Publications

Found 38 results
Filters: Author is H. Liu  [Clear All Filters]
2016
Y. Yang, Luo, Y. Y., Wu, S., Tang, Y. D., Rao, X. D., Xiong, L., Tan, M., Deng, M. Z., Liu, H., Yang, Y., Luo, Y. Y., Wu, S., Tang, Y. D., Rao, X. D., Xiong, L., Tan, M., Deng, M. Z., Liu, H., Yang, Y., Luo, Y. Y., Wu, S., Tang, Y. D., Rao, X. D., Xiong, L., Tan, M., Deng, M. Z., and Liu, H., Association between C677T and A1298C polymorphisms of the MTHFR gene and risk of male infertility: a meta-analysis, vol. 15, p. -, 2016.
Y. Yang, Luo, Y. Y., Wu, S., Tang, Y. D., Rao, X. D., Xiong, L., Tan, M., Deng, M. Z., Liu, H., Yang, Y., Luo, Y. Y., Wu, S., Tang, Y. D., Rao, X. D., Xiong, L., Tan, M., Deng, M. Z., Liu, H., Yang, Y., Luo, Y. Y., Wu, S., Tang, Y. D., Rao, X. D., Xiong, L., Tan, M., Deng, M. Z., and Liu, H., Association between C677T and A1298C polymorphisms of the MTHFR gene and risk of male infertility: a meta-analysis, vol. 15, p. -, 2016.
Y. Yang, Luo, Y. Y., Wu, S., Tang, Y. D., Rao, X. D., Xiong, L., Tan, M., Deng, M. Z., Liu, H., Yang, Y., Luo, Y. Y., Wu, S., Tang, Y. D., Rao, X. D., Xiong, L., Tan, M., Deng, M. Z., Liu, H., Yang, Y., Luo, Y. Y., Wu, S., Tang, Y. D., Rao, X. D., Xiong, L., Tan, M., Deng, M. Z., and Liu, H., Association between C677T and A1298C polymorphisms of the MTHFR gene and risk of male infertility: a meta-analysis, vol. 15, p. -, 2016.
H. Liu, Wu, G. G., Wang, J. B., Wu, X., Bai, L., Jiang, W., Lv, B. B., Pan, A. H., Jia, J. W., Li, P., Zhao, K., Jiang, L. X., Tang, X. M., Liu, H., Wu, G. G., Wang, J. B., Wu, X., Bai, L., Jiang, W., Lv, B. B., Pan, A. H., Jia, J. W., Li, P., Zhao, K., Jiang, L. X., and Tang, X. M., Characterization and comparison of transgenic Artemisia annua GYR and wild-type NON-GYR plants in an environmental release trial, vol. 15, p. -, 2016.
H. Liu, Wu, G. G., Wang, J. B., Wu, X., Bai, L., Jiang, W., Lv, B. B., Pan, A. H., Jia, J. W., Li, P., Zhao, K., Jiang, L. X., Tang, X. M., Liu, H., Wu, G. G., Wang, J. B., Wu, X., Bai, L., Jiang, W., Lv, B. B., Pan, A. H., Jia, J. W., Li, P., Zhao, K., Jiang, L. X., and Tang, X. M., Characterization and comparison of transgenic Artemisia annua GYR and wild-type NON-GYR plants in an environmental release trial, vol. 15, p. -, 2016.
H. Liu, Long, Z. C., Li, L. N., Wang, Q. F., Chen, J. M., Liao, K., Liu, H., Long, Z. C., Li, L. N., Wang, Q. F., Chen, J. M., Liao, K., Liu, H., Long, Z. C., Li, L. N., Wang, Q. F., Chen, J. M., and Liao, K., Development and characterization of microsatellite loci in Brasenia schreberi (Cabombaceae) based on the next-generation sequencing, vol. 15, p. -, 2016.
H. Liu, Long, Z. C., Li, L. N., Wang, Q. F., Chen, J. M., Liao, K., Liu, H., Long, Z. C., Li, L. N., Wang, Q. F., Chen, J. M., Liao, K., Liu, H., Long, Z. C., Li, L. N., Wang, Q. F., Chen, J. M., and Liao, K., Development and characterization of microsatellite loci in Brasenia schreberi (Cabombaceae) based on the next-generation sequencing, vol. 15, p. -, 2016.
H. Liu, Long, Z. C., Li, L. N., Wang, Q. F., Chen, J. M., Liao, K., Liu, H., Long, Z. C., Li, L. N., Wang, Q. F., Chen, J. M., Liao, K., Liu, H., Long, Z. C., Li, L. N., Wang, Q. F., Chen, J. M., and Liao, K., Development and characterization of microsatellite loci in Brasenia schreberi (Cabombaceae) based on the next-generation sequencing, vol. 15, p. -, 2016.
Q. F. Geng, He, J., Yang, J., Shi, E., Wang, D. B., Xu, W. X., Jeelani, N., Wang, Z. S., Liu, H., Geng, Q. F., He, J., Yang, J., Shi, E., Wang, D. B., Xu, W. X., Jeelani, N., Wang, Z. S., and Liu, H., Development and characterization of microsatellite markers for Ulmus chenmoui (Ulmaceae), an endangered tree endemic to eastern China, vol. 15, p. -, 2016.
