Publications
Found 9 results
Filters: Author is L.G. Yang [Clear All Filters]
“Differential expression of luteinizing hormone receptor, androgen receptor and heat-shock protein 70 in the testis of long-distance transported mice”, vol. 14, pp. 9985-9993, 2015.
, “Methylation analysis of CXCR1 in mammary gland tissue of cows with mastitis induced by Staphylococcus aureus”, vol. 14, pp. 12606-12615, 2015.
, “Evaluation of attenuated Salmonella choleraesuis-mediated inhibin recombinant DNA vaccine in rats”, vol. 13, pp. 6113-6125, 2014.
, “FSHR genotype affects estrogen levels but not pregnancy rates in Luxi cattle subjected to embryo transfer”, vol. 13, pp. 1563-1569, 2014.
, “Polymorphism of the inhibin βA gene and its relationship with superovulation traits in Chinese Holstein cows”, vol. 13, pp. 269-275, 2014.
, “Polymorphisms in the bone morphogenetic protein 15 gene and their effect on sperm quality traits in Chinese Holstein bulls”, vol. 13, pp. 1805-1812, 2014.
, “Effects of polymorphisms in the bovine growth differentiation factor 9 gene on sperm quality in Holstein bulls”, vol. 12, pp. 2189-2195, 2013.
, “Genetic diversity analysis of an indigenous Chinese buffalo breed and hybrids based on microsatellite data”, vol. 10, pp. 3421-3426, 2011.
,
Arora R, Lakhchaura BD, Prasad RB, Tantia MS, et al. (2004). Genetic diveristy analysis of two buffalo populations of northern India using microsatellite markers. J. Anim. Breed. Genet. 121: 111-118.
http://dx.doi.org/10.1111/j.1439-0388.2004.00451.x
Barker JSF, Moore SS, Hetzel DJS, Evans D, et al. (1997). Genetic diversity of Asian water buffalo (Bubalus bubalis): microsatellite variation and a comparison with protein-coding loci. Anim. Genet. 28: 103-115.
http://dx.doi.org/10.1111/j.1365-2052.1997.00085.x
PMid:9172308
Flamand JRB, Vankan D, Gairhe KP, Duong H, et al. (2003). Genetic identification of wild Asian water buffalo in Nepal. Anim. Conserv. 6: 265-270.
http://dx.doi.org/10.1017/S1367943003003329
Hoffmann I, Marsan PA, Barker JSF, Cothran EG, et al. (2004). New MoDAD Marker Sets to be Used in Diversity Studies for the Major Farm Animal Species: Recommendations of a Joint ISAG/FAO Working Group. In: Proceedings of 29th International Conference on Animal Genetics, Tokyo.
Huang P and Huang F (2006). Review and Prospect of Buffalo Scientific and Technical Development in China. Proceedings of the 5th Asian Buffalo Congress. Central Compilation and Translation Press, Nanning, China, 40-63.
Kimura M and Crow JF (1964). The number of alleles that can be maintained in a finite population. Genetics 49: 725-738.
PMid:14156929 PMCid:1210609
Kumar S, Gupta J, Kumar N, Dikshit K, et al. (2006). Genetic variation and relationships among eight Indian riverine buffalo breeds. Mol. Ecol. 15: 593-600.
http://dx.doi.org/10.1111/j.1365-294X.2006.02837.x
PMid:16499687
May B, Krueger CC, Eng C and Paul E (1995). Genes in Populations, Version 2.0: A Computer Program for Analysis of Genetic Data. Cornell Laboratory for Ecological and Evolutionary Genetics, Cornell University, Ithaca, New York.
Moioli B, Georgoudis A, Napolitano F, Catillo G, et al. (2001). Genetic diversity between Italian, Greek and Egyptian buffalo populations. Livest. Prod. Sci. 70: 203-211.
http://dx.doi.org/10.1016/S0301-6226(01)00175-0
Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.
PMid:17248844 PMCid:1213855
Ota T (1993). DISPAN: Genetic Distance and Phylogenetic Analysis. The Pennsylvania State University Park, Pennsylvania.
Raymond M and Rousset F (1995). Genepop (version 3.3): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249.
