Publications
Found 4 results
Filters: Author is R.A.A. Torres Júnior [Clear All Filters]
“Identification and evaluation of polymorphisms in FABP3 and FABP4 in beef cattle”, vol. 14, pp. 16353-16363, 2015.
, “Repeatability and genotypic correlations of reproductive and productive traits of crossbred beef cattle dams”, vol. 14, pp. 5310-5319, 2015.
, “Candidate genes for production traits in Nelore beef cattle”, vol. 11, pp. 4138-4144, 2012.
,
Andrade PC, Grossi DA, Paz CC, Alencar MM, et al. (2008). Association of an insulin-like growth factor 1 gene microsatellite with phenotypic variation and estimated breeding values of growth traits in Canchim cattle. Anim. Genet. 39: 480-485.
http://dx.doi.org/10.1111/j.1365-2052.2008.01755.x
PMid:18637878
Bishop MD, Kappes SM, Keele JW, Stone RT, et al. (1994). A genetic linkage map for cattle. Genetics 136: 619-639.
PMid:7908653 PMCid:1205813
Casas E, Shackelford SD, Keele JW, Koohmaraie M, et al. (2003). Detection of quantitative trait loci for growth and carcass composition in cattle. J. Anim. Sci. 81: 2976-2983.
PMid:14677852
Cho S, Park TS, Yoon DH, Cheong HS, et al. (2008). Identification of genetic polymorphisms in FABP3 and FABP4 and putative association with back fat thickness in Korean native cattle. BMB Rep. 41: 29-34.
http://dx.doi.org/10.5483/BMBRep.2008.41.1.029
PMid:18304447
Islam KK, Vinsky M, Crews RE, Okine E, et al. (2009). Association analyses of a SNP in the promoter of IGF1 with fat deposition and carcass merit traits in hybrid, Angus and Charolais beef cattle. Anim. Genet. 40: 766-769.
http://dx.doi.org/10.1111/j.1365-2052.2009.01912.x
PMid:19466932
Michal JJ, Zhang ZW, Gaskins CT and Jiang Z (2006). The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses. Anim. Genet. 37: 400-402.
http://dx.doi.org/10.1111/j.1365-2052.2006.01464.x
PMid:16879357
Pereira AP, Alencar MM, Oliveira HN and Regitano LCA (2005). Association of GH and IGF-1 polymorphisms with growth traits in a synthetic beef cattle breed. Genet. Mol. Biol. 28: 230-236.
http://dx.doi.org/10.1590/S1415-47572005000200009
Puigserver P and Spiegelman BM (2003). Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24: 78-90.
http://dx.doi.org/10.1210/er.2002-0012
PMid:12588810
Raymond M and Rousset F (1995). Genepop (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249.
Regitano LCA, Azevedo JL, Vencovsky R, Packer IU, et al. (1999). Selection for breed-specific growth hormone and IGF-1 alleles in a synthetic beef cattle cross, Canchim. Genet. Mol. Bio. 22: 531-537.
http://dx.doi.org/10.1590/S1415-47571999000400011
SAS Institute Inc. (2000). SAS Procedures Guide. Version 8. Cary.
Semple RK, Crowley VC, Sewter CP, Laudes M, et al. (2004). Expression of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects. Int. J. Obes. Relat. Metab. Disord. 28: 176-179.
http://dx.doi.org/10.1038/sj.ijo.0802482
PMid:14557831
Snyder EE, Walts B, Perusse L, Chagnon YC, et al. (2004). The human obesity gene map: the 2003 update. Obes. Res. 12: 369-439.
http://dx.doi.org/10.1038/oby.2004.47
PMid:15044658
Soria LA, Corva PM, Branda SA, Villarreal EL, et al. (2009). Association of a novel polymorphism in the bovine PPARGC1A gene with growth, slaughter and meat quality traits in Brangus steers. Mol. Cell Probes 23: 304-308.
http://dx.doi.org/10.1016/j.mcp.2009.07.007
PMid:19665052
Stachowiak M, Szydlowski M, Cieslak J and Switonski M (2007). SNPs in the porcine PPARGC1a gene: interbreed differences and their phenotypic effects. Cell Mol. Biol. Lett. 12: 231-239.
http://dx.doi.org/10.2478/s11658-006-0066-7
PMid:17149556
Sun L, Yang Z, Jin F, Zhu XQ, et al. (2006). The Gly482Ser variant of the PPARGC1 gene is associated with Type 2 diabetes mellitus in northern Chinese, especially men. Diabet. Med. 23: 1085-1092.
http://dx.doi.org/10.1111/j.1464-5491.2006.01949.x
PMid:16978372
Weikard R, Kuhn C, Goldammer T, Freyer G, et al. (2005). The bovine PPARGC1A gene: molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol. Genomics 21: 1-13.
http://dx.doi.org/10.1152/physiolgenomics.00103.2004
PMid:15781588
“Random regression models using different functions to model test-day milk yield of Brazilian Holstein cows”, vol. 10, pp. 3565-3575, 2011.
,
Ali TE and Schaeffer LR (1987). Accounting for covariances among test day milk yields in dairy cows. J. Anim. Sci. 67: 637-644.