Q. F. Geng, He, J., Yang, J., Shi, E., Wang, D. B., Xu, W. X., Jeelani, N., Wang, Z. S., Liu, H., Geng, Q. F., He, J., Yang, J., Shi, E., Wang, D. B., Xu, W. X., Jeelani, N., Wang, Z. S., and Liu, H., Development and characterization of microsatellite markers for Ulmus chenmoui (Ulmaceae), an endangered tree endemic to eastern China, vol. 15, p. -, 2016.
X. C. Chen, Liu, H., Li, H., Cheng, Y., Yang, L., Liu, Y. F., Chen, X. C., Liu, H., Li, H., Cheng, Y., Yang, L., and Liu, Y. F., In vitro expansion and differentiation of rat pancreatic duct-derived stem cells into insulin secreting cells using a dynamicthree-dimensional cell culture system, vol. 15, p. -, 2016.
X. C. Chen, Liu, H., Li, H., Cheng, Y., Yang, L., Liu, Y. F., Chen, X. C., Liu, H., Li, H., Cheng, Y., Yang, L., and Liu, Y. F., In vitro expansion and differentiation of rat pancreatic duct-derived stem cells into insulin secreting cells using a dynamicthree-dimensional cell culture system, vol. 15, p. -, 2016.
Y. Liu, Yu, D., Wang, Q., Liu, H., Guan, S., Liu, M., Liu, Y., Yu, D., Wang, Q., Liu, H., Guan, S., and Liu, M., Isolation and characterization of novel polymorphic microsatellite loci in Perinereis aibuhitensis, vol. 15, p. -, 2016.
Y. Liu, Yu, D., Wang, Q., Liu, H., Guan, S., Liu, M., Liu, Y., Yu, D., Wang, Q., Liu, H., Guan, S., and Liu, M., Isolation and characterization of novel polymorphic microsatellite loci in Perinereis aibuhitensis, vol. 15, p. -, 2016.
Y. Yang, Yang, L. J., Deng, M. Z., Luo, Y. Y., Wu, S., Xiong, L., Wang, D., Liu, Y., Liu, H., Yang, Y., Yang, L. J., Deng, M. Z., Luo, Y. Y., Wu, S., Xiong, L., Wang, D., Liu, Y., Liu, H., Yang, Y., Yang, L. J., Deng, M. Z., Luo, Y. Y., Wu, S., Xiong, L., Wang, D., Liu, Y., and Liu, H., MTHFR C677T and A1298C polymorphisms and risk of lung cancer: a comprehensive evaluation, vol. 15, p. -, 2016.
Y. Yang, Yang, L. J., Deng, M. Z., Luo, Y. Y., Wu, S., Xiong, L., Wang, D., Liu, Y., Liu, H., Yang, Y., Yang, L. J., Deng, M. Z., Luo, Y. Y., Wu, S., Xiong, L., Wang, D., Liu, Y., Liu, H., Yang, Y., Yang, L. J., Deng, M. Z., Luo, Y. Y., Wu, S., Xiong, L., Wang, D., Liu, Y., and Liu, H., MTHFR C677T and A1298C polymorphisms and risk of lung cancer: a comprehensive evaluation, vol. 15, p. -, 2016.
Y. Yang, Yang, L. J., Deng, M. Z., Luo, Y. Y., Wu, S., Xiong, L., Wang, D., Liu, Y., Liu, H., Yang, Y., Yang, L. J., Deng, M. Z., Luo, Y. Y., Wu, S., Xiong, L., Wang, D., Liu, Y., Liu, H., Yang, Y., Yang, L. J., Deng, M. Z., Luo, Y. Y., Wu, S., Xiong, L., Wang, D., Liu, Y., and Liu, H., MTHFR C677T and A1298C polymorphisms and risk of lung cancer: a comprehensive evaluation, vol. 15, p. -, 2016.
2015
H. Liu, Ma, H. F., and Chen, Y. K., Association between GSTM1 polymorphisms and lung cancer: an updated meta-analysis, vol. 14, pp. 1385-1392, 2015.
Y. Wang, Liu, R. X., and Liu, H., Association of adiponectin gene polymorphisms with hypertensive disorder complicating pregnancy and disorders of lipid metabolism, vol. 14, pp. 15213-15223, 2015.
H. Liu, Zhang, Q. X., Sun, M., Pan, H. T., and Kong, Z. X., Development of expressed sequence tag-simple sequence repeat markers for Chrysanthemum morifolium and closely related species, vol. 14, pp. 7578-7586, 2015.
X. Y. Zhang, Pan, Z. X., Liu, H., Yu, J. L., Li, G. X., Wang, H. Y., and Liu, M. M., Effect of progranulin (PGRN) on the proliferation and senescence of cervical cancer cells, vol. 14, pp. 14331-14338, 2015.
J. X. Chen, Cai, G. Y., Chen, X. M., Liu, H., Chen, X., Peng, Y. M., Liu, F. Y., Li, Z., and Shi, S. Z., Effect of TIMP1 transfection on PTEN expression in human kidney proximal tubular cells, vol. 14, pp. 17373-17383, 2015.
H. Liu, Ye, R., and Wang, Y. Y., Highly efficient one-step PCR-based mutagenesis technique for large plasmids using high-fidelity DNA polymerase, vol. 14, pp. 3466-3473, 2015.
