiol. 65: 327-330. http://dx.doi.org/10.1104/pp.65.2.327 PMid:16661183 PMCid:440320   Carvalho MCCG, Da Silva DCG, Ruas PM, Medri ME, et al. (2008). Flooding tolerance and genetic diversity in populations of Luehea divaricata. Biol. Plantarum 54: 771-774. http://dx.doi.org/10.1007/s10535-008-0150-0   Chen H, Qualls RG and Miller GC (2002). Adaptive responses of Lepidium latifolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environ. Exp. Bot. 48: 119-128. http://dx.doi.org/10.1016/S0098-8472(02)00018-7   Coelho ASG (2000). Dboot: Avaliação dos Erros Associados a Estimativas de Distâncias/Similaridades Genéticas Através do Procedimento de Bootstrap com Número Variável de Marcadores (Software). Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Genética Vegetal, Goiânia.   Crawford RMM (1992). Oxygen availability as an ecological limit to plant distribution. Adv. Ecol. Res. 23: 93-185. http://dx.doi.org/10.1016/S0065-2504(08)60147-6   Crawford RMM and Braendle R (1996). Oxygen deprivation stress in a changing environment. J. Exp. Bot. 47: 145-159. http://dx.doi.org/10.1093/jxb/47.2.145   Davanso-Fabro VM, Medri ME, Bianchini E and Pimenta JA (1998). Tolerância à inundação: aspectos da anatomia ecológica e do desenvolvimento de Sesbania virgata (Cav.) Pers. (Fabaceae). Braz. Arch. Biol. Technol. 41: 475-482. http://dx.doi.org/10.1590/S1516-89131998000400012   Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytoch. Bull. 19: 11-15.   Ferreira ME and Grattapaglia D (1996). Introdução ao Uso de Marcadores Moleculares em Análise Genética. 2nd edn. Embrapa-Cenargen, Brasília.   Gillies AC, Navarro C, Lowe AJ, Newton AC, et al. (1999). Genetic diversity in Mesoamerican populations of mahogany (Swietenia macrophylla), assessed using RAPDs. Heredity 83 (Pt 6): 722-732. http://dx.doi.org/10.1046/j.1365-2540.1999.00626.x PMid:10651917   Guerra MJM, Barreiro ML, Rodriguez ZM and Rubalcada Y (2000). Actividad antimicrobiana de un extracto fluido al 80% de Schinus terebinthifolius Raddi (COPAL). Rev. Cubana Plant Med. 5: 23-25.   Hartl DL and Clark AG (1988). Principles of Population Genetics. Sinauer Associates, Sunderland.   Hook DD and Scholtens JR (1978). Adaptations and Flood Tolerance of Tree Species. In: Plant Life in Anaerobic Environments (Hook DD and Crawford RMM, eds.). Ann Arbor Science Publishers, Michigan, 299-331.   Jordano P and Godoy JA (2000). RAPD variation and population genetic structure in Prunus mahaleb (Rosaceae), an animal-dispersed tree. Mol. Ecol. 9: 1293-1305. http://dx.doi.org/10.1046/j.1365-294x.2000.01009.x PMid:10972769   Justin SHFW and Armstrong W (1991). Evidence for the involvement of ethylene in aerenchyma formation in adventitious roots of rice (Oryza sativa L.). New Phytol. 118: 49-62. http://dx.doi.org/10.1111/j.1469-8137.1991.tb00564.x   Lenzi M and Orth AI (2004). Characterization of the functional reproductive system of the pink-pepper (Schinus terebinthifolius Raddi), in Florianópolis, SC, Brazil. Rev. Bras. Frutic. 26: 198-201. http://dx.doi.org/10.1590/S0100-29452004000200004   Lobo PC and Joly CA (1998). Tolerance to hypoxia and anoxia in Neotropical tree species. Oecol. Bras. 4: 137-156. http://dx.doi.org/10.4257/oeco.1998.0401.07   Lorenzi H (2002). Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 2nd edn. Instituto Plantarum, Nova Odessa.   Luque R, Sousa HC and Kraus JE (1996). Métodos de coloração de Roeser (1972) - modificado - e Kropp (1972) visando a substituição do azul de astra por azul de alcião 8GS ou 8GX. Acta Bot. Bras. 10: 199-212.   Medri ME, Bianchini E, Pimenta JA, Colli S, et al. (2002). Estudos sobre a Tolerância ao Alagamento em Espécies Arbóreas Nativas da Bacia do Rio Tibagi. In: A Bacia do Rio Tibagi (Medri ME, Bianchini E, Shibatta OA and Pimenta JA, eds.). Edição dos Editores, Londrina, 133-172.   Medri ME, Ferreira AC, Kolb RM, Bianchini E, et al. (2007). Morpho-anatomical alterations in plants of Lithraea molleoides (Vell.) Engl. submitted to flooding. Acta Sci. Biol. Sci. 29: 15-22.   Melo J, Amorim E and Albuquerque U (2009). Native medicinal plants commercialized in Brazil - priorities for conservation. Environ. Monit. Assess. 156: 567-580. http://dx.doi.org/10.1007/s10661-008-0506-0 PMid:18726244   Mielke MS, Almeida AAF, Gomes FP, Mangabeira PAO, et al. (2005). Effects of soil flooding on leaf gas exchange and growth of two Neotropical pioneer tree species. New Forests 29: 161-168. http://dx.doi.org/10.1007/s11056-005-0247-7   Moog PR (1998). Flooding tolerance of Carex species. I. Root structure. Planta 207: 189-198. http://dx.doi.org/10.1007/s004250050472   Moog PR and Janiesch P (1990). Root-growth and morphology of Carex species as influenced by oxygen deficiency. Funct. Ecol. 4: 201-208. http://dx.doi.org/10.2307/2389339   Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. PMid:17248844 PMCid:1213855   Reid DM and Bradford KJ (1984). Effects of Flooding on Hormone Relations. In: Flooding and Plant Growth (Kozlowski TT, ed.). Academic Press, London, 195-219.   Schneider S, Roessll D and Excoffier L (2000). ARLEQUIN: A Software for Population Genetics Data Analysis, Version 2.0. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Geneva.   Statistical Analysis Systems (SAS) (1990). SAS Procedures Guide. SAS Institute Inc., Cary.   Tsukahara H and Kozlowski T (1985). Importance of adventitious roots to growth of flooded Platanus occidentalis seedlings. Plant Soil 88: 123-132. http://dx.doi.org/10.1007/BF02140671   Visser EJW, Voesenek LACJ, Vartapetian BB and Jackson MB (2003). Flooding and plant growth. Ann. Bot. 91: 107-109. http://dx.doi.org/10.1093/aob/mcg014   Voeseneck LACJ and Van der Veen R (1994). The role of phytohormones in plant stress: too much or too little water. Acta Bot. Neerl. 43: 91-127.   Wright S (1951). The genetical structure of populations. Ann. Eugenics 15: 323-354.   Yeh FC, Yang R, Boyle TJ, Ye Z, et al. (2000). PopGene32, Microsoft Windows-based Freeware for Population Genetic Analysis, Version 1.32. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton.
