Publications

Found 30 results
Filters: Author is X.Q. Zhang  [Clear All Filters]
2016
Y. L. Qian, Zhang, X. Q., Wang, L. F., Chen, J., Chen, B. R., Lv, G. H., Wu, Z. C., Guo, J., Wang, J., Qi, Y. C., Li, T. C., Zhang, W., Ruan, L., Zuo, X. L., Qian, Y. L., Zhang, X. Q., Wang, L. F., Chen, J., Chen, B. R., Lv, G. H., Wu, Z. C., Guo, J., Wang, J., Qi, Y. C., Li, T. C., Zhang, W., Ruan, L., and Zuo, X. L., Detection of QTLs controlling fast kernel dehydration in maize (Zea mays L.), vol. 15, p. -, 2016.
Y. L. Qian, Zhang, X. Q., Wang, L. F., Chen, J., Chen, B. R., Lv, G. H., Wu, Z. C., Guo, J., Wang, J., Qi, Y. C., Li, T. C., Zhang, W., Ruan, L., Zuo, X. L., Qian, Y. L., Zhang, X. Q., Wang, L. F., Chen, J., Chen, B. R., Lv, G. H., Wu, Z. C., Guo, J., Wang, J., Qi, Y. C., Li, T. C., Zhang, W., Ruan, L., and Zuo, X. L., Detection of QTLs controlling fast kernel dehydration in maize (Zea mays L.), vol. 15, p. -, 2016.
Z. Y. Chen, Zhang, W. W., Gan, J. K., Kong, L. N., Zhang, X. Q., Zhang, D. X., Luo, Q. B., Chen, Z. Y., Zhang, W. W., Gan, J. K., Kong, L. N., Zhang, X. Q., Zhang, D. X., and Luo, Q. B., Genetic effect of an A/G polymorphism in the HSP70 gene on thermotolerance in chicken, vol. 15, p. -, 2016.
Z. Y. Chen, Zhang, W. W., Gan, J. K., Kong, L. N., Zhang, X. Q., Zhang, D. X., Luo, Q. B., Chen, Z. Y., Zhang, W. W., Gan, J. K., Kong, L. N., Zhang, X. Q., Zhang, D. X., and Luo, Q. B., Genetic effect of an A/G polymorphism in the HSP70 gene on thermotolerance in chicken, vol. 15, p. -, 2016.
J. G. Xu, Xie, M. G., Zou, S. Y., Liu, X. F., Li, X. H., Xie, J. F., Zhang, X. Q., Xu, J. G., Xie, M. G., Zou, S. Y., Liu, X. F., Li, X. H., Xie, J. F., Zhang, X. Q., Xu, J. G., Xie, M. G., Zou, S. Y., Liu, X. F., Li, X. H., Xie, J. F., and Zhang, X. Q., Interactions of allele E of the MC1R gene with FM and mutations in the MLPH gene cause the five-gray phenotype in the Anyi tile-like gray chicken, vol. 15, p. -, 2016.
J. G. Xu, Xie, M. G., Zou, S. Y., Liu, X. F., Li, X. H., Xie, J. F., Zhang, X. Q., Xu, J. G., Xie, M. G., Zou, S. Y., Liu, X. F., Li, X. H., Xie, J. F., Zhang, X. Q., Xu, J. G., Xie, M. G., Zou, S. Y., Liu, X. F., Li, X. H., Xie, J. F., and Zhang, X. Q., Interactions of allele E of the MC1R gene with FM and mutations in the MLPH gene cause the five-gray phenotype in the Anyi tile-like gray chicken, vol. 15, p. -, 2016.
J. G. Xu, Xie, M. G., Zou, S. Y., Liu, X. F., Li, X. H., Xie, J. F., Zhang, X. Q., Xu, J. G., Xie, M. G., Zou, S. Y., Liu, X. F., Li, X. H., Xie, J. F., Zhang, X. Q., Xu, J. G., Xie, M. G., Zou, S. Y., Liu, X. F., Li, X. H., Xie, J. F., and Zhang, X. Q., Interactions of allele E of the MC1R gene with FM and mutations in the MLPH gene cause the five-gray phenotype in the Anyi tile-like gray chicken, vol. 15, p. -, 2016.
2015
J. K. Gan, Jiang, L. Y., Kong, L. N., Zhang, X. Q., and Luo, Q. B., Analysis of genetic diversity of the heat shock protein 70 gene on the basis of abundant sequence polymorphisms in chicken breeds, vol. 14, pp. 1538-1545, 2015.