L. - J. Su, Liu, Y. - Q., Liu, H., Wang, Y., Li, Y., Lin, H. - M., Wang, F. - Q., and Song, A. - D., Linking lignocellulosic dietary patterns with gut microbial Enterotypes of Tsaitermes ampliceps and comparison with Mironasutitermes shangchengensis, vol. 14, pp. 13954-13967, 2015.
J. B. Li, Sun, Y. D., Liu, H., Wang, Y. Y., Jia, Y. L., and Xu, M. H., Natural variation of rice blast resistance gene Pi-d2, vol. 14, pp. 1235-1249, 2015.
B. - S. Li, Liu, H., and Yang, W. - L., Reduced miRNA-218 expression in pancreatic cancer patients as a predictor of poor prognosis, vol. 14, pp. 16372-16378, 2015.
K. Wang, Dong, P. S., Zhang, H. F., Li, Z. J., Yang, X. M., and Liu, H., Role of interleukin-6 gene polymorphisms in the risk of coronary artery disease, vol. 14, pp. 3177-3183, 2015.
2013
A. J. Ge, Han, J., Li, X. D., Zhao, M. Z., Liu, H., Dong, Q. H., and Fang, J. G., Characterization of SNPs in strawberry cultivars in China, vol. 12, pp. 639-645, 2013.
Bhattramakki D and Rafalski A (2001). Discovery and Application of Single Nucleotide Polymorphism Markers in Plants. In: Plant Genotyping: The DNA Fingerprinting of Plants (Henry RJ, ed.). CABI Publishing, Oxon, 179-191. http://dx.doi.org/10.1079/9780851995151.0179   Bhattramakki D, Dolan M, Hanafey M, Wineland R, et al. (2002). Insertion-deletion polymorphisms in 3' regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol. Biol. 48: 539-547. http://dx.doi.org/10.1023/A:1014841612043 PMid:12004893   Brookes AJ (1999). The essence of SNPs. Gene 234: 177-186. http://dx.doi.org/10.1016/S0378-1119(99)00219-X   Cargill M, Altshuler D, Ireland J, Sklar P, et al. (1999). Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 22: 231-238. http://dx.doi.org/10.1038/10290 PMid:10391209   Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, et al. (1999). Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat. Genet. 23: 203-207. http://dx.doi.org/10.1038/13833 PMid:10508518   Gupta PK, Roy JK and Prasad M (2001). Single nucleotide polymorphism: A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr. Sci. 80: 524-535.   Hoskins RA, Phan AC, Naeemuddin M, Mapa FA, et al. (2001). Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Res. 11: 1100-1113. http://dx.doi.org/10.1101/gr.GR-1780R PMid:11381036 PMCid:311062   Jander G, Norris SR, Rounsley SD, Bush DF, et al. (2002). Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129: 440-450. http://dx.doi.org/10.1104/pp.003533 PMid:12068090 PMCid:1540230   Khlestkina EK and Salina EA (2006). SNP markers: methods of analysis, ways of development, and comparison on an example of common wheat. Genetika 42: 725-736. PMid:16871776   Marth GT, Korf I, Yandell MD, Yeh RT, et al. (1999). A general approach to single-nucleotide polymorphism discovery. Nat. Genet. 23: 452-456. http://dx.doi.org/10.1038/70570 PMid:10581034   Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, et al. (1999). Mining SNPs from EST databases. Genome Res. 9: 167-174. PMid:10022981 PMCid:310719   Primmer CR, Borge T, Lindell J and Saetre GP (2002). Single-nucleotide polymorphism characterization in species with limited available sequence information: high nucleotide diversity revealed in the avian genome. Mol. Ecol. 11: 603-612. http://dx.doi.org/10.1046/j.0962-1083.2001.01452.x PMid:11918793   Rafalski A (2002). Applications of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biol. 5: 94-100. http://dx.doi.org/10.1016/S1369-5266(02)00240-6   Rozen S and Skaletsky H (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386. PMid:10547847   Saghai-Maroof MA, Soliman KM, Jorgensen RA and Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 81: 8014-8018. http://dx.doi.org/10.1073/pnas.81.24.8014 PMid:6096873 PMCid:392284   Salmaso M, Faes G, Segala C, Stefanini M, et al. (2004). Genome diversity and gene haplotypes in the grapevine (Vitis vinifera L.), as revealed by single nucleotide polymorphisms. Mol. Breed. 14: 385-395. http://dx.doi.org/10.1007/s11032-004-0261-z   Shamay A, Fang J, Pollak N, Yonash N, et al. (2006). Discovery of c-SNPs in Anemone coronaria and assessment of genetic variation. Genet. Resour. Crop Evol. 53: 821-829. http://dx.doi.org/10.1007/s10722-004-6377-5   Stoneking M (2001). Single nucleotide polymorphisms. From the evolutionary past. Nature 409: 821-822. http://dx.doi.org/10.1038/35057279 PMid:11236996   Twito T, Weigend S, Blum S, Granevitze Z, et al. (2007). Biodiversity of 20 chicken breeds assessed by SNPs located in gene regions. Cytogenet. Genome Res. 117: 319-326. http://dx.doi.org/10.1159/000103194 PMid:17675874   Vignal A, Milan D, SanCristobal M and Eggen A (2002). A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34: 275-305. http://dx.doi.org/10.1186/1297-9686-34-3-275 PMid:12081799 PMCid:2705447   Wang DG, Fan JB, Siao CJ, Berno A, et al. (1998). Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280: 1077-1082. http://dx.doi.org/10.1126/science.280.5366.1077 PMid:9582121   Wolters P, Powell W, Lagudah E, Snape J, et al (2000). Nucleotide Diversity at Homologous Loci in Wheat. In: Plant and Animal Genome VIII Conference, San Diego, 9-12.   Xiong M and Jin L (1999). Comparison of the power and accuracy of biallelic and microsatellite markers in population-based gene-mapping methods. Am. J. Hum. Genet. 64: 629-640. http://dx.doi.org/10.1086/302231 PMid:9973302 PMCid:1377774   Yang W, Bai X, Kabelka E, Eaton C, et al. (2004). Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol. Breed. 14: 21-34. http://dx.doi.org/10.1023/B:MOLB.0000037992.03731.a5
F. Z. Tong, Yu, W. J., and Liu, H., Novel association analysis between HLA-DQB1 polymorphisms and rectal cancer based on a cross-validation design, vol. 12, pp. 5958-5963, 2013.