C. Medri, Ruas, E. A., Medri, M. E., Ruas, C. F., Sayhun, S., Medri, P. S., Silva, D. C. G., Bianchini, E., and Ruas, P. M., Genetic diversity and flooding survival in Aegiphila sellowiana (Lamiaceae), a typical tree species from upland riparian forests, vol. 10, pp. 1084-1091, 2011.
Bailey-Serres J and Voesenek LA (2008). Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59: 313-339. doi:10.1146/annurev.arplant.59.032607.092752 PMid:18444902 Braendle R and Crawford RMM (1999). Plants as amphibians. Perspect. Plant Ecol. Evol. Syst. 2: 56-78. doi:10.1078/1433-8319-00065 Carvalho MCCG, Silva DCG, Ruas PM, Medri ME, et al. (2002). Flooding tolerance and genetic diversity in populations of Luehea divaricata. Biol. Plant. 52: 771-774. doi:10.1007/s10535-008-0150-0 Coelho ASG (2000). Dboot: Avaliação dos Erros Associados a Estimativas de Distâncias/Similaridade Genéticas Através do Procedimento de Bootstrap com Número Variável de Marcadores (Software). Universidade Federal de Goiás, Goiânia. Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15. Ferreira CS, Piedade MTF, Junk WJ and Parolin P (2007). Floodplain and upland populations of Amazonian Himatanthus sucuuba: effects of flooding on germination, seedling growth and mortality. Environ. Exp. Bot. 60: 477-483. doi:10.1016/j.envexpbot.2007.01.005 Ferreira CS, Piedade MTF, Franco AC, Gonçalves JFC, et al. (2009a). Adaptive strategies to tolerate prolonged flooding in seedlings of floodplain and upland populations of Himatanthus sucuuba, a Central Amazon tree. Aquatic. Bot. 90: 246-252. doi:10.1016/j.aquabot.2008.10.006 Ferreira CS, Piedade MT, Tine MA, Rossatto DR, et al. (2009b). The role of carbohydrates in seed germination and seedling establishment of Himatanthus sucuuba, an Amazonian tree with populations adapted to flooded and non-flooded conditions. Ann. Bot. 104: 1111-1119. doi:10.1093/aob/mcp212 PMid:19770164    PMCid:2766203 Jackson MB, Ishizawa K and Ito O (2009). Evolution and mechanisms of plant tolerance to flooding stress. Ann. Bot. 103: 137-142. doi:10.1093/aob/mcn242 PMCid:2707321 Krauss SL (2000). Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Mol. Ecol. 9: 1241-1245. doi:10.1046/j.1365-294x.2000.01001.x PMid:10972764 Lenssen JPM, Kleunen MV, Fischer M and Kroon H (2004). Local adaptation of the clonal plant Ranunculus reptans to flooding along a small-scale gradient. J. Ecol. 92: 696-706. doi:10.1111/j.0022-0477.2004.00895.x Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. PMid:17248844    PMCid:1213855 Peña-Fronteras JT, Villalobos MC, Baltazar AM, Merca FE, et al. (2009). Adaptation to flooding in upland and lowland ecotypes of Cyperus rotundus, a troublesome sedge weed of rice: tuber morphology and carbohydrate metabolism. Ann. Bot. 103: 295-302. doi:10.1093/aob/mcn085 PMid:18515404    PMCid:2707299 Rohlf FJ (2000). NTSYS-pc Numerical Taxonomy and Multivariate Analysis System Version 2.1. Owner Manual. Exeter Software, New York. Schneider S, Roessli D and Excoffier L (2000). ARLEQUIN: A Software for Population Genetic data Analysis, Version 2.0 (software). University of Geneva, Geneva. Silva DC, Carvalho MC, Ruas PM, Ruas CF, et al. (2010). Evidence of ecotypic differentiation between populations of the tree species Parapiptadenia rigida due to flooding. Genet. Mol. Res. 9: 797-810. doi:10.4238/vol9-2gmr736 PMid:20449813 Silva MES and Guetter AK (2003). Mudanças climáticas regionais observadas no estado do Paraná. Terra Livre 1: 111- 126. Tero N, Aspi J, Siikamaki P, Jakalaniemi A, et al. (2003). Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Mol. Ecol. 12: 2073-2085. doi:10.1046/j.1365-294X.2003.01898.x PMid:12859630 Yeh FC, Yang RTJ and Xiyan JM (2000). PopGene32. Microsoft Window-based Freeware for Population Genetic Analysis, Version 1.32 (Software). University of Alberta, Edmonton. Zhivotovsky LA (1999). Estimating population structure in diploids with multilocus dominant DNA markers. Mol. Ecol. 8: 907-913. doi:10.1046/j.1365-294x.1999.00620.x PMid:10434412
A. M. Polizel, Medri, M. E., Nakashima, K., Yamanaka, N., Farias, J. R. B., de Oliveira, M. C. N., Marin, S. R. R., Abdelnoor, R. V., Marcelino-Guimarães, F. C., Fuganti, R., Rodrigues, F. A., Stolf-Moreira, R., Beneventi, M. A., Rolla, A. A. P., Neumaier, N., Yamaguchi-Shinozaki, K., Carvalho, J. F. C., and Nepomuceno, A. L., Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance, vol. 10, pp. 3641-3656, 2011.
