Found 11 results
Filters: Author is W.C. Yang  [Clear All Filters]
K. Q. Tang, Yang, W. C., Zhang, X. X., and Yang, L. G., Effects of polymorphisms in the bovine growth differentiation factor 9 gene on sperm quality in Holstein bulls, vol. 12, pp. 2189-2195, 2013.
K. Q. Tang, Yang, W. C., Li, S. J., and Yang, L. - G., Polymorphisms of the bovine growth differentiation factor 9 gene associated with superovulation performance in Chinese Holstein cows, vol. 12, pp. 390-399, 2013.
Barzegari A, Atashpaz S, Ghabili K, Nemati Z, et al. (2010). Polymorphisms in GDF9 and BMP15 associated with fertility and ovulation rate in Moghani and Ghezel sheep in Iran. Reprod. Domest. Anim. 45: 666-669. PMid:19144040   Bastidas P and Randel RD (1987). Seasonal effects on embryo transfer results in Brahman cows. Theriogenology 28: 531-540.   Chu MX, Yang J, Feng T, Cao GL, et al. (2011). GDF9 as a candidate gene for prolificacy of Small Tail Han sheep. Mol. Biol. Rep. 38: 5199-5204. PMid:21184179   Dixit H, Rao LK, Padmalatha VV, Kanakavalli M, et al. (2006). Missense mutations in the BMP15 gene are associated with ovarian failure. Hum. Genet. 119: 408-415. PMid:16508750   Dong J, Albertini DF, Nishimori K, Kumar TR, et al. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383: 531-535. PMid:8849725   Du ZY, Lin JB, Tan C, Wang JF, et al. (2008). Study on the polymorphisms of exon 2 of GDF9 gene in Guizhou White goat. Anim. Husb. Vet. Med. 40: 46-48.   Elvin JA, Clark AT, Wang P, Wolfman NM, et al. (1999). Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol. Endocrinol. 13: 1035-1048. PMid:10379900   Eppig JJ, Chesnel F, Hirao Y, O'Brien MJ, et al. (1997). Oocyte control of granulosa cell development: how and why. Hum. Reprod. 12: 127-132. PMid:9433969   Feng T, Geng CX, Lang XZ, Chu MX, et al. (2011). Polymorphisms of caprine GDF9 gene and their association with litter size in Jining Grey goats. Mol. Biol. Rep. 38: 5189-5197. PMid:21181498   Gao Y, Zhang YH, Zhang S, Li F, et al. (2011). Association of A-FABP gene polymorphism in intron 1 with meat quality traits in Junmu No. 1 white swine. Gene 487: 170-173. PMid:21846497   Hanrahan JP, Gregan SM, Mulsant P, Mullen M, et al. (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 70: 900-909. PMid:14627550   Hasler JF (2003). The current status and future of commercial embryo transfer in cattle. Anim. Reprod. Sci. 79: 245-264.   Joseph S and David WR (2002). Molecular Cloning a Laboratory Manual. 3rd edn. Science Press, Beijing.   Kovanci E, Rohozinski J, Simpson JL, Heard MJ, et al. (2007). Growth differentiating factor-9 mutations may be associated with premature ovarian failure. Fertil. Steril. 87: 143-146. PMid:17156781   Krawczak M, Thomas NS, Hundrieser B, Mort M, et al. (2007). Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum. Mutat. 28: 150-158. PMid:17001642   Laissue P, Christin-Maitre S, Touraine P, Kuttenn F, et al. (2006). Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure. Eur. J. Endocrinol. 154: 739-744. PMid:16645022   Lee W, Song K, Lim K, Lee S, et al. (2012). Influence of factors during superovulation on embryo production in Korean Holstein cattle. J. Vet. Med. Sci. 74: 167-174. PMid:21959893   Lerner SP, Thayne WV, Baker RD, Henschen T, et al. (1986). Age, dose of FSH and other factors affecting superovulation in Holstein cows. J. Anim. Sci. 63: 176-183. PMid:3090006   Liu BH (1998). Statistical Genomics, Linkage, Mapping and QTL Analysis. CRC Press, Boca Raton, 404-409.   Malhi PS, Adams GP, Mapletoft RJ and Singh J (2008). Superovulatory response in a bovine model of reproductive aging. Anim. Reprod. Sci. 109: 100-109. PMid:18374524   Mapletoft RJ, Steward KB and Adams GP (2002). Recent advances in the superovulation in cattle. Reprod. Nutr. Dev. 42: 601-611. PMid:12625424   McNatty KP, Juengel JL, Wilson T, Galloway SM, et al. (2003). Oocyte-derived growth factors and ovulation rate in sheep. Reprod. Suppl. 