2012
Y. Guo, Wang, J. - T., Liu, H., Li, M., Yang, T. - L., Zhang, X. - W., Liu, Y. - Z., Tian, Q., and Deng, H. - W., Are bone mineral density loci associated with hip osteoporotic fractures? A validation study on previously reported genome-wide association loci in a Chinese population, vol. 11, pp. 202-210, 2012.
Cooper C, Campion G and Melton LJ, III (1992). Hip fractures in the elderly: a world-wide projection. Osteoporos. Int. 2: 285-289. http://dx.doi.org/10.1007/BF01623184 PMid:1421796 Cummings SR and Melton LJ (2002). Epidemiology and outcomes of osteoporotic fractures. Lancet 359: 1761-1767. http://dx.doi.org/10.1016/S0140-6736(02)08657-9 Deng HW, Mahaney MC, Williams JT, Li J, et al. (2002). Relevance of the genes for bone mass variation to susceptibility to osteoporotic fractures and its implications to gene search for complex human diseases. Genet. Epidemiol. 22: 12-25. http://dx.doi.org/10.1002/gepi.1040 PMid:11754470 Gullberg B, Johnell O and Kanis JA (1997). World-wide projections for hip fracture. Osteoporos. Int. 7: 407-413. http://dx.doi.org/10.1007/PL00004148 PMid:9425497 Guo Y, Tan LJ, Lei SF, Yang TL, et al. (2010a). Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLoS Genet. 6: e1000806. http://dx.doi.org/10.1371/journal.pgen.1000806 PMid:20072603    PMCid:2794362 Guo Y, Zhang LS, Yang TL, Tian Q, et al. (2010b). IL21R and PTH may underlie variation of femoral neck bone mineral density as revealed by a genome-wide association study. J. Bone Miner. Res. 25: 1042-1048. PMid:19874204    PMCid:3153368 Hazenberg JG, Taylor D and Lee TC (2007). The role of osteocytes and bone microstructure in preventing osteoporotic fractures. Osteoporos. Int. 18: 1-8. http://dx.doi.org/10.1007/s00198-006-0222-y PMid:16972016 Johnell O, Kanis JA, Oden A, Johansson H, et al. (2005). Predictive value of BMD for hip and other fractures. J. Bone Miner. Res. 20: 1185-1194. http://dx.doi.org/10.1359/JBMR.050304 PMid:15940371 Kanis JA, Oden A, Johnell O, Johansson H, et al. (2007). The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos. Int. 18: 1033-1046. http://dx.doi.org/10.1007/s00198-007-0343-y PMid:17323110 Lau EM, Cooper C, Fung H, Lam D, et al. (1999). Hip fracture in Hong Kong over the last decade - a comparison with the UK. J. Public. Health Med. 21: 249-250. http://dx.doi.org/10.1093/pubmed/21.3.249 Lau EM, Lee JK, Suriwongpaisal P, Saw SM, et al. (2001). The incidence of hip fracture in four Asian countries: the Asian Osteoporosis Study (AOS). Osteoporos. Int. 12: 239-243. http://dx.doi.org/10.1007/s001980170135 PMid:11315243 Marchini J, Howie B, Myers S, McVean G, et al. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39: 906-913. http://dx.doi.org/10.1038/ng2088 PMid:17572673 Marshall D, Johnell O and Wedel H (1996). Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312: 1254-1259. http://dx.doi.org/10.1136/bmj.312.7041.1254 PMid:8634613    PMCid:2351094 Melton LJ III (2000). Who has osteoporosis? A conflict between clinical and public health perspectives. J. Bone Miner. Res. 15: 2309-2314. http://dx.doi.org/10.1359/jbmr.2000.15.12.2309 PMid:11127196 Melton LJ III (2003). Adverse outcomes of osteoporotic fractures in the general population. J. Bone Miner. Res. 18: 1139- 1141. http://dx.doi.org/10.1359/jbmr.2003.18.6.1139 PMid:12817771 Price AL, Patterson NJ, Plenge RM, Weinblatt ME, et al. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38: 904-909. http://dx.doi.org/10.1038/ng1847 PMid:16862161 Richards JB, Rivadeneira F, Inouye M, Pastinen TM, et al. (2008). Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371: 1505-1512. http://dx.doi.org/10.1016/S0140-6736(08)60599-1 Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, et al. (2009). Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 41: 1199-1206. http://dx.doi.org/10.1038/ng.446 PMid:19801982    PMCid:2783489 Siris ES (2006). Patients with hip fracture: what can be improved? Bone 38: S8-12. http://dx.doi.org/10.1016/j.bone.2005.11.014 PMid:16406848 Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, et al. (2008). Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med. 358: 2355-2365. http://dx.doi.org/10.1056/NEJMoa0801197 PMid:18445777 Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, et al. (2009). New sequence variants associated with bone mineral density. Nat. Genet. 41: 15-17. http://dx.doi.org/10.1038/ng.284 PMid:19079262 Styrkarsdottir U, Halldorsson BV, Gudbjartsson DF, Tang NL, et al. (2010). European bone mineral density loci are also associated with BMD in East-Asian populations. PLoS One 5: e13217. http://dx.doi.org/10.1371/journal.pone.0013217 PMid:20949110    PMCid:2951352
J. Yang, Shen, S., Zhang, T., Chen, G. D., Liu, H., Ma, X. B., Chen, W. Y., and Peng, Z. S., Morphological variation of mutant sunflowers (Helianthus annuus) induced by space flight and their genetic background detection by SSR primers, vol. 11, pp. 3379-3388, 2012.