Aragão FJL, Sarokin L, Vianna GR and Rech EL (2000). Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101: 1-6. http://dx.doi.org/10.1007/s001220051441   Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, et al. (2007). Arabidopsis rd29A:DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep. 26: 1275-1282. http://dx.doi.org/10.1007/s00299-007-0360-5 PMid:17453213   Bianco RL, Rieger M and Sung SJS (2000). Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol. Plant. 108: 71-78. http://dx.doi.org/10.1034/j.1399-3054.2000.108001071.x   Bray EA (1997). Plant responses to water deficit. Trends Plant Sci. 2: 48-54. http://dx.doi.org/10.1016/S1360-1385(97)82562-9   Bray EA (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 55: 2331-2341. http://dx.doi.org/10.1093/jxb/erh270 PMid:15448178   Casagrande EC, Farias JRB, Neumaier N, Oya T, et al. (2001). Expressão gênica diferencial durante déficit hídrico em soja. Rev. Bras. Fisiol. Veg. 13: 168-184. http://dx.doi.org/10.1590/S0103-31312001000200006   Conab - Companhia Nacional de Abastecimento (2005). Available at [http://www.conab.gov.br]. Accessed......... Cornic G (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture - not by affecting ATP synthesis. Trends Plant Sci. 5: 187-188.   Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2004). Available at [http://www.cnpso.embrapa.br]. Accessed....... Fehr WR and Caviness CE (1977). Stages of Soybean Development. State University, Cooperative extension Service, Ames.   Flanders A, McKissick JC and Shepherd T (2007). Georgia economic losses due to 2007 drought. Center Rep. CR: 7-10.   Hasegawa PM, Bressan RA, Zhu JK and Bohnert HJ (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-499. http://dx.doi.org/10.1146/annurev.arplant.51.1.463 PMid:15012199   Hewitt EJ (1966). Sand and Water Culture Methods Used in the Study of Plant Nutrition. 2nd edn. Commonwealth Bureau of Horticulture and Plantation Crops, Maidstone.   Ingram J and Bartels D (1996). The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377-403. http://dx.doi.org/10.1146/annurev.arplant.47.1.377 PMid:15012294   Johansen DA (1940). Plant Microtechnique. McGraw-Hill Book Company, New York.   Jones HG (1992). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. 2nd edn. Cambridge University Press, Cambridge.   Kalefetoğlu T and Ekmekçi Y (2005). The effects of drought on plants and tolerance mechanisms. J. Sci. 18: 723-740.   Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, et al. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17: 287-291. http://dx.doi.org/10.1038/7036 PMid:10096298   Kasuga M, Miura S, Shinozaki K and Yamaguchi-Shinozaki K (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45: 346-350. http://dx.doi.org/10.1093/pcp/pch037 PMid:15047884   Kim JS, Jung HJ, Lee HJ, Kim KA, et al. (2008). Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J. 55: 455-466. http://dx.doi.org/10.1111/j.1365-313X.2008.03518.x PMid:18410480   Kim YO, Kim JS and Kang H (2005). Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J. 42: 890-900. http://dx.doi.org/10.1111/j.1365-313X.2005.02420.x PMid:15941401   Kwak KJ, Kim YO and Kang H (2005). Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. 56: 3007-3016. http://dx.doi.org/10.1093/jxb/eri298 PMid:16207746   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real time quantitative PCR and the 2_DDCT methods. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Maruyama K, Sakuma Y, Kasuga M, Ito Y, et al. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38: 982-993. http://dx.doi.org/10.1111/j.1365-313X.2004.02100.x PMid:15165189   Oh SJ, Song SI, Kim YS, Jang HJ, et al. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138: 341-351. http://dx.doi.org/10.1104/pp.104.059147 PMid:15834008 PMCid:1104188   Okamuro JK, Caster B, Villarroel R, Van MM, et al. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 94: 7076-7081. http://dx.doi.org/10.1073/pnas.94.13.7076 PMid:9192694 PMCid:21287   Oya T, Nepomuceno AL, Neumaier N, Farias JRB, et al. (2004). Drought tolerance characteristics of Brazilian soybean cultivars - evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prod. Sci. 7: 129-137. http://dx.doi.org/10.1626/pps.7.129   Panchuk II, Volkov RA and Schoffl F (2002). Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol. 129: 838-853. http://dx.doi.org/10.1104/pp.001362 PMid:12068123 PMCid:161705   Pellegrineschi A, Ribaut JM, Trethowan R, Yamaguchi-Shinozaki K, et al. (2002). Progress in the genetic engineering of wheat for water-limited conditions. JIRCAS Work. Rep. 23: 55-60.   Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, et al. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47: 493-500. http://dx.doi.org/10.1139/g03-140 PMid:15190366   Pfaffl MW, Horgan GW and Dempfle L (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36. http://dx.doi.org/10.1093/nar/30.9.e36 PMid:11972351 PMCid:113859   Qin F, Sakuma Y, Tran LSP, Maruyama K, et al. (2008). Arabidopsis DREB2A-Interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20: 1693-1707. http://dx.doi.org/10.1105/tpc.107.057380 PMid:18552202 PMCid:2483357   Rech EL, Vianna GR and Aragão FJL (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 3: 410-418. http://dx.doi.org/10.1038/nprot.2008.9 PMid:18323812   Sachetto-Martins G, Fernandes LD, Félix DB and de Oliveira DE (1995). Preferential transcriptional activity of a glycine-rich protein gene from Arabidopsis thaliana in protoderm -derived cells. Int. J. Plant Sci. 156: 460-470. http://dx.doi.org/10.1086/297268   Sakuma Y, Maruyama K, Osakabe Y, Qin F, et al. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18: 1292-1309. http://dx.doi.org/10.1105/tpc.105.035881 PMid:16617101 PMCid:1456870   Shinozaki K and Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327-334. http://dx.doi.org/10.1104/pp.115.2.327 PMid:12223810 PMCid:158490   Shinozaki K and Yamaguchi-Shinozaki K (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223. PMid:10837265   Taiz L and Zeiger E (2002). Plant Physiology, 3rd edn. Sinauer, Sunderland. PMCid:152206   Tasma IM, Brendel V, Whitham SA and Bhattacharyya MK (2008). Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol. Biochem. 46: 627-637. http://dx.doi.org/10.1016/j.plaphy.2008.04.015 PMid:18534862   Thomashow MF (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599. http://dx.doi.org/10.1146/annurev.arplant.50.1.571 PMid:15012220   Turner NC (1997). Further progress in crop water relations. Adv. Agron. 58: 293-338. http://dx.doi.org/10.1016/S0065-2113(08)60258-8   Wang CR, Yang AF, Yue GD, Gao Q, et al. (2008). Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227: 1127-1140. http://dx.doi.org/10.1007/s00425-007-0686-9 PMid:18214529   Zhu JK (2001). Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 4: 401-406. http://dx.doi.org/10.1016/S1369-5266(00)00192-8
C. Medri, Ruas, E. A., Ruas, C. F., Medri, P. S., Medri, M. E., and Ruas, P. M., Population genetic structure of the tropical tree species Aegiphila sellowiana (Lamiaceae), vol. 10, pp. 3186-3198, 2011.