Y. Ling, Huang, L. K., Zhang, X. Q., Ma, X., Liu, W., Chen, S. Y., and Yan, H. D., Assessment of genetic diversity of bermudagrass germplasm from southwest China and Africa by using AFLP markers, vol. 14, pp. 1748-1756, 2015.
L. N. Kong, Zhang, D. X., Ji, C. L., Zhang, X. Q., and Luo, Q. B., Association analysis between SNPs in the 5'-flanking region of the chicken GRP78 gene, thermotolerance parameters, and tissue mRNA expression, vol. 14, pp. 6110-6123, 2015.
W. W. Zhang, Xiao, X., Gan, J. K., Zhang, X. Q., Kong, L. N., and Luo, Q. B., Characterization of HSP70 and its expression in tissue: correlation with physiological and immune indices in goose (Anser cygnoides) serum, vol. 14, pp. 12288-12298, 2015.
X. E. Sun, Zhang, X. Q., and Liu, M. M., Effect of bone marrow mesenchymal stem cells on the TGF-β1/Smad signaling pathway of hepatic stellate, vol. 14, pp. 8744-8754, 2015.
J. M. Li, Zhang, H. F., Zhang, X. Q., Huang, G. L., Huang, H. Z., and Yu, W. W., Genetic mechanism associated with congenital cytomegalovirus infection and analysis of effects of the infection on pregnancy outcome, vol. 14, pp. 13247-13257, 2015.
M. A. Abdalhag, Zhang, T., Fan, Q. C., Zhang, X. Q., Zhang, G. X., Wang, J. Y., Wei, Y., and Wang, Y. J., Single nucleotide polymorphisms associated with growth traits in Jinghai yellow chickens, vol. 14, pp. 16169-16177, 2015.
2014
W. W. Zhang, Kong, L. N., Zhang, X. Q., and Luo, Q. B., Alteration of HSF3 and HSP70 mRNA expression in the tissues of two chicken breeds during acute heat stress, vol. 13, pp. 9787-9794, 2014.
L. F. Jiang, Qi, X., Zhang, X. Q., Huang, L. K., Ma, X., and Xie, W. G., Analysis of diversity and relationships among orchardgrass (Dactylis glomerata L.) accessions using start codon-targeted markers, vol. 13, pp. 4406-4418, 2014.
X. Y. Liang, Zhang, X. Q., Bai, S. Q., Huang, L. K., Luo, X. M., Ji, Y., and Jiang, L. F., Genetic diversity and relationship of chicory (Cichorium intybus L.) using sequence-related amplified polymorphism markers, vol. 13, pp. 7736-7746, 2014.
L. K. Huang, Jiang, X. Y., Huang, Q. T., Xiao, Y. F., Chen, Z. H., Zhang, X. Q., Miao, J. M., and Yan, H. D., Genetic diversity and relationships in cultivars of Lolium multiflorum Lam. using sequence-related amplified polymorphism markers, vol. 13, pp. 10142-10149, 2014.
Y. H. Li, Chen, M., Zhang, M., Zhang, X. Q., Zhang, S., Yu, C. G., Xu, Z. M., and Zou, X. P., Inhibitory effect of survivin-targeting small interfering RNA on gastric cancer cells, vol. 13, pp. 6786-6803, 2014.
L. L. Cong, Zhang, X. Q., Yang, F. Y., Liu, S. J., and Zhang, Y. W., Isolation of the P5CS gene from reed canary grass and its expression under salt stress, vol. 13, pp. 9122-9133, 2014.
Y. F. Zhao, Zhang, X. Q., Ma, X., Xie, W. G., and Huang, L. K., Morphological and genetic characteristics of hybrid combinations of Dactylis glomerata, vol. 13, pp. 2491-2503, 2014.
2013
X. M. He, Fang, M. X., Zhang, Z. T., Hu, Y. S., Jia, X. Z., He, D. L., Liang, S. D., Nie, Q. H., and Zhang, X. Q., Characterization of chicken natural resistance-associated macrophage protein encoding genes (Nramp1 and Nramp2) and association with salmonellosis resistance, vol. 12, pp. 618-630, 2013.