Ahloowalia BS, Maluszynski M and Nichterlein K (2004). Global impact of mutation-derived varieties. Euphytica 135: 187-204. http://dx.doi.org/10.1023/B:EUPH.0000014914.85465.4f Arias DM and Rieseberg LM (1995). Genetic relationships among domesticated and wild sunflowers (Helianthus annuus, Asteraceae). Econ. Bot. 49: 239-248. http://dx.doi.org/10.1007/BF02862340 Bamberg J (2006). Crazy sepal: A new floral sepallata-like mutant in the wild potato Solanum microdontum Bitter. Am. J. Potato Res. 83: 433-435. http://dx.doi.org/10.1007/BF02872019 Chen WY, Chen ZY and Yang J (2009). Floral morphological characters and pollination characteristics of sunflower induced by space flight. J. Mianyang Norm. Univ. 28: 56-60. Chen XD, Lan J and Wang XG (2007). Primary effects on Isatis indigotica after spaceflight. Zhong Yao Cai 30: 381-383. PMid:17674782 Cyranoski D (2001). Satellite will probe mutating seeds in space. Nature 410: 857. http://dx.doi.org/10.1038/35073784 PMid:11309578 Frez JB and Simpsom J (1964). The pollination requirements of sunflowers. Emp. J. Exp. Agric. 32: 340-342. Gentzbittel L, Zhang YX, Vear F, Griveau B, et al. (1994). RFLP studies of genetic relationships among inbred lines of the cultivated sunflower, Helianthus annuus L.: evidence for distinct restorer and maintainer germplasm pools. Theor. Appl. Genet. 89: 419-425. http://dx.doi.org/10.1007/BF00225376 Heesacker A, Kishore VK, Gao W, Tang S, et al. (2008). SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility. Theor. Appl. Genet. 117: 1021-1029. http://dx.doi.org/10.1007/s00122-008-0841-0 PMid:18633591 Hongtrakul V, Huestis GM and Knapp SJ (1997). Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbredlines. Theor. Appl. Genet. 95: 400-407. http://dx.doi.org/10.1007/s001220050576 Knapp SJ, Berry ST and Rieseberg LH (2001). Genetic Mapping Insunflower. In: DNA Markers in Plants (Philips RL and Vasil IK, eds.). Kluwer Academic Publishers, Dordrecht, 379-403. Kondyurin A (2001). Large-size space laboratory for biological orbit experiments. Adv. Space Res. 28: 665-671. http://dx.doi.org/10.1016/S0273-1177(01)00376-3 Li JT, Yang J, Chen DC, Zhang XL, et al. (2007). An optimized mini-preparation method to obtain high-quality genomic DNA from mature leaves of sunflower. Genet. Mol. Res. 6: 1064-1071. PMid:18273799 Li SZ, Cao MJ, Rong TZ, Pan GT, et al. (2007). Cytological observation on pollen abortion of genetic male sterile mutant induced by space flight in maize. Fen Zi Xi Bao Sheng Wu Xue Bao 40: 359-364. PMid:18254342 Lu WH, Wang XZ, Zheng Q, Guan SH, et al. (2008). Diversity and stability study on rice mutants induced in space environment. Genomics Proteomics Bioinformatics 6: 51-60. http://dx.doi.org/10.1016/S1672-0229(08)60020-0 Nehnevajova E, Herzig R, Federer G, Erismann KH, et al. (2007). Chemical mutagenesis - a promising technique to increase metal concentration and extraction in sunflowers. Int. J. Phytoremediation 9: 149-165. http://dx.doi.org/10.1080/15226510701232880 PMid:18246722 Pelaz S, Ditta GS, Baumann E, Wisman E, et al. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203. http://dx.doi.org/10.1038/35012103 PMid:10821278 Pham-Delegue MH, Etievant P and Guichard E (1990). Chemicals involved in honeybee-sunflower relationship. J. Chem. Ecol. 16: 3053-3065. http://dx.doi.org/10.1007/BF00979612 Ruyters G and Friedrich U (2006). Gravitational biology within the German Space Program: goals, achievements, and perspectives. Protoplasma 229: 95-100. http://dx.doi.org/10.1007/s00709-006-0212-0 PMid:17180489 Skorić D, Jocic S, Sakac Z and Lecic N (2008). Genetic possibilities for altering sunflower oil quality to obtain novel oils. Can. J. Physiol. Pharmacol. 86: 215-221. PMid:18418432 Tang S, Yu JK, Slabaugh B, Shintani K, et al. (2002). Simple sequence repeat map of the sunflower genome. Theor. Appl. Genet. 105: 1124-1136. http://dx.doi.org/10.1007/s00122-002-0989-y PMid:12582890 Tang S, Kishore VK and Knapp SJ (2003). PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor. Appl. Genet. 107: 6-19. PMid:12835928 Visscher AM, Paul AL, Kirst M, Alling AK, et al. (2009). Effects of a spaceflight environment on heritable changes in wheat gene expression. Astrobiology 9: 359-367. http://dx.doi.org/10.1089/ast.2008.0311 PMid:19413505 Wei LJ, Xu JL and Wang JM (2006). A comparative study on mutagenic effects of space flight and irradiation of y-rays on rice. Agric. Sci. China 5: 812-819. http://dx.doi.org/10.1016/S1671-2927(06)60129-6
H. Liu, Huang, Y., Du, X., Chen, Z., Zeng, X., Chen, Y., and Zhang, H., Patterns of synonymous codon usage bias in the model grass Brachypodium distachyon, vol. 11, pp. 4695-4706, 2012.