Ayres M, Ayres Jr M and Ayres DL (2005). Bioestat: 2.0 - Aplicações Estatísticas nas Áreas das Ciências Biológicas e Médicas. Sociedade Civil Mamirauá, MCT/CNPq, Belém. Castellen MS (2000). Uso de Marcadores RAPD e Isoenzimáticos na Quantificação da Diversidade Genética em Populações Naturais de Esenbeckia leiocarpa. PhD thesis, ESALQ-USP, Piracicaba. Dawson IK, Simons AJ, Waugh R and Powell W (1995). Diversity and genetic differentiation among subpopulations of Gliricidia sepium revealed by PCR-based assays. Heredity 74: 10-18. http://dx.doi.org/10.1038/hdy.1995.2 PMid:7531677 Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15. Gaudeul M, Taberlet P and Till-Bottraud I (2000). Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Mol. Ecol. 9: 1625-1637. http://dx.doi.org/10.1046/j.1365-294x.2000.01063.x PMid:11050557 Hall P, Chase MR and Bawa KS (1994). Low genetic variation but high population differentiation in a common tropical forest tree species. Conserv. Biol. 8: 471-482. http://dx.doi.org/10.1046/j.1523-1739.1994.08020471.x Hamrick JL (1983). The Distribution of Genetic Variation Within and Among Natural Plant Populations. In: Genetic and Conservation (Schonewald Cox CM, Chambers SM, Macbride B and Thomas L, eds.). The Benjamin/Cummings Publishing, Menlo Park, 335-348. Hardy OJ (2003). Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol. Ecol. 12: 1577-1588. http://dx.doi.org/10.1046/j.1365-294X.2003.01835.x PMid:12755885 Hedrick P (1992). Shooting the rapids. Nature 355: 679-680. http://dx.doi.org/10.1038/355679a0 Holsinger KE and Lewis PO (2003). HICKORY: A Package for Analysis of Population Genetic Data, Version 1.0. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs. Holsinger KE, Lewis PO and Dey DK (2002). A Bayesian approach to inferring population structure from dominant markers. Mol. Ecol. 11: 1157-1164. http://dx.doi.org/10.1046/j.1365-294X.2002.01512.x PMid:12074723 Hsiao JY and Lee SM (1999). Genetic diversity and microgeographic differentiation of Yushan cane (Yushania niitakayamensis; Poaceae) in Taiwan. Mol. Ecol. 8: 263-270. http://dx.doi.org/10.1046/j.1365-294X.1999.00563.x Knowles P (1984). Genetic variability among and within closely spaced populations of Lodgepole pine. Can. J. Genet. Cytol.26: 177-184. Krauss SL (2000). Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Mol. Ecol. 9: 1241-1245. http://dx.doi.org/10.1046/j.1365-294x.2000.01001.x PMid:10972764 Lacerda DR, Acedo MDP, Lemos Filho JP and Lovato MB (2001). Genetic diversity and structure of natural populations of Plathymenia reticulata (Mimosoidae), a tropical tree from the Brazilian Cerrado. Mol. Ecol. 10: 1143-1152. http://dx.doi.org/10.1046/j.1365-294X.2001.01264.x PMid:11380873 Lee SW, Ledig FT and Johnson DR (2002). Genetic variation at allozyme and RAPD markers in Pinus longaeva (Pinaceae) of the White Mountains, California. Am. J. Bot. 89: 566-577. http://dx.doi.org/10.3732/ajb.89.4.566 PMid:21665657 Lorenzi H (2002). Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil. Plantarum Press Nova Odessa, Nova Odessa. Lowe AJ, Boshier D, Ward M, Bacles CF, et al. (2005). Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95: 255-273. http://dx.doi.org/10.1038/sj.hdy.6800725 PMid:16094300 Martins SV, Riveiro GA and da Silva WM (2002). Regeneração pós-fogo em fragmento de floresta estacional semidecidual no município de Viçosa, Minas Gerais. Cienc. Florestal 12: 11-19. Mendonça FA and Danni-Oliveira IM (2002). Dinâmica Atmosférica e Tipos Climáticos Predominantes da Bacia do Rio Tibagi. In: A Bacia do Rio Tibagi (Medri ME, Bianchini E, Shibatta AO and Pimenta JA, eds.). Londrina, 63-68. Mueller UG and Wolfenbarger LL (1999). AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14: 389-394. http://dx.doi.org/10.1016/S0169-5347(99)01659-6 Nei M (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70: 3321-3323. http://dx.doi.org/10.1073/pnas.70.12.3321 Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. PMid:17248844    PMCid:1213855 Nei M (1987). Molecular Evolutionary Genetics. Columbia University Press, New York. Nybom H (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13: 1143-1155. http://dx.doi.org/10.1111/j.1365-294X.2004.02141.x PMid:15078452 Nybom H and Bartish IV (2000). Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect. Plant Ecol. 3: 93-114. http://dx.doi.org/10.1078/1433-8319-00006 Oliveira PEAM and Paula FR (2001). Fenologia e Biologia Reprodutiva de Plantas de Mata de Galeria. In: Cerrado: Caracterização e Recuperação de Matas de Galeria (Ribeiro JF, da Fonseca CEL and Souza-Silva JC, eds.). Embrapa- Cerrados, Planaltina, 301-322. Pinto SIC, Souza AM and Carvalho D (2004). Genetic variability by isozymes in populations of Copaifera langsdorffii Desf. in two fragments of riparian forest. Sci. Forestry 65: 40-48. Pritchard JK, Stephens M and Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945-959. PMid:10835412    PMCid:1461096 Sales E, Nebauer SG, Mus M and Segura J (2001). Population genetic study in the Balearic endemic plant species Digitalis minor (Scrophulariaceae) using RAPD markers. Am. J. Bot. 88: 1750-1759. http://dx.doi.org/10.2307/3558349 PMid:21669606 Schierenbeck KA, Skupski M, Lieberman D and Lieberman M (1997). Population structure and genetic diversity in four tropical tree species in Costa Rica. Mol. Ecol. 6: 137-144. http://dx.doi.org/10.1046/j.1365-294X.1997.00166.x Schlüter PM and Harris SA (2006). Analysis of multilocus fingerprinting data sets containing missing data. Mol. Ecol. Notes 6: 569-572. http://dx.doi.org/10.1111/j.1471-8286.2006.01225.x Schneider S, Roessll D and Excoffier L (2000). ARLEQUIN: A software for population genetic data analysis, v. 2.0. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Geneva. Stipp NAF (2002). Principais Tipos de Solos da Bacia do Rio Tibagi. In: A Bacia do Rio Tibagi (Medri ME, Bianchini E, Shibatta AO and Pimenta JA, eds.). EDUEL, Londrina, 39-44. Sun M and Wong KC (2001). Genetic structure of three orchid species with contrasting breeding systems using RAPD and allozyme markers. Am. J. Bot. 88: 2180-2188. http://dx.doi.org/10.2307/3558379 PMid:21669650 Tero N, Aspi J, Siikamaki P, Jakalaniemi A, et al. (2003). Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Mol. Ecol. 12: 2073-2085. http://dx.doi.org/10.1046/j.1365-294X.2003.01898.x PMid:12859630 Torezan JMD (2002). Nota Sobre a Vegetação da Bacia do Rio Tibagi. In: A Bacia do Rio Tibagi (Medri ME, Bianchini E, Shibatta AO and Pimenta JA, eds.). EDUEL, Londrina, 103-108. Wallace LE (2002). Examining the effects of fragmentation on genetic variation in Platanthera leucophaea (Orchidaceae): inferences from allozyme and random amplified polymorphic DNA markers. Plant Species Biol. 17: 37-49. http://dx.doi.org/10.1046/j.1442-1984.2002.00072.x Yeh F, Yang R and Boyle TJ (2000). PopGene 3.12. Microsoft Window-based Freeware for Population Genetic Analysis, Version 1.32, Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton. Zhivotovsky LA (1999). Estimating population structure in diploids with multilocus dominant DNA markers. Mol. Ecol. 8: 907-913. http://dx.doi.org/10.1046/j.1365-294x.1999.00620.x PMid:10434412 Zimback L, Mori ES, Kageyama PY, Veiga RFA, et al. (2004). Estrutura genética de populações de Trichilia pallida Swartz (Meliaceae) por marcadores RAPD. Sci. Forestry 65: 114-119.