Ates O, Dalyan L, Musellim B, Hatemi G, et al. (2009). NRAMP1 (SLC11A1) gene polymorphisms that correlate with autoimmune versus infectious disease susceptibility in tuberculosis and rheumatoid arthritis. Int. J. Immunogenet. 36: 15-19. http://dx.doi.org/10.1111/j.1744-313X.2008.00814.x PMid:19055603   Baker ST, Barton CH and Biggs TE (2000). A negative autoregulatory link between Nramp1 function and expression. J. Leukoc. Biol. 67: 501-507. PMid:10770282   Barshes NR, Lee TR, Goss JA, Goodpastor SE, et al. (2006). Slc11a1 (formerly Nramp1) polymorphisms and susceptibility to post-transplant lymphoproliferative disease following pediatric liver transplantation. Transpl. Infect. Dis. 8: 108-112. http://dx.doi.org/10.1111/j.1399-3062.2006.00139.x PMid:16734634   Blackwell JM and Searle S (1999). Genetic regulation of macrophage activation: understanding the function of Nramp1 (=Ity/Lsh/Bcg). Immunol. Lett. 65: 73-80. http://dx.doi.org/10.1016/S0165-2478(98)00127-8   Blackwell JM, Searle S, Goswami T and Miller EN (2000). Understanding the multiple functions of Nramp1. Microbes. Infect. 2: 317-321. http://dx.doi.org/10.1016/S1286-4579(00)00295-1   Blackwell JM, Searle S, Mohamed H and White JK (2003). Divalent cation transport and susceptibility to infectious and autoimmune disease: continuation of the Ity/Lsh/Bcg/Nramp1/Slc11a1 gene story. Immunol. Lett. 85: 197-203. http://dx.doi.org/10.1016/S0165-2478(02)00231-6   Blasco H, Vourc'h P, Nadjar Y, Ribourtout B, et al. (2011). Association between divalent metal transport 1 encoding gene (SLC11A2) and disease duration in amyotrophic lateral sclerosis. J. Neurol. Sci. 303: 124-127. http://dx.doi.org/10.1016/j.jns.2010.12.018 PMid:21276595   Boyer E, Bergevin I, Malo D, Gros P, et al. (2002). Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect. Immun. 70: 6032-6042. http://dx.doi.org/10.1128/IAI.70.11.6032-6042.2002 PMid:12379679 PMCid:130432   Canonne-Hergaux F, Gruenheid S, Ponka P and Gros P (1999). Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood 93: 4406-4417. PMid:10361139   Canonne-Hergaux F, Calafat J, Richer E, Cellier M, et al. (2002). Expression and subcellular localization of NRAMP1 in human neutrophil granules. Blood 100: 268-275. http://dx.doi.org/10.1182/blood.V100.1.268 PMid:12070036   Cellier MF, Courville P and Campion C (2007). Nramp1 phagocyte intracellular metal withdrawal defense. Microbes. Infect. 9: 1662-1670. http://dx.doi.org/10.1016/j.micinf.2007.09.006 PMid:18024118   Cohen A, Nevo Y and Nelson N (2003). The first external loop of the metal ion transporter DCT1 is involved in metal ion binding and specificity. Proc. Natl. Acad. Sci. U. S. A. 100: 10694-10699. http://dx.doi.org/10.1073/pnas.1934572100 PMid:12954986 PMCid:196866   Courville P, Chaloupka R and Cellier MF (2006). Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. Biochem. Cell Biol. 84: 960-978. http://dx.doi.org/10.1139/o06-193 PMid:17215883   Ganguly I, Sharma A, Singh R, Deb SM, et al. (2008). Association of microsatellite (GT)n polymorphism at 3'UTR of NRAMP1 with the macrophage function following challenge with Brucella LPS in buffalo (Bubalus bubalis). Vet. Microbiol. 129: 188-196. http://dx.doi.org/10.1016/j.vetmic.2007.10.033 PMid:18078724   Gazouli M, Atsaves V, Mantzaris G, Economou M, et al. (2008). Role of functional polymorphisms of NRAMP1 gene for the development of Crohn's disease. Inflamm. Bowel. Dis. 14: 1323-1330. http://dx.doi.org/10.1002/ibd.20488 PMid:18454481   Gruenheid S, Cellier M, Vidal S and Gros P (1995). Identification and characterization of a second mouse Nramp gene. Genomics 25: 514-525. http://dx.doi.org/10.1016/0888-7543(95)80053-O   Gruenheid S, Canonne-Hergaux F, Gauthier S, Hackam DJ, et al. (1999). The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J. Exp. Med. 189: 831-841. http://dx.doi.org/10.1084/jem.189.5.831 PMid:10049947 PMCid:2192949   Gunshin H, Mackenzie B, Berger UV, Gunshin Y, et al. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388: 482-488. http://dx.doi.org/10.1038/41343 PMid:9242408   Hu J, Bumstead N, Skamene E, Gros P, et al. (1996). Structural organization, sequence, and expression of the chicken NRAMP1 gene encoding the natural resistance-associated macrophage protein 1. DNA Cell Biol. 15: 113-123. http://dx.doi.org/10.1089/dna.1996.15.113 PMid:8634139   Hu J, Bumstead N, Barrow P, Sebastiani G, et al. (1997). Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC. Genome Res. 7: 693-704. PMid:9253598   Jabado N, Jankowski A, Dougaparsad S, Picard V, et al. (2000). Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J. Exp. Med. 192: 1237-1248. http://dx.doi.org/10.1084/jem.192.9.1237 PMid:11067873 PMCid:2193348   Jabado N, Cuellar-Mata P, Grinstein S and Gros P (2003). Iron chelators modulate the fusogenic properties of Salmonella-containing phagosomes. Proc. Natl. Acad. Sci. U. S. A. 100: 6127-6132. http://dx.doi.org/10.1073/pnas.0937287100 PMid:12711734 PMCid:156337   Kishi F, Yoshida T and Aiso S (1996). Location of NRAMP1 molecule on the plasma membrane and its association with microtubules. Mol. Immunol. 33: 1241-1246. http://dx.doi.org/10.1016/S0161-5890(96)00088-0   Lam-Yuk-Tseung S, Govoni G, Forbes J and Gros P (2003). Iron transport by Nramp2/DMT1: pH regulation of transport by 2 histidines in transmembrane domain 6. Blood 101: 3699-3707. http://dx.doi.org/10.1182/blood-2002-07-2108 PMid:12522007   Lam-Yuk-Tseung S, Camaschella C, Iolascon A and Gros P (2006). A novel R416C mutation in human DMT1 (SLC11A2) displays pleiotropic effects on function and causes microcytic anemia and hepatic iron overload. Blood Cells Mol. Dis. 36: 347-354. http://dx.doi.org/10.1016/j.bcmd.2006.01.011 PMid:16584902   Leung KH, Yip SP, Wong WS, Yiu LS, et al. (2007). Sex- and age-dependent association of SLC11A1 polymorphisms with tuberculosis in Chinese: a case control study. BMC Infect. Dis. 7: 19. http://dx.doi.org/10.1186/1471-2334-7-19 PMid:17371589 PMCid:1847518   Liu W, Kaiser MG and Lamont SJ (2003). Natural resistance-associated macrophage protein 1 gene polymorphisms and response to vaccine against or challenge with Salmonella enteritidis in young chicks. Poult. Sci. 82: 259-266. PMid:12619803   Mackenzie B and Hediger MA (2004). SLC11 family of H+-coupled metal-ion transporters NRAMP1 and DMT1. Pflugers Arch. 447: 571-579. http://dx.doi.org/10.1007/s00424-003-1141-9 PMid:14530973   Mackenzie B, Ujwal ML, Chang MH, Romero MF, et al. (2006). Divalent metal-ion transporter DMT1 mediates both H+ -coupled Fe2+ transport and uncoupled fluxes. Pflugers Arch. 451: 544-558. http://dx.doi.org/10.1007/s00424-005-1494-3 PMid:16091957   Peracino B, Wagner C, Balest A, Balbo A, et al. (2006). Function and mechanism of action of Dictyostelium Nramp1 (Slc11a1) in bacterial infection. Traffic 7: 22-38. http://dx.doi.org/10.1111/j.1600-0854.2005.00356.x PMid:16445684   Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, et al. (2011). Natural resistance-associated macrophage protein is a cellular receptor for sindbis virus in both insect and mammalian hosts. Cell Host Microbe 10: 97-104. http://dx.doi.org/10.1016/j.chom.2011.06.009 PMid:21843867 PMCid:3164510   Stiles KM and Kielian M (2011). Alphavirus entry: NRAMP leads the way. Cell Host Microbe 10: 92-93. http://dx.doi.org/10.1016/j.chom.2011.07.008 PMid:21843864 PMCid:3163168   Tandy S, Williams M, Leggett A, Lopez-Jimenez M, et al. (2000). Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. J. Biol. Chem. 275: 1023-1029. http://dx.doi.org/10.1074/jbc.275.2.1023 PMid:10625641   Touret N, Furuya W, Forbes J, Gros P, et al. (2003). Dynamic traffic through the recycling compartment couples the metal transporter Nramp2 (DMT1) with the transferrin receptor. J. Biol. Chem. 278: 25548-25557. http://dx.doi.org/10.1074/jbc.M212374200 PMid:12724326   Trinder D, Macey DJ and Olynyk JK (2000). The new iron age. Int. J. Mol. Med. 6: 607-612. PMid:11078817
W. Yan, Wang, Y. W., Yang, F. F., Wang, M., Zhang, X. Q., Dong, J., Chen, E., and Yang, J., Differences in frequencies of UGT1A9, 1A7, and 1A1 genetic polymorphisms in Chinese Tibetan versus Han Chinese populations, vol. 12, pp. 6454-6461, 2013.