Bulmer M (1988). Are codon usage patterns in unicellular organisms determined by selection-mutation balance? J. Mol. Biol. 1: 15-26.   Bulmer M (1991). The selection-mutation-drift theory of synonymous codon usage. Genetics 129: 897-907. PMid:1752426 PMCid:1204756   Carels N and Bernardi G (2000). Two classes of genes in plants. Genetics 154: 1819-1825. PMid:10747072 PMCid:1461008   Chiapello H, Lisacek F, Caboche M and Henaut A (1998). Codon usage and gene function are related in sequences of Arabidopsis thaliana. Gene 209: GC1-GC38. http://dx.doi.org/10.1016/S0378-1119(97)00671-9   De Amicis F and Marchetti S (2000). Intercodon dinucleotides affect codon choice in plant genes. Nucleic Acids Res. 28: 3339-3345. http://dx.doi.org/10.1093/nar/28.17.3339 PMid:10954603 PMCid:110687   Doust A (2007). Architectural evolution and its implications for domestication in grasses. Ann. Bot. 100: 941-950. http://dx.doi.org/10.1093/aob/mcm040 PMid:17478546 PMCid:2759198   Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, et al. (2001). Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 127: 1539-1555. http://dx.doi.org/10.1104/pp.010196 PMid:11743099 PMCid:133562   Duret L and Mouchiroud D (1999). Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 96: 4482-4487. http://dx.doi.org/10.1073/pnas.96.8.4482 PMid:10200288 PMCid:16358   Eyre-Walker AC (1991). An analysis of codon usage in mammals: selection or mutation bias? J. Mol. Evol. 33: 442-449. http://dx.doi.org/10.1007/BF02103136 PMid:1960741   Gupta SK, Bhattacharyya TK and Ghosh TC (2004). Synonymous codon usage in Lactococcus lactis: mutational bias versus translational selection. J. Biomol. Struct. Dyn. 21: 527-536. http://dx.doi.org/10.1080/07391102.2004.10506946 PMid:14692797   Hershberg R and Petrov DA (2008). Selection on codon bias. Annu. Rev. Genet. 42: 287-299. http://dx.doi.org/10.1146/annurev.genet.42.110807.091442 PMid:18983258   International Brachypodium Initiative (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: 763-768. http://dx.doi.org/10.1038/nature08747 PMid:20148030   Jiang Y, Deng F, Wang H and Hu Z (2008). An extensive analysis on the global codon usage pattern of baculoviruses. Arch. Virol. 153: 2273-2282. http://dx.doi.org/10.1007/s00705-008-0260-1 PMid:19030954   Kawabe A and Miyashita NT (2003). Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet. Syst. 78: 343-352. http://dx.doi.org/10.1266/ggs.78.343 PMid:14676425   Liu H, He R, Zhang H, Huang Y, et al. (2010). Analysis of synonymous codon usage in Zea mays. Mol. Biol. Rep. 37: 677-684. http://dx.doi.org/10.1007/s11033-009-9521-7 PMid:19330534   Liu Q (2006). Analysis of codon usage pattern in the radioresistant bacterium Deinococcus radiodurans. Biosystems 85: 99-106. http://dx.doi.org/10.1016/j.biosystems.2005.12.003 PMid:16431014   Liu Q and Xue Q (2005). Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J. Genet. 84: 55-62. http://dx.doi.org/10.1007/BF02715890 PMid:15876584   Liu Q, Feng Y, Zhao X, Dong H, et al. (2004). Synonymous codon usage bias in Oryza sativa. Plant Sci. 167: 101-105. http://dx.doi.org/10.1016/j.plantsci.2004.03.003   Liu Q, Dou S, Ji Z and Xue Q (2005). Synonymous codon usage and gene function are strongly related in Oryza sativa. Biosystems 80: 123-131. http://dx.doi.org/10.1016/j.biosystems.2004.10.008 PMid:15823411   Mitreva M, Wendl MC, Martin J, Wylie T, et al. (2006). Codon usage patterns in Nematoda: analysis based on over 25 million codons in thirty-two species. Genome Biol. 7: R75. http://dx.doi.org/10.1186/gb-2006-7-8-r75 PMCid:1779591   Morton BR and Wright SI (2007). Selective constraints on codon usage of nuclear genes from Arabidopsis thaliana. Mol. Biol. Evol. 24: 122-129. http://dx.doi.org/10.1093/molbev/msl139 PMid:17021276   Mukhopadhyay P, Basak S and Ghosh TC (2007a). Synonymous codon usage in different protein secondary structural classes of human genes: implication for increased non-randomness of GC3 rich genes towards protein stability. J. Biosci. 