Publications

Found 3 results
Filters: Author is M.C.N. de Oliveira  [Clear All Filters]
2011
A. M. Polizel, Medri, M. E., Nakashima, K., Yamanaka, N., Farias, J. R. B., de Oliveira, M. C. N., Marin, S. R. R., Abdelnoor, R. V., Marcelino-Guimarães, F. C., Fuganti, R., Rodrigues, F. A., Stolf-Moreira, R., Beneventi, M. A., Rolla, A. A. P., Neumaier, N., Yamaguchi-Shinozaki, K., Carvalho, J. F. C., and Nepomuceno, A. L., Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance, vol. 10, pp. 3641-3656, 2011.
Aragão FJL, Sarokin L, Vianna GR and Rech EL (2000). Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101: 1-6. http://dx.doi.org/10.1007/s001220051441   Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, et al. (2007). Arabidopsis rd29A:DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep. 26: 1275-1282. http://dx.doi.org/10.1007/s00299-007-0360-5 PMid:17453213   Bianco RL, Rieger M and Sung SJS (2000). Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol. Plant. 108: 71-78. http://dx.doi.org/10.1034/j.1399-3054.2000.108001071.x   Bray EA (1997). Plant responses to water deficit. Trends Plant Sci. 2: 48-54. http://dx.doi.org/10.1016/S1360-1385(97)82562-9   Bray EA (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 55: 2331-2341. http://dx.doi.org/10.1093/jxb/erh270 PMid:15448178   Casagrande EC, Farias JRB, Neumaier N, Oya T, et al. (2001). Expressão gênica diferencial durante déficit hídrico em soja. Rev. Bras. Fisiol. Veg. 13: 168-184. http://dx.doi.org/10.1590/S0103-31312001000200006   Conab - Companhia Nacional de Abastecimento (2005). Available at [http://www.conab.gov.br]. Accessed......... Cornic G (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture - not by affecting ATP synthesis. Trends Plant Sci. 5: 187-188.   Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2004). Available at [http://www.cnpso.embrapa.br]. Accessed....... Fehr WR and Caviness CE (1977). Stages of Soybean Development. State University, Cooperative extension Service, Ames.   Flanders A, McKissick JC and Shepherd T (2007). Georgia economic losses due to 2007 drought. Center Rep. CR: 7-10.   Hasegawa PM, Bressan RA, Zhu JK and Bohnert HJ (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-499. http://dx.doi.org/10.1146/annurev.arplant.51.1.463 PMid:15012199   Hewitt EJ (1966). Sand and Water Culture Methods Used in the Study of Plant Nutrition. 2nd edn. Commonwealth Bureau of Horticulture and Plantation Crops, Maidstone.   Ingram J and Bartels D (1996). The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377-403. http://dx.doi.org/10.1146/annurev.arplant.47.1.377 PMid:15012294   Johansen DA (1940). Plant Microtechnique. McGraw-Hill Book Company, New York.   Jones HG (1992). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. 2nd edn. Cambridge University Press, Cambridge.   Kalefetoğlu T and Ekmekçi Y (2005). The effects of drought on plants and tolerance mechanisms. J. Sci. 18: 723-740.   Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, et al. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17: 287-291. http://dx.doi.org/10.1038/7036 PMid:10096298   Kasuga M, Miura S, Shinozaki K and Yamaguchi-Shinozaki K (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45: 346-350. http://dx.doi.org/10.1093/pcp/pch037 PMid:15047884   Kim JS, Jung HJ, Lee HJ, Kim KA, et al. (2008). Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J. 55: 455-466. http://dx.doi.org/10.1111/j.1365-313X.2008.03518.x PMid:18410480   Kim YO, Kim JS and Kang H (2005). Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J. 42: 890-900. http://dx.doi.org/10.1111/j.1365-313X.2005.02420.x PMid:15941401   Kwak KJ, Kim YO and Kang H (2005). Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. 56: 3007-3016. http://dx.doi.org/10.1093/jxb/eri298 PMid:16207746   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real time quantitative PCR and the 2_DDCT methods. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Maruyama K, Sakuma Y, Kasuga M, Ito Y, et al. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38: 982-993. http://dx.doi.org/10.1111/j.1365-313X.2004.02100.x PMid:15165189   Oh SJ, Song SI, Kim YS, Jang HJ, et al. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138: 341-351. http://dx.doi.org/10.1104/pp.104.059147 PMid:15834008 PMCid:1104188   Okamuro JK, Caster B, Villarroel R, Van MM, et al. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 94: 7076-7081. http://dx.doi.org/10.1073/pnas.94.13.7076 PMid:9192694 PMCid:21287   Oya T, Nepomuceno AL, Neumaier N, Farias JRB, et al. (2004). Drought tolerance characteristics of Brazilian soybean cultivars - evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prod. Sci. 7: 129-137. http://dx.doi.org/10.1626/pps.7.129   Panchuk II, Volkov RA and Schoffl F (2002). Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol. 129: 838-853. http://dx.doi.org/10.1104/pp.001362 PMid:12068123 PMCid:161705   Pellegrineschi A, Ribaut JM, Trethowan R, Yamaguchi-Shinozaki K, et al. (2002). Progress in the genetic engineering of wheat for water-limited conditions. JIRCAS Work. Rep. 23: 55-60.   Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, et al. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47: 493-500. http://dx.doi.org/10.1139/g03-140 PMid:15190366   Pfaffl MW, Horgan GW and Dempfle L (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36. http://dx.doi.org/10.1093/nar/30.9.e36 PMid:11972351 PMCid:113859   Qin F, Sakuma Y, Tran LSP, Maruyama K, et al. (2008). Arabidopsis DREB2A-Interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20: 1693-1707. http://dx.doi.org/10.1105/tpc.107.057380 PMid:18552202 PMCid:2483357   Rech EL, Vianna GR and Aragão FJL (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 3: 410-418. http://dx.doi.org/10.1038/nprot.2008.9 PMid:18323812   Sachetto-Martins G, Fernandes LD, Félix DB and de Oliveira DE (1995). Preferential transcriptional activity of a glycine-rich protein gene from Arabidopsis thaliana in protoderm -derived cells. Int. J. Plant Sci. 156: 460-470. http://dx.doi.org/10.1086/297268   Sakuma Y, Maruyama K, Osakabe Y, Qin F, et al. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18: 1292-1309. http://dx.doi.org/10.1105/tpc.105.035881 PMid:16617101 PMCid:1456870   Shinozaki K and Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327-334. http://dx.doi.org/10.1104/pp.115.2.327 PMid:12223810 PMCid:158490   Shinozaki K and Yamaguchi-Shinozaki K (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223. PMid:10837265   Taiz L and Zeiger E (2002). Plant Physiology, 3rd edn. Sinauer, Sunderland. PMCid:152206   Tasma IM, Brendel V, Whitham SA and Bhattacharyya MK (2008). Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol. Biochem. 46: 627-637. http://dx.doi.org/10.1016/j.plaphy.2008.04.015 PMid:18534862   Thomashow MF (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599. http://dx.doi.org/10.1146/annurev.arplant.50.1.571 PMid:15012220   Turner NC (1997). Further progress in crop water relations. Adv. Agron. 58: 293-338. http://dx.doi.org/10.1016/S0065-2113(08)60258-8   Wang CR, Yang AF, Yue GD, Gao Q, et al. (2008). Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227: 1127-1140. http://dx.doi.org/10.1007/s00425-007-0686-9 PMid:18214529   Zhu JK (2001). Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 4: 401-406. http://dx.doi.org/10.1016/S1369-5266(00)00192-8
2010
R. Stolf-Moreira, Medri, M. E., Neumaier, N., Lemos, N. G., Brogin, R. L., Marcelino, F. C., de Oliveira, M. C. N., Farias, J. R. B., Abdelnoor, R. V., and Nepomuceno, A. L., Cloning and quantitative expression analysis of drought-induced genes in soybean, vol. 9, pp. 858-867, 2010.