Araújo CV, Torres RA, Costa C, Torres Filho RA, et al. (2006). Uso de modelos de regressão aleatória para descrever a variação genética da produção de leite na raça Holandesa. Rev. Bras. Zootec. 3: 975-981.
http://dx.doi.org/10.1590/S1516-35982006000400006
Bignardi AB, El Faro L, Cardoso VL, Machado PF, et al. (2009a). Random regression models to estimate test-day milk yield genetic parameters Holstein cows in southeastern Brazil. Livest. Sci. 123: 1-7.
http://dx.doi.org/10.1016/j.livsci.2008.09.021
Bignardi AB, El Faro L, Cardoso VL, Machado PF, et al. (2009b). Parametric correlation functions to model the structure of permanent environmental (co)variances in milk yield random regression models. J. Dairy Sci. 92: 4634-4640.
http://dx.doi.org/10.3168/jds.2009-2128
PMid:19700726
Brotherstone S, White IMS and Meyer K (2000). Genetic modeling of daily yields using orthogonal polynomials and parametric curves. J. Anim. Sci. 70: 407-415.
Cobuci JA, Euclydes RF, Lopes PS, Costa CN, et al. (2005). Estimation of genetic parameters for test-day milk yield in Holstein cows using a random regression models. Genet. Mol. Biol. 28: 75-83.
http://dx.doi.org/10.1590/S1415-47572005000100013
Costa CN, Melo CNR, Pacher IU, Freitas AF, et al. (2008). Genetic parameters for test day milk yield of first lactation Holstein cows estimated by random regression using Legendre polynomials. Rev. Bras. Zootec. 37: 602-608.
http://dx.doi.org/10.1590/S1516-35982008000400003
Dorneles CKP, Cobuci JA, Rorato PRN, Weber T, et al. (2009). Estimação de parâmetros genéticos para produção de leite de vacas da raça Holandesa via regressão aleatória. Arq. Bras. Med. Vet. Zootec. 61: 407-412.
http://dx.doi.org/10.1590/S0102-09352009000200018
El Faro L and Albuquerque LG (2003). Utilização de modelos de regressão aleatória para produção de leite no dia do controle, com diferentes estruturas de variâncias residuais. Rev. Bras. Zootec. 32: 1104-1113.
http://dx.doi.org/10.1590/S1516-35982003000500010
El Faro L, Cardoso VL and Albuquerque LG (2008). Variance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae). Genet. Mol. Biol. 31: 665-673.
http://dx.doi.org/10.1590/S1415-47572008000400011
Fuller WA (1969). Grafted polynomials as approximating functions. Aust. J. Agr. Econ. 13: 35-46.
http://dx.doi.org/10.1111/j.1467-8489.1969.tb00053.x
Jamrozik J and Schaeffer LR (1997). Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation Holsteins. J. Dairy Sci. 80: 762-770.
http://dx.doi.org/10.3168/jds.S0022-0302(97)75996-4
Jamrozik J, Kistemaker GJ, Dekkers JC and Schaeffer LR (1997). Comparison of possible covariates for use in a random regression model for analyses of test day yields. J. Dairy Sci. 80: 2550-2556.
http://dx.doi.org/10.3168/jds.S0022-0302(97)76210-6
Jensen J (2001). Genetic evaluation of dairy cattle using test-day models. J. Dairy Sci. 84: 2803-2812.
http://dx.doi.org/10.3168/jds.S0022-0302(01)74736-4
Kettunen A, Mäntysaari EA and Pösö J (2000). Estimation of genetic parameters for daily milk yield of primiparous Ayrshire cows by random regression test-day models. Livest. Prod. Sci. 66: 251-261.
http://dx.doi.org/10.1016/S0301-6226(00)00166-4
Melo CMR, Packer IU, Costa CN and Machado PF (2007). Genetic parameters for test day milk yields of first lactation Holstein cows by random regression models. Animal 1: 325-334.
http://dx.doi.org/10.1017/S1751731107685036
PMid:22444330
Meyer K (2005). Random regression analyses using B-splines to model growth of Australian Angus cattle. Genet. Sel. Evol. 37: 473-500.
http://dx.doi.org/10.1186/1297-9686-37-6-473
PMid:16093011 PMCid:2697221
Meyer K (2006). "WOMBAT" - Digging Deep for Quantitative Genetic Analyses by Restricted Maximum Likelihood. CD-ROM. Proceedings of the 8th World Congress of Genetic and Applied Livestock Production, Belo Horizonte.
Olori VE, Hill WG, Mcguirk BJ and Brotherstone S (1999). Estimating variance components for test day milk records by restricted maximum likelihood with a random regression animal model. Livest. Prod. Sci. 61: 53-63.
http://dx.doi.org/10.1016/S0301-6226(99)00052-4
Rice JA and Wu CO (2001). Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 57: 253-259.
http://dx.doi.org/10.1111/j.0006-341X.2001.00253.x
PMid:11252607
Ruppert D, Wand MP and Carroll RJ (2003). Semiparametric Regression. Cambridge University Press, New York.
http://dx.doi.org/10.1017/CBO9780511755453
Schenkel FS (1989). The Use of Segmented Polynomials on Animal Science Research (Theoretical and Practical Considerations). Universidade Federal do Rio Grande do Sul, Porto Alegre.
PMCid:1133420
Strabel T and Misztal I (1999). Genetic parameters for first and second lactation milk yields of Polish black and white cattle with random regression test-day models. J. Dairy Sci. 82: 2805-2810.
http://dx.doi.org/10.3168/jds.S0022-0302(99)75538-4
Wilmink JBM (1987). Adjustment of test-day milk, fat and protein yield for age, season and stage of lactation. Livest. Prod. Sci. 16: 335-348.
http://dx.doi.org/10.1016/0301-6226(87)90003-0
Wolfinger RD (1993). Covariance structure selection in general mixed models. Commun. Stat.-Simul. Comput. 22: 1079-1106.
http://dx.doi.org/10.1080/03610919308813143