Yang B, Zeng XLQ, Qin J and Yang C (2007). Dairy buffalo breeding in countryside of China. Ital. J. Anim. Sci. 6: 25-29.
Zhang Y, Sun D, Yu Y and Zhang Y (2007). Genetic diversity and differentiation of Chinese domestic buffalo based on 30 microsatellite markers. Anim. Genet. 38: 569-575.
http://dx.doi.org/10.1111/j.1365-2052.2007.01648.x
PMid:17980000
“Identification of complex vertebral malformation carriers in Holstein cattle in south China”, vol. 10, pp. 2443-2448, 2011.
, Agerholm JS, Bendixen C, Andersen O and Arnbjerg J (2001). Complex vertebral malformation in Holstein calves. J. Vet. Diagn. Invest. 13: 283-289.
http://dx.doi.org/10.1177/104063870101300401
PMid:11478598
Batiz LF, Roales-Bujan R, Rodriguez-Perez LM, Matas IM, et al. (2009). A simple PCR-based genotyping method for M105I mutation of alpha-SNAP enhances the study of early pathological changes in hyh phenotype. Mol. Cell. Probes 23: 281-290.
http://dx.doi.org/10.1016/j.mcp.2009.07.002
PMid:19615440
Bendixen CC, Svendsen S, Jensen H, Panitz F, et al. (2002). Genetic Test for the Identification of Carriers of Complex Vertebral Malformation in Cattle. World Intelectual Property Organization Publication No. PCT/WO 02/40709 A2 United States Patent: 7094544.
Berglund B, Persson A and Stalhammar H (2004). Effects of complex vertebral malformation on fertility in Swedish Holstein cattle. Acta Vet. Scand. 45: 161-165.
http://dx.doi.org/10.1186/1751-0147-45-161
PMid:15663076 PMCid:1820991
Chu Q, Sun D, Yu Y, Zhang Y, et al. (2008). Identification of complex vertebral malformation carriers in Chinese Holstein. J. Vet. Diagn. Invest. 20: 228-230.
http://dx.doi.org/10.1177/104063870802000215
PMid:18319439
Ghanem ME, Akita M, Suzuki T, Kasuga A, et al. (2008). Complex vertebral malformation in Holstein cows in Japan and its inheritance to crossbred F1 generation. Anim. Reprod. Sci. 103: 348-354.
http://dx.doi.org/10.1016/j.anireprosci.2007.05.006
PMid:17574783
Hosseini SY, Sabahi F, Amini-Bavil-Olyaee S, Alavian SM, et al. (2006). A novel accurate ACRS-PCR method with a digestion internal control for identification of wild type and YMDD mutants of hepatitis B virus strains. J. Virol. Methods 137: 298-303.
http://dx.doi.org/10.1016/j.jviromet.2006.07.008
PMid:16962669
Kanae Y, Endoh D, Nagahata H and Hayashi M (2005). A method for detecting complex vertebral malformation in Holstein calves using polymerase chain reaction-primer introduced restriction analysis. J. Vet. Diagn. Invest. 17: 258-262.
http://dx.doi.org/10.1177/104063870501700309
PMid:15945384
Kearney JF, Amer PR and Villanueva B (2005). Cumulative discounted expressions of sire genotypes for the complex vertebral malformation and beta-casein loci in commercial dairy herds. J. Dairy Sci. 88: 4426-4433.
http://dx.doi.org/10.3168/jds.S0022-0302(05)73129-5
Rusc A and Kaminski S (2007). Prevalence of complex vertebral malformation carriers among Polish Holstein-Friesian bulls. J. Appl. Genet. 48: 247-252.
http://dx.doi.org/10.1007/BF03195219
PMid:17666777
Shayan P, Eslami A and Borji H (2007). Innovative restriction site created PCR-RFLP for detection of benzimidazole resistance in Teladorsagia circumcincta. Parasitol. Res. 100: 1063-1068.
http://dx.doi.org/10.1007/s00436-006-0357-y
PMid:17136564
Thomsen B, Horn P, Panitz F, Bendixen E, et al. (2006). A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation. Genome Res. 16: 97-105.
http://dx.doi.org/10.1101/gr.3690506
PMid:16344554 PMCid:1356133