Baker SS, Wilhelm KS and Thomashow MF (1994). The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 24: 701-713. http://dx.doi.org/10.1007/BF00029852 PMid:8193295   Bray EA (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 55: 2331-2341. http://dx.doi.org/10.1093/jxb/erh270 PMid:15448178   Downie B, Gurusinghe S, Dahal P, Thacker RR, et al. (2003). Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol. 131: 1347-1359. http://dx.doi.org/10.1104/pp.016386 PMid:12644684 PMCid:166894   Ewing B, Hillier L, Wendl MC and Green P (1998). Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res. 8: 175-185. PMid:9521921   Fowler S and Thomashow MF (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675-1690. http://dx.doi.org/10.1105/tpc.003483 PMid:12172015 PMCid:151458   Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, et al. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16: 433-442. http://dx.doi.org/10.1046/j.1365-313x.1998.00310.x PMid:9881163   Haake V, Cook D, Riechmann JL, Pineda O, et al. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 130: 639-648. http://dx.doi.org/10.1104/pp.006478 PMid:12376631 PMCid:166593   Haritatos E, Medville R and Turgeon R (2000). Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211: 105-111. http://dx.doi.org/10.1007/s004250000268 PMid:10923710   Johansson I, Karlsson M, Johanson U, Larsson C, et al. (2000). The role of aquaporins in cellular and whole plant water balance. Biochim. Biophys. Acta 1465: 324-342. http://dx.doi.org/10.1016/S0005-2736(00)00147-4   Kaldenhoff R, Grote K, Zhu JJ and Zimmermann U (1998). Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. Plant J. 14: 121-128. http://dx.doi.org/10.1046/j.1365-313X.1998.00111.x PMid:9681029   Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, et al. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17: 287-291. http://dx.doi.org/10.1038/7036 PMid:10096298   Kasuga M, Miura S, Shinozaki K and Yamaguchi-Shinozaki K (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45: 346-350. http://dx.doi.org/10.1093/pcp/pch037 PMid:15047884   Kizis D, Lumbreras V and Pages M (2001). Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett. 498: 187-189. http://dx.doi.org/10.1016/S0014-5793(01)02460-7   Kumar S, Tamura K and Nei M (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 5: 150-163. http://dx.doi.org/10.1093/bib/5.2.150 PMid:15260895   Liu JJ, Krenz DC, Galvez AF and de Lumen BO (1998). Galactinol synthase (GS): increased enzyme activity and levels of mRNA due to cold and desiccation. Plant Sci. 134: 11-20. http://dx.doi.org/10.1016/S0168-9452(98)00042-9   Maitra N and Cushman JC (1998). Characterization of a drought-induced soybean cDNA encoding a plant defensin. Plant Physiol. 118: 1536.   Martre P, Morillon R, Barrieu F, North GB, et al. (2002). Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol. 130: 2101-2110. http://dx.doi.org/10.1104/pp.009019 PMid:12481094 PMCid:166722   Maurel C and Chrispeels MJ (2001). Aquaporins. A molecular entry into plant water relations. Plant Physiol. 125: 135-138. http://dx.doi.org/10.1104/pp.125.1.135 PMid:11154316 PMCid:1539345   Miller EM and Nickoloff JA (1995). Escherichia coli Electrotransformation. In: Electroporation Protocols for Microorganisms (Nickoloff JA, ed.). Humana Press, Totowa, 105-114. http://dx.doi.org/10.1385/0-89603-310-4:105 PMid:7550724   Pfaffl MW, Horgan GW and Dempfle L (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36. http://dx.doi.org/10.1093/nar/30.9.e36 PMid:11972351 PMCid:113859   Schenk PM, Kazan K, Manners JM, Anderson JP, et al. (2003). Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol. 132: 999-1010. http://dx.doi.org/10.1104/pp.103.021683 PMid:12805628 PMCid:167038   Seki M, Narusaka M, Abe H, Kasuga M, et al. (2001). Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 61-72. PMid:11158529 PMCid:102214   Shinozaki K and Yamaguchi-Shinozaki K (1996). Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7: 161-167. http://dx.doi.org/10.1016/S0958-1669(96)80007-3   Shinozaki K and Yamaguchi-Shinozaki K (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223. PMid:10837265   Shinozaki K and Yamaguchi-Shinozaki K (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227. http://dx.doi.org/10.1093/jxb/erl164 PMid:17075077   Shukla VK and Chrispeels MJ (1998). Aquaporins their Role and Regulation in Cellular Water Movement. In: Cellular Integrations of Signalling Pathways in Plant Development. (Lo Schiavo E, Lat KL, Morelli G and Raikhel NV, eds.). Series Vol. H 104. North Atlantic Treaty Organization Advanced Study Institute. Springer-Verlag, Berlin, 11-21.   Siefritz F, Biela A, Eckert M, Otto B, et al. (2001). The tobacco plasma membrane aquaporin NtAQP1. J. Exp. Bot. 52: 1953-1957. http://dx.doi.org/10.1093/jexbot/52.363.1953 PMid:11559730   Stolf R (2007). Identificação e Análise da Expressão de Genes Relacionados com Tolerância à Seca em Soja Através de Microarranjos de DNA e PCR em Tempo Real. Doctoral thesis, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal.   Tyerman SD, Bohnert HJ, Maurel C, Steudle E, et al. (1999). Plant aquaporins: their molecular biology, biophysics, and significance for plant water relations. J. Exp. Bot. 50: 1055-1071.   Volkov RA, Panchuk II and Schoffl F (2003). Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J. Exp. Bot. 54: 2343-2349. http://dx.doi.org/10.1093/jxb/erg244 PMid:14504302   Yamada S, Komori T and Imaseki H (1997). cDNA cloning of gamma-thionin from Nicotiana excelsior. Plant Physiol. 115: 314.   Yamaguchi-Shinozaki K and Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251-264. PMid:8148648 PMCid:160431   Zhang JZ, Creelman RA and Zhu JK (2004). From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol. 135: 615-621. http://dx.doi.org/10.1104/pp.104.040295 PMid:15173567 PMCid:514097