32: 947-963. http://dx.doi.org/10.1007/s12038-007-0095-z PMid:17914237   Mukhopadhyay P, Basak S and Ghosh TC (2007b). Nature of selective constraints on synonymous codon usage of rice differs in GC-poor and GC-rich genes. Gene 400: 71-81. http://dx.doi.org/10.1016/j.gene.2007.05.027 PMid:17629420   Murray EE, Lotzer J and Eberle M (1989). Codon usage in plant genes. Nucleic Acids Res. 17: 477-498. http://dx.doi.org/10.1093/nar/17.2.477 PMid:2644621 PMCid:331598   Naya H, Romero H, Carels N, Zavala A, et al. (2001). Translational selection shapes codon usage in the GC-rich genome of Chlamydomonas reinhardtii. FEBS Lett. 501: 127-130. http://dx.doi.org/10.1016/S0014-5793(01)02644-8   Peraldi A, Beccari G, Steed A and Nicholson P (2011). Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat. BMC Plant Biol. 11: 100. http://dx.doi.org/10.1186/1471-2229-11-100 PMid:21639892 PMCid:3123626   Roychoudhury S and Mukherjee D (2010). A detailed comparative analysis on the overall codon usage pattern in herpesviruses. Virus Res. 148: 31-43. http://dx.doi.org/10.1016/j.virusres.2009.11.018 PMid:19969032   Sharp PM and Li WH (1987). The codon Adaptation Index - a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15: 1281-1295. http://dx.doi.org/10.1093/nar/15.3.1281 PMid:3547335 PMCid:340524   Sharp PM, Stenico M, Peden JF and Lloyd AT (1993). Codon usage: mutational bias, translational selection, or both? Biochem. Soc. Trans. 21: 835-841. PMid:8132077   Shields DC and Sharp PM (1987). Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res. 15: 8023-8040. http://dx.doi.org/10.1093/nar/15.19.8023 PMid:3118331 PMCid:306324   Shields DC, Sharp PM, Higgins DG and Wright F (1988). "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol. Biol. Evol. 5: 704-716. PMid:3146682   Stenico M, Lloyd AT and Sharp PM (1994). Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucleic Acids Res. 22: 2437-2446. http://dx.doi.org/10.1093/nar/22.13.2437 PMid:8041603 PMCid:308193   Sueoka N (1988). Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. U. S. A. 85: 2653-2657. http://dx.doi.org/10.1073/pnas.85.8.2653 PMid:3357886 PMCid:280056   Sueoka N and Kawanishi Y (2000). DNA G+C content of the third codon position and codon usage biases of human genes. Gene 261: 53-62. http://dx.doi.org/10.1016/S0378-1119(00)00480-7   Wang HC and Hickey DA (2007). Rapid divergence of codon usage patterns within the rice genome. BMC Evol. Biol. 7: S6. http://dx.doi.org/10.1186/1471-2148-7-S1-S6 PMid:17288579 PMCid:1796615   Wright F (1990). The 'effective number of codons' used in a gene. Gene 87: 23-29. http://dx.doi.org/10.1016/0378-1119(90)90491-9   Zhang WJ, Zhou J, Li ZF, Wang L, et al. (2007). Comparative analysis of codon usage patterns among mitochondrion, chloroplast and nuclear genes in Triticum aestivum L. J. Integr. Plant Biol. 49: 246-254. http://dx.doi.org/10.1111/j.1744-7909.2007.00404.x   Zhao S, Zhang Q, Chen Z, Zhao Y, et al. (2007). The factors shaping synonymous codon usage in the genome of Burkholderia mallei. J. Genet. Genomics 34: 362-372. http://dx.doi.org/10.1016/S1673-8527(07)60039-3
2011
C. Q. Gan, Wang, X. Y., Cao, Y. D., Ye, W. X., Liu, H., and Sun, Y. Y., Association of CYP2C19*3 gene polymorphism with breast cancer in Chinese women, vol. 10, pp. 3514-3519, 2011.