2010
R. Stolf-Moreira, Medri, M. E., Neumaier, N., Lemos, N. G., Brogin, R. L., Marcelino, F. C., de Oliveira, M. C. N., Farias, J. R. B., Abdelnoor, R. V., and Nepomuceno, A. L., Cloning and quantitative expression analysis of drought-induced genes in soybean, vol. 9, pp. 858-867, 2010.
Baker SS, Wilhelm KS and Thomashow MF (1994). The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 24: 701-713. http://dx.doi.org/10.1007/BF00029852 PMid:8193295   Bray EA (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 55: 2331-2341. http://dx.doi.org/10.1093/jxb/erh270 PMid:15448178   Downie B, Gurusinghe S, Dahal P, Thacker RR, et al. (2003). Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol. 131: 1347-1359. http://dx.doi.org/10.1104/pp.016386 PMid:12644684 PMCid:166894   Ewing B, Hillier L, Wendl MC and Green P (1998). Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res. 8: 175-185. PMid:9521921   Fowler S and Thomashow MF (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675-1690. http://dx.doi.org/10.1105/tpc.003483 PMid:12172015 PMCid:151458   Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, et al. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16: 433-442. http://dx.doi.org/10.1046/j.1365-313x.1998.00310.x PMid:9881163   Haake V, Cook D, Riechmann JL, Pineda O, et al. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 130: 639-648. http://dx.doi.org/10.1104/pp.006478 PMid:12376631 PMCid:166593   Haritatos E, Medville R and Turgeon R (2000). Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211: 105-111. http://dx.doi.org/10.1007/s004250000268 PMid:10923710   Johansson I, Karlsson M, Johanson U, Larsson C, et al. (2000). The role of aquaporins in cellular and whole plant water balance. Biochim. Biophys. Acta 1465: 324-342. http://dx.doi.org/10.1016/S0005-2736(00)00147-4   Kaldenhoff R, Grote K, Zhu JJ and Zimmermann U (1998). Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. Plant J. 14: 121-128. http://dx.doi.org/10.1046/j.1365-313X.1998.00111.x PMid:9681029   Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, et al. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17: 287-291. http://dx.doi.org/10.1038/7036 PMid:10096298   Kasuga M, Miura S, Shinozaki K and Yamaguchi-Shinozaki K (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45: 346-350. http://dx.doi.org/10.1093/pcp/pch037 PMid:15047884   Kizis D, Lumbreras V and Pages M (2001). Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett. 498: 187-189. http://dx.doi.org/10.1016/S0014-5793(01)02460-7   Kumar S, Tamura K and Nei M (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 5: 150-163. http://dx.doi.org/10.1093/bib/5.2.150 PMid:15260895   Liu JJ, Krenz DC, Galvez AF and de Lumen BO (1998). Galactinol synthase (GS): increased enzyme activity and levels of mRNA due to cold and desiccation. Plant Sci. 134: 11-20. http://dx.doi.org/10.1016/S0168-9452(98)00042-9   Maitra N and Cushman JC (1998). Characterization of a drought-induced soybean cDNA encoding a plant defensin. Plant Physiol. 118: 1536.   Martre P, Morillon R, Barrieu F, North GB, et al. (2002). Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol. 130: 2101-2110. http://dx.doi.org/10.1104/pp.009019 PMid:12481094 PMCid:166722   Maurel C and Chrispeels MJ (2001). Aquaporins. A molecular entry into plant water relations. Plant Physiol. 125: 135-138. http://dx.doi.org/10.1104/pp.125.1.135 PMid:11154316 PMCid:1539345   Miller EM and Nickoloff JA (1995). Escherichia coli Electrotransformation. In: Electroporation Protocols for Microorganisms (Nickoloff JA, ed.). Humana Press, Totowa, 105-114. http://dx.doi.org/10.1385/0-89603-310-4:105 PMid:7550724   Pfaffl MW, Horgan GW and Dempfle L (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36. http://dx.doi.org/10.1093/nar/30.9.e36 PMid:11972351 PMCid:113859   Schenk PM, Kazan K, Manners JM, Anderson JP, et al. (2003). Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol. 132: 999-1010. http://dx.doi.org/10.1104/pp.103.021683 PMid:12805628 PMCid:167038   Seki M, Narusaka M, Abe H, Kasuga M, et al. (2001). Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 61-72. PMid:11158529 PMCid:102214   Shinozaki K and Yamaguchi-Shinozaki K (1996). Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7: 161-167. http://dx.doi.org/10.1016/S0958-1669(96)80007-3   Shinozaki K and Yamaguchi-Shinozaki K (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223. PMid:10837265   Shinozaki K and Yamaguchi-Shinozaki K (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227. http://dx.doi.org/10.1093/jxb/erl164 PMid:17075077   Shukla VK and Chrispeels MJ (1998). Aquaporins their Role and Regulation in Cellular Water Movement. In: Cellular Integrations of Signalling Pathways in Plant Development. (Lo Schiavo E, Lat KL, Morelli G and Raikhel NV, eds.). Series Vol. H 104. North Atlantic Treaty Organization Advanced Study Institute. Springer-Verlag, Berlin, 11-21.   Siefritz F, Biela A, Eckert M, Otto B, et al. (2001). The tobacco plasma membrane aquaporin NtAQP1. J. Exp. Bot. 52: 1953-1957. http://dx.doi.org/10.1093/jexbot/52.363.1953 PMid:11559730   Stolf R (2007). Identificação e Análise da Expressão de Genes Relacionados com Tolerância à Seca em Soja Através de Microarranjos de DNA e PCR em Tempo Real. Doctoral thesis, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal.   Tyerman SD, Bohnert HJ, Maurel C, Steudle E, et al. (1999). Plant aquaporins: their molecular biology, biophysics, and significance for plant water relations. J. Exp. Bot. 50: 1055-1071.   Volkov RA, Panchuk II and Schoffl F (2003). Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J. Exp. Bot. 54: 2343-2349. http://dx.doi.org/10.1093/jxb/erg244 PMid:14504302   Yamada S, Komori T and Imaseki H (1997). cDNA cloning of gamma-thionin from Nicotiana excelsior. Plant Physiol. 115: 314.   Yamaguchi-Shinozaki K and Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251-264. PMid:8148648 PMCid:160431   Zhang JZ, Creelman RA and Zhu JK (2004). From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol. 135: 615-621. http://dx.doi.org/10.1104/pp.104.040295 PMid:15173567 PMCid:514097
D. C. G. Silva, Carvalho, M. C. C. G., Ruas, P. M., Ruas, C. F., and Medri, M. E., Evidence of ecotypic differentiation between populations of the tree species Parapiptadenia rigida due to flooding, vol. 9, pp. 797-810, 2010.