61: 339-351. PMid:14635946   McNatty KP, Juengel JL, Reader KL, Lun S, et al. (2005). Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction 129: 481-487. PMid:15798023   Melo EO, Silva BDM, Castro EA, Silva TASN, et al. (2008). A novel mutation in the growth and differentiation factor 9 (GDF9) gene is associated, in homozygosis, with increased ovulation rate in Santa Ines sheep. Biol. Reprod. 78: 371.   Montgomery GW, Zhao ZZ, Marsh AJ, Mayne R, et al. (2004). A deletion mutation in GDF9 in sisters with spontaneous DZ twins. Twin Res. 7: 548-555. PMid:15607004   Newcomb R, Christie WB and Rowson LE (1978). Non-surgical recovery of bovine embryos. Vet. Rec. 102: 414-417. PMid:654055   Nicol L, Bishop SC, Pong-Wong R, Bendixen C, et al. (2009). Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction 138: 921-933. PMid:19713444   Niu BY, Ye LZ, Li FE, Deng CY, et al. (2009). Identification of polymorphism and association analysis with reproductive traits in the porcine RNF4 gene. Anim. Reprod. Sci. 110: 283-292. PMid:18358646   Orisaka M, Orisaka S, Jiang JY, Craig J, et al. (2006). Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol. Endocrinol. 20: 2456-2468. PMid:16740654   Palmer JS, Zhao ZZ, Hoekstra C, Hayward NK, et al. (2006). Novel variants in growth differentiation factor 9 in mothers of dizygotic twins. J. Clin. Endocrinol. Metab. 91: 4713-4716. PMid:16954162   Pang Y, Wang J, Zhang C, Lei C, et al. (2011). The polymorphisms of bovine VEGF gene and their associations with growth traits in Chinese cattle. Mol. Biol. Rep. 38: 755-759. PMid:20376703   Polley S, De S, Brahma B, Mukherjee A, et al. (2010). Polymorphism of BMPR1B, BMP15 and GDF9 fecundity genes in prolific Garole sheep. Trop. Anim. Health Prod. 42: 985-993. PMid:20020203   Rico C, Fabre S, Medigue C, di CN, et al. (2009). Anti-mullerian hormone is an endocrine marker of ovarian gonadotropin-responsive follicles and can help to predict superovulatory responses in the cow. Biol. Reprod. 80: 50-59. PMid:18784351   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. PMid:15740637   Silva BD, Castro EA, Souza CJ, Paiva SR, et al. (2011). A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. Anim. Genet. 42: 89-92. PMid:20528846   Tang KQ, Li SJ, Yang WC, Yu JN, et al. (2011). An MspI polymorphism in the inhibin alpha gene and its associations with superovulation traits in Chinese Holstein cows. Mol. Biol. Rep. 38: 17-21. PMid:20238172   Van Laere AS, Nguyen M, Braunschweig M, Nezer C, et al. (2003). A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425: 832-836. PMid:14574411   Wang TT, Wu YT, Dong MY, Sheng JZ, et al. (2010). G546A polymorphism of growth differentiation factor-9 contributes to the poor outcome of ovarian stimulation in women with diminished ovarian reserve. Fertil. Steril. 94: 2490-2492. PMid:20451184   Yan C, Wang P, DeMayo J, DeMayo FJ, et al. (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15: 854-866. PMid:11376106   Yang WC, Li SJ, Tang KQ, Hua GH, et al. (2010). Polymorphisms in the 5' upstream region of the FSH receptor gene, and their association with superovulation traits in Chinese Holstein cows. Anim. Reprod. Sci. 119: 172-177. PMid:20207511   Zhao H, Qin Y, Kovanci E, Simpson JL, et al. (2007). Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure. Fertil. Steril. 88: 1474-1476. PMid:17482612 PMCid:2767161
Y. C. Liu, Hsiao, H. H., Lin, P. M., Yang, W. C., Chang, C. S., Liu, T. C., Hsu, J. F., Yang, M. Y., and Lin, S. F., Prognostic implication of molecular aberrations in cytogenetically normal acute myeloid leukemia patients receiving allogeneic hematopoietic stem cell transplantation, vol. 12, pp. 5414-5423, 2013.