Dixit V, Hariparsad N, Li F, Desai P, et al. (2007). Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab. Dispos. 35: 1853-1859. http://dx.doi.org/10.1124/dmd.107.016089 PMid:17639026   Economopoulos KP and Sergentanis TN (2010). Does race modify the association between CYP1B1 Val432Leu polymorphism and breast cancer risk? A critical appraisal of a recent meta-analysis. Breast Cancer Res. Treat. 124: 293-294. http://dx.doi.org/10.1007/s10549-010-1097-3 PMid:20686834   Ekhart C, Doodeman VD, Rodenhuis S, Smits PH, et al. (2008). Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet. Genomics 18: 515-523. http://dx.doi.org/10.1097/FPC.0b013e3282fc9766 PMid:18496131   Ercan B, Ayaz L, Cicek D and Tamer L (2008). Role of CYP2C9 and CYP2C19 polymorphisms in patients with atherosclerosis. Cell Biochem. Funct. 26: 309-313. http://dx.doi.org/10.1002/cbf.1437 PMid:17868191   Fava C, Montagnana M, Almgren P, Rosberg L, et al. (2008). The V433M variant of the CYP4F2 is associated with ischemic stroke in male Swedes beyond its effect on blood pressure. Hypertension 52: 373-380. http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.114199 PMid:18574070   Fichtlscherer S, Dimmeler S, Breuer S, Busse R, et al. (2004). Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide-mediated vasodilatation in patients with coronary artery disease. Circulation 109: 178-183. http://dx.doi.org/10.1161/01.CIR.0000105763.51286.7F PMid:14662709   Gauthier KM, Falck JR, Reddy LM and Campbell WB (2004). 14,15-EET analogs: characterization of structural requirements for agonist and antagonist activity in bovine coronary arteries. Pharmacol. Res. 49: 515-524. http://dx.doi.org/10.1016/j.phrs.2003.09.014 PMid:15026029   Goetz M and Suman V (2010). Genetic polymorphisms of CYP2D6*10 and CYP2C19*2, *3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer 116: 1007. http://dx.doi.org/10.1002/cncr.24827 PMid:20041480   González-Tejera G, Gaedigk A and Corey S (2010). Genetic variants of the drug-metabolizing enzyme CYP2D6 in Puerto Rican psychiatry patients: a preliminary report and potential implications for breast cancer patients. P. R. Health Sci. J. 29: 299-304. PMid:20799519   Imig JD (2000). Epoxygenase metabolites. Epithelial and vascular actions. Mol. Biotechnol. 16: 233-251. http://dx.doi.org/10.1385/MB:16:3:233   Jernström H, Bageman E, Rose C, Jonsson PE, et al. (2009). CYP2C8 and CYP2C9 polymorphisms in relation to tumour characteristics and early breast cancer related events among 652 breast cancer patients. Br. J. Cancer 101: 1817-1823. http://dx.doi.org/10.1038/sj.bjc.6605428 PMid:19935798 PMCid:2788256   Jiang JG, Chen CL, Card JW, Yang S, et al. (2005). Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 65: 4707. http://dx.doi.org/10.1158/0008-5472.CAN-04-4173 PMid:15930289   Jiang JG, Ning YG, Chen C, Ma D, et al. (2007). Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res. 67: 6665-6674. http://dx.doi.org/10.1158/0008-5472.CAN-06-3643 PMid:17638876   Jiang JG, Fu XN, Chen CL and Wang DW (2009). Expression of cytochrome P450 arachidonic acid epoxygenase 2J2 in human tumor tissues and cell lines. Ai Zheng. 28: 93-96. PMid:19550113   Justenhoven C, Hamann U, Pierl CB, Baisch C, et al. (2009). CYP2C19*17 is associated with decreased breast cancer risk. Breast Cancer Res. Treat. 115: 391-396. http://dx.doi.org/10.1007/s10549-008-0076-4 PMid:18521743   Knüpfer H, Schmidt R, Stanitz D, Brauckhoff M, et al. (2004). CYP2C and IL-6 expression in breast cancer. Breast 13: 28-34. http://dx.doi.org/10.1016/j.breast.2003.07.002 PMid:14759713   Lundell K and Wikvall K (2008). Species-specific and age-dependent bile acid composition: aspects on CYP8B and CYP4A subfamilies in bile acid biosynthesis. Curr. Drug Metab. 9: 323-331. http://dx.doi.org/10.2174/138920008784220574 PMid:18473750   Node K, Ruan XL, Dai J, Yang SX, et al. (2001). Activation of Galpha s mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids. J. Biol. Chem. 276: 15983-15989. http://dx.doi.org/10.1074/jbc.M100439200 PMid:11279071   Ozbek YK, Ozturk T, Tuzuner BM, Calay Z, et al. (2010). Combined effect of CYP1B1 codon 432 polymorphism and N-acetyltransferase 2 slow acetylator phenotypes in relation to breast cancer in the Turkish population. Anticancer Res. 30: 2885-2889. PMid:20683028   Ruiter R, Bijl MJ, van Schaik RH, Berns EM, et al. (2010). CYP2C19*2 polymorphism is associated with increased survival in breast cancer patients using tamoxifen. Pharmacogenomics 11: 1367-1375. http://dx.doi.org/10.2217/pgs.10.112 PMid:21047200   Stingl JC, Parmar S, Huber-Wechselberger A, Kainz A, et al. (2010). Impact of CYP2D6*4 genotype on progression free survival in tamoxifen breast cancer treatment. Curr. Med. Res. Opin. 26: 2535-2542. http://dx.doi.org/10.1185/03007995.2010.518304 PMid:20849243   Sun J, Sui X, Bradbury JA, Zeldin DC, et al. (2002). Inhibition of vascular smooth muscle cell migration by cytochrome p450 epoxygenase-derived eicosanoids. Circ. Res. 90: 1020-1027. http://dx.doi.org/10.1161/01.RES.0000017727.35930.33 PMid:12016269   Thompson AM, Johnson A, Quinlan P, Hillman G, et al. (2011). Comprehensive CYP2D6 genotype and adherence affect outcome in breast cancer patients treated with tamoxifen monotherapy. Breast Cancer Res. Treat. 125: 279-287. http://dx.doi.org/10.1007/s10549-010-1139-x PMid:20809362