Bailey-Serres J and Voesenek LA (2008). Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59: 313-339. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092752 PMid:18444902   Batista CUN, Medri ME, Bianchini E, Medri C, et al. (2008). Tolerância à inundação de Cecropia pachystachya Trec. (Cecropiaceae): aspectos ecofisiológicos e morfoanatômicos. Acta Bot. Bras. 22: 91-98. http://dx.doi.org/10.1590/S0102-33062008000100012   Chan JWY and Burton RS (1992). Variation in alcohol dehydrogenase activity and flood tolerance in white clover, Trifolium repens. Evolution 46: 721-734. http://dx.doi.org/10.2307/2409640   Coutts MP and Armstrong W (1976). Role of Oxygen Transport in the Tolerance of Trees to Waterlogging. In: Tree Physiology and Yield Improvement (Cannell MGR and Last FT, eds.). Academic Press, London, 361-385.   Davanso VM, Souza LA, Medri ME, Pimenta JA, et al. (2002). Photosynthesis, growth and development of Tabebuia avellanedae Lor. Ex Griseb. (Bignoniaceae) in flooded soil. Braz. Arch. Biol. Technol. 45: 375-384. http://dx.doi.org/10.1590/S1516-89132002000300016   Davanso VM, Medri ME, Souza LA and Colli S (2003). Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae) submitted at the flooding and the "Ethrel" and silver nitrate application. Braz. Arch. Biol. Technol. 46: 57-64. http://dx.doi.org/10.1590/S1516-89132003000100010   De Carvalho MCCG, Silva DCG, Ruas PM, Medri ME, et al. (2008). Flooding tolerance and genetic diversity in populations of Luehea divaricata. Biol. Plant. 52: 771-774. http://dx.doi.org/10.1007/s10535-008-0150-0   Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytotech. Bull. 19: 11-15.   Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282 PMCid:1205020   Fernández MD (2006). Changes in photosynthesis and fluorescence in response to flooding in emerged and submerged leaves of Pouteria orinocoensis. Photosynthetica 44: 32-38. http://dx.doi.org/10.1007/s11099-005-0155-2   Ferreira CS, Piedade MTF, Junk WJ and Parolin P (2007). Floodplain and upland populations of Amazonian Himatanthus sucuuba: effects of flooding on germination, seedling growth and mortality. Environ. Exp. Bot. 60: 477-483. http://dx.doi.org/10.1016/j.envexpbot.2007.01.005   Huang B, Johnson JW, Box JE and NeSmith DS (1997). Root characteristics and hormone activity of wheat in response to hypoxia and ethylene. Crop Sci. 37: 812-818. http://dx.doi.org/10.2135/cropsci1997.0011183X003700030020x   Huff DR, Peakall R and Smouse PE (1993). RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. Theor. Appl. Genet. 86: 927-934. http://dx.doi.org/10.1007/BF00211043   Kolb RM, Medri ME, Bianchini E and Pimenta JA (1998). Anatomia ecológica de Sebastiania commersoniana (Baillon) Smith & Downs (Euphorbiaceae) submetida ao alagamento. Rev. Bras. Bot. [online] 21. [Doi: 10.1590/S0100- 84041998000300010].   Kolb RM, Rawyler A and Braendle R (2002). Parameters affecting the early seedling development of four Neotropical trees under oxygen deprivation stress. Ann. Bot. 89: 551-558. http://dx.doi.org/10.1093/aob/mcf092   Kozlowski TT (1984). Responses of Woody Plants to Flooding. In: Flooding and Plant Growth (Kozlowski TT, ed.). Academic Press, London, 129-163. PMid:6462805   Lenssen JPM, Kleunen MV, Fischer M and Kroon H (2004). Local adaptation of the clonal plant Ranunculus reptans to flooding along a small-scale gradient. J. Ecol. 92: 696-706. http://dx.doi.org/10.1111/j.0022-0477.2004.00895.x   Lopez OR and Kursar TA (1999). Flood tolerance of four tropical tree species. Tree Physiol. 19: 925-932. http://dx.doi.org/10.1093/treephys/19.14.925 PMid:12651304   Lopez OR and Kursar TA (2003). Does flood tolerance explain tree species distribution in tropical seasonally flooded habitats? Oecologia 136: 193-204. http://dx.doi.org/10.1007/s00442-003-1259-7 PMid:12743794   Lorenzi H (1992). Árvores Brasileiras: Manual de identificação e Cultivo de Plantas Arbóreas Nativas do Brasil. Plantarum, Nova Odessa, 181.   Lynch M and Milligan BG (1994). Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 91-99. http://dx.doi.org/10.1111/j.1365-294X.1994.tb00109.x PMid:8019690   Mano Y, Omori F, Takamizo T, Kindiger B, et al. (2006). Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings. Plant Soil 281: 269-279. http://dx.doi.org/10.1007/s11104-005-4268-y   Medri ME, Bianchini E, Pimenta JA, Delgado MT, et al. (1998). Aspectos morfo-anatômicos e fisiológicos de Peltophorum dubium (Spr.) Taub. submetida ao alagamento e à aplicação de etrel. Rev. Bras. Bot. 21: 261-267. http://dx.doi.org/10.1590/S0100-84041998000300004   Medri ME, Bianchini E, Pimenta JA, Colli S, et al. (2002). Studies on Flooding Tolerance in Native Tree Species From Tibagi River Basin. In: A Bacia do Rio Tibagi (Medri ME, Bianchini E, Shibatta OA and Pimenta JA, eds.). Universidade Estadual de Londrina, Londrina, 133-172.   Medri ME, Ferreira AC, Kolb RM, Bianchini E, et al. (2007). Morpho-anatomical alterations in plants of Lithraea molleoides (Vell.) Engl. submitted to flooding. Acta Sci. Biol. Sci. 29: 15-22. http://dx.doi.org/10.4025/actascibiolsci.v29i1.408   Mielke MS, Almeida AA, Gomes FP, Mangabeira PAO, et al. (2005). Effects of soil flooding on leaf gas exchange and growth of two Neotropical pioneer tree species. New Forests 29: 161-168. http://dx.doi.org/10.1007/s11056-005-0247-7   Parolin P (2002). Life history and environment of Cecropia latiloba in Amazonian floodplains. Rev. Biol. Trop. 50: 531-545. PMid:12298284   Parolin P (2009). Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Ann. Bot. 103: 359-376. http://dx.doi.org/10.1093/aob/mcn216 PMid:19001429 PMCid:2707320   Pimenta JA, Medri ME, Bianchini E, Müller C, et al. (1996). Aspectos da morfoanatomia e fisiologia de Jacaranda puberula Cham. (Bignoniaceae) em condições de hipoxia. Rev. Bras. Bot. 19: 215-220.   Pimenta JA, Bianchini E and Medri ME (1998). Adaptations to flooding by tropical trees: morphological and anatomical modifications. In: Ecophysiological strategies of xerophytic and amphibious plants in the Neotropics (Scarano FR and Franco AC, eds.). Universidade Federal do Rio de Janeiro, Rio de Janeiro, 157-176.   Pisicchio CM (2004). Respostas de Heliocarpus americanus L. (Tiliciaceae) ao Alagamento. Master's thesis, Universidade Estadual de Londrina, Londrina.   Santiago EF and Paoli AAS (2003). O aumento em superfície em Adelia membranifolia (Müll. Arg.) Pax & K. Hoffm. e Peltophorum dubium (Spreng.) Taub., em resposta ao estresse por deficiência nutricional e alagamento do substrato. Rev. Bras. Bot. 26: 503-513. http://dx.doi.org/10.1590/S0100-84042003000400009   Schmull M and Thomas FM (2000). Morphological and physiological reactions of young deciduous trees (Quercus robur L., Q. petraea [Matt.] Liebl., Fagus sylvatica L.) to waterlogging. Plant Soil 225: 227-242. http://dx.doi.org/10.1023/A:1026516027096   Schneider S, Kueffer JM, Roessli D and Excoffier L (1997). Arlequin Version 1.1: A Software for Population Genetic Data Analysis. University of Geneva, Geneva.   Silveira SR, Ruas PM, Ruas CF, Carvalho VP, et al. (2003). Assessment of genetic variability within and among coffee progenies and cultivars using RAPD markers. Gen. Mol. Biol. 26: 329-336. http://dx.doi.org/10.1590/S1415-47572003000300018   Steege HT (1994). Flooding and drought tolerance in seeds and seedlings of two Mora species segregated along a soil hydrological gradient in the tropical rain forest of Guyana. Oecologia 100: 356-367. http://dx.doi.org/10.1007/BF00317856   Terazawa K and Kikuzawa K (1994). Effects of flooding on leaf dynamics and other seedling responses in flood-tolerant Alnus japonica and flood-intolerant Betula platyphylla var. japonica. Tree Physiol. 14: 251-261. http://dx.doi.org/10.1093/treephys/14.3.251 PMid:14967700   Tsukahara H and Kozlowski TT (1985). Importance of adventitious roots to growth of flooded Platanus occidentalis seedlings. Plant Soil 88: 123-132. http://dx.doi.org/10.1007/BF02140671   Yamamoto F (1992). Effects of depth of flooding on growth and anatomy of stems and knee roots of Taxodium distichum. Iawa Bull. 13: 93-104.
R. Stolf-Moreira, Medri, M. E., Neumaier, N., Lemos, N. G., Pimenta, J. A., Tobita, S., Brogin, R. L., Marcelino-Guimarães, F. C., Oliveira, M. C. N., Farias, J. R. B., Abdelnoor, R. V., and Nepomuceno, A. L., Soybean physiology and gene expression during drought, vol. 9, pp. 1946-1956, 2010.