W. C. Yang, Tang, K. Q., Mei, J., Zeng, W. B., and Yang, L. G., Genetic diversity analysis of an indigenous Chinese buffalo breed and hybrids based on microsatellite data, vol. 10, pp. 3421-3426, 2011.
Arora R, Lakhchaura BD, Prasad RB, Tantia MS, et al. (2004). Genetic diveristy analysis of two buffalo populations of northern India using microsatellite markers. J. Anim. Breed. Genet. 121: 111-118.   Barker JSF, Moore SS, Hetzel DJS, Evans D, et al. (1997). Genetic diversity of Asian water buffalo (Bubalus bubalis): microsatellite variation and a comparison with protein-coding loci. Anim. Genet. 28: 103-115. PMid:9172308   Flamand JRB, Vankan D, Gairhe KP, Duong H, et al. (2003). Genetic identification of wild Asian water buffalo in Nepal. Anim. Conserv. 6: 265-270.   Hoffmann I, Marsan PA, Barker JSF, Cothran EG, et al. (2004). New MoDAD Marker Sets to be Used in Diversity Studies for the Major Farm Animal Species: Recommendations of a Joint ISAG/FAO Working Group. In: Proceedings of 29th International Conference on Animal Genetics, Tokyo.   Huang P and Huang F (2006). Review and Prospect of Buffalo Scientific and Technical Development in China. Proceedings of the 5th Asian Buffalo Congress. Central Compilation and Translation Press, Nanning, China, 40-63.   Kimura M and Crow JF (1964). The number of alleles that can be maintained in a finite population. Genetics 49: 725-738. PMid:14156929 PMCid:1210609   Kumar S, Gupta J, Kumar N, Dikshit K, et al. (2006). Genetic variation and relationships among eight Indian riverine buffalo breeds. Mol. Ecol. 15: 593-600. PMid:16499687   May B, Krueger CC, Eng C and Paul E (1995). Genes in Populations, Version 2.0: A Computer Program for Analysis of Genetic Data. Cornell Laboratory for Ecological and Evolutionary Genetics, Cornell University, Ithaca, New York.   Moioli B, Georgoudis A, Napolitano F, Catillo G, et al. (2001). Genetic diversity between Italian, Greek and Egyptian buffalo populations. Livest. Prod. Sci. 70: 203-211.   Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. PMid:17248844 PMCid:1213855   Ota T (1993). DISPAN: Genetic Distance and Phylogenetic Analysis. The Pennsylvania State University Park, Pennsylvania.   Raymond M and Rousset F (1995). Genepop (version 3.3): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249.   Yang B, Zeng XLQ, Qin J and Yang C (2007). Dairy buffalo breeding in countryside of China. Ital. J. Anim. Sci. 6: 25-29.   Zhang Y, Sun D, Yu Y and Zhang Y (2007). Genetic diversity and differentiation of Chinese domestic buffalo based on 30 microsatellite markers. Anim. Genet. 38: 569-575. PMid:17980000