Aharon R, Shahak Y, Wininger S, Bendov R, et al. (2003). Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15: 439-447. http://dx.doi.org/10.1105/tpc.009225 PMid:12566583 PMCid:141212   Bayoumi TY, Eid MH and Metwali EM (2008). Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. Afr. J. Biotechnol. 7: 2341-2352.   Bocca SN, Magioli C, Mangeon A, Junqueira RM, et al. (2005). Survey of glycine-rich proteins (GRPs) in the Eucalyptus expressed sequence tag database (ForEST). Genet. Mol. Biol. 28: 608-624. http://dx.doi.org/10.1590/S1415-47572005000400016   Boeger AR and Wisniewski C (2002). Leaf structure and nutrient contents of six tree species from different successional stages at coastal plain from Paraná State, Brazil. Iheringia 57: 243-262.   Bohnert HJ, Nelson DE and Jensen RG (1995). Adaptations to environmental stresses. Plant Cell 7: 1099-1111. PMid:12242400 PMCid:160917   Chiariello NR, Mooney HA and Williams K (1991). Growth, Carbon Allocation and Cost of Plant Tissues. In: Plant Physiologic Ecology: Field Methods and Instrumentation (Pearcey RW, Ehleringer J, Mooney HA and Rundel PW, eds.). Chapman and Hall, New York, 327-365.   Chinnusamy V, Schumaker K and Zhu JK (2004). Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot. 55: 225-236. http://dx.doi.org/10.1093/jxb/erh005 PMid:14673035   Cornic G and Briantais JM (1991). Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. Planta 183: 178-184. http://dx.doi.org/10.1007/BF00197786   Downie B, Gurusinghe S, Dahal P, Thacker RR, et al. (2003). Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol. 131: 1347-1359. http://dx.doi.org/10.1104/pp.016386 PMid:12644684 PMCid:166894   Hannah MA, Wiese D, Freund S, Fiehn O, et al. (2006). Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol. 142: 98-112. http://dx.doi.org/10.1104/pp.106.081141 PMid:16844837 PMCid:1557609   Hewitt EJ (1963). Mineral Nutrition of Plants in Culture Media. In: Plant Physiology. Vol. III (Steward FC, ed.). Academic Press, New York, 97-133.   Hill AE, Shachar-Hill B and Shachar-Hill Y (2004). What are aquaporins for? J. Membr. Biol. 197: 1-32. http://dx.doi.org/10.1007/s00232-003-0639-6 PMid:15014915   Huang B and Fry JD (1998). Root anatomical, physiological, and morphological responses to drought stress for tall fescue cultivars. Crop Sci. 38: 1017-1022. http://dx.doi.org/10.2135/cropsci1998.0011183X003800040022x   Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K and Shinozaki K (2000). A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol. 123: 553-562. http://dx.doi.org/10.1104/pp.123.2.553 PMid:10859185 PMCid:59023   Jones HG (2007). Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 58: 119-130. http://dx.doi.org/10.1093/jxb/erl118 PMid:16980592   Kron AP, Souza GMR and Ribeiro RV (2008). Water deficiency at different developmental stages of Glycine max can improve drought tolerance. Bragantia 67: 43-49. http://dx.doi.org/10.1590/S0006-87052008000100005   Li XP, Tian AG, Luo GZ, Gong ZZ, et al. (2005). Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor. Appl. Genet. 110: 1355-1362. http://dx.doi.org/10.1007/s00122-004-1867-6 PMid:15841365   Machado-Filho JA, Campostrini E, Yamanishi OK and Fagundes GR (2006). Seasonal variation of leaf gas exchange in papaya plants grown under field condition. Bragantia 65: 185-196.   Maitra N and Cushman JC (1998). Characterization of a drought-induced soybean cDNA encoding a plant defensin. Plant Physiol. 118: 1536.   Maruyama K, Sakuma Y, Kasuga M, Ito Y, et al. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38: 982-993. http://dx.doi.org/10.1111/j.1365-313X.2004.02100.x PMid:15165189   Maurel C and Chrispeels MJ (2001). Aquaporins. A molecular entry into plant water relations. Plant Physiol. 125: 135-138. http://dx.doi.org/10.1104/pp.125.1.135 PMid:11154316 PMCid:1539345   Monti A, Brugnoli E, Scartazza A and Amaducci MT (2006). The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.). J. Exp. Bot. 57: 1253-1262. http://dx.doi.org/10.1093/jxb/erj091 PMid:16467409   Oya T, Nepomuceno AL, Neumaier N, Farias JRB, et al. (2004). Drought tolerance characteristics of Brazilian soybean cultivars - evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prod. Sci. 7: 129-137. http://dx.doi.org/10.1626/pps.7.129   Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, et al. (2004). Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol. 136: 3148-3158. http://dx.doi.org/10.1104/pp.104.042606 PMid:15466240 PMCid:523375   Pfaffl MW, Horgan GW and Dempfle L (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36. http://dx.doi.org/10.1093/nar/30.9.e36 PMid:11972351 PMCid:113859   Porcel R, Aroca R, Azcon R and Ruiz-Lozano JM (2006). PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol. Biol. 60: 389-404. http://dx.doi.org/10.1007/s11103-005-4210-y PMid:16514562   Schafleitner R, Gaudin A, Rosales ROG, Aliaga CAA, et al. (2007). Proline accumulation and real time PCR expression analysis of genes encoding enzymes of proline metabolism in relation to drought tolerance in Andean potato. Acta Physiol. Plant. 29: 19-26. http://dx.doi.org/10.1007/s11738-006-0003-4   Shen YG, Zhang WK, Yan DQ, Du BX, et al. (2003). Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor. Appl. Genet. 107: 155-161. PMid:12677404   Schenk PM, Kazan K, Manners JM, Anderson JP, et al. (2003). Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol. 132: 999-1010. http://dx.doi.org/10.1104/pp.103.021683 PMid:12805628 PMCid:167038   Shinozaki K and Yamaguchi-Shinozaki K (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227. http://dx.doi.org/10.1093/jxb/erl164 PMid:17075077   Singh K, Foley RC and Onate-Sanchez L (2002). Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol. 5: 430-436. http://dx.doi.org/10.1016/S1369-5266(02)00289-3   Stolf R (2007). Identificação e Análise da Expressão de Genes Relacionados com Tolerância à Seca em Soja Através de Microarranjos de DNA e PCR em Tempo Real. Doctoral thesis, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal.   Sung DY, Vierling E and Guy CL (2001). Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol. 126: 789-800. http://dx.doi.org/10.1104/pp.126.2.789 PMid:11402207 PMCid:111169   Taji T, Seki M, Satou M, Sakurai T, et al. (2004). Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 135: 1697-1709. http://dx.doi.org/10.1104/pp.104.039909 PMid:15247402 PMCid:519083   Tang M, Sun J, Liu Y, Chen F, et al. (2007). Isolation and functional characterization of the JcERF gene, a putative AP2/ EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol. Biol. 63: 419-428. http://dx.doi.org/10.1007/s11103-006-9098-7 PMid:17103014   Vasquez-Robinet C, Mane SP, Ulanov AV, Watkinson JI, et al. (2008). Physiological and molecular adaptations to drought in Andean potato genotypes. J. Exp. Bot. 59: 2109-2123. http://dx.doi.org/10.1093/jxb/ern073 PMid:18535297 PMCid:2413284   Warren CR (2004). The photosynthetic limitation posed by internal conductance to CO2 movement is increased by nutrient supply. J. Exp. Bot. 55: 2313-2321. http://dx.doi.org/10.1093/jxb/erh239 PMid:15310814   Yamada K, Lim J, Dale JM, Chen H, et al. (2003). Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302: 842-846. http://dx.doi.org/10.1126/science.1088305 PMid:14593172   Yamaguchi-Shinozaki K and Shinozaki K (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10: 88-94. http://dx.doi.org/10.1016/j.tplants.2004.12.012 PMid:15708346