S. Y. Chen, Ma, X., Zhang, X. Q., Huang, L. K., and Zhou, J. N., Genetic diversity and relationships among accessions of five crested wheatgrass species (Poaceae: Agropyron) based on gliadin analysis, vol. 12, pp. 5704-5713, 2013.
J. Wang, Zhang, W., Zhao, H., Li, F. R., Wang, Z. G., Ji, J., Zhang, X. Q., Wang, D. W., and Li, J. M., Molecular cytogenetic characterization of the Aegilops biuncialis karyotype, vol. 12. pp. 683-692, 2013.
Badaeva ED (2002). Evaluation of phylogenetic relationships between five polyploid Aegilops L. species of the U-genome cluster by means of chromosomal analysis. Genetika 38: 799-811. PMid:12138779   Badaeva ED, Amosova AV, Samatadze TE, Zoshchuk SA, et al. (2004). Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst. Evol. 246: 45-76. http://dx.doi.org/10.1007/s00606-003-0072-4   Bedbrook JR, Jones J, O'Dell M, Thompson RD, et al. (1980). A molecular description of telometic heterochromatin in secale species. Cell 19: 545-560. http://dx.doi.org/10.1016/0092-8674(80)90529-2   Dhaliwal HS, Harjit-Singh and William M (2002). Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterisation of resistant derivatives. Euphytica 126: 153-159. http://dx.doi.org/10.1023/A:1016312723040   Friebe B and Heun M (1989). C-banding pattern and powdery mildew resistance of Triticum ovatum and four T. aestivum - T. ovatum chromosome addition lines. Theor. Appl. Genet. 78: 417-424. http://dx.doi.org/10.1007/BF00265306   Friebe B, Mukai Y and Gill BS (1992a). C-banding polymorphisms in several accessions of Triticum tauschii (Aegilops squarrosa). Genome 35: 192-199. http://dx.doi.org/10.1139/g92-030   Friebe B, Schubert V, Blüthner W and Hammer K (1992b). C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum - Ae. caudata and six derived chromosome addition lines. Theor. Appl. Genet. 83: 589-596. http://dx.doi.org/10.1007/BF00226902   Friebe B, Jiang J, Tuleen N and Gill BS (1995). Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor. Appl. Genet. 90: 150-156. http://dx.doi.org/10.1007/BF00221010   Friebe B, Badaeva ED, Kammer K and Gill BS (1996). Standard karyotypes of Aegilops uniaristata, Ae. mutica, Ae. comosa subspecies comosa and heldreichii (Poaceae). Plant Syst. Evol. 202: 199-210. http://dx.doi.org/10.1007/BF00983382   Friebe B, Qi LL, Nasuda S, Zhang P, et al. (2000). Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor. Appl. Genet. 101: 51-58. http://dx.doi.org/10.1007/s001220051448   Gerlach WL and Bedbrook JR (1979). Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7: 1869-1885. http://dx.doi.org/10.1093/nar/7.7.1869 PMid:537913 PMCid:342353   Gerlach WL and Dyer TA (1980). Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 8: 4851-4865. http://dx.doi.org/10.1093/nar/8.21.4851 PMid:7443527 PMCid:324264   Gill BS and Kimber G (1974). Giemsa C-banding and the evolution of wheat. Proc. Natl. Acad. Sci. U. S. A. 71: 4086- 4090. http://dx.doi.org/10.1073/pnas.71.10.4086 PMid:16592188 PMCid:434333   Makkouk K, Ghulam W and Comeau A (1994). Resistance to barley yellow dwarf luteovirus in Aegilops species. Can. J. Plant Sci. 74: 631-634. http://dx.doi.org/10.4141/cjps94-113   McIntyre CL, Pereira S, Moran LB and Appels R (1990). New secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33: 635-640. http://dx.doi.org/10.1139/g90-094 PMid:2262137   Molnár I, Gáspár L, Sárvári É, Dulai S, et al. (2004). Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct. Plant Biol. 31: 1149-1159. http://dx.doi.org/10.1071/FP03143   Mukai Y, Nakahara Y and Yamamoto M (1993). Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36: 489-494. http://dx.doi.org/10.1139/g93-067 PMid:18470003   Nagy ED, Molnar-Lang M, Linc G and Lang L (2002). Identification of wheat-barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome 45: 1238- 1247. http://dx.doi.org/10.1139/g02-068 PMid:12502270   Rayburn AL and Gill BS (1986). Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 4: 102-109. http://dx.doi.org/10.1007/BF02732107   Resta P, Zhang HB, Dubcovsky J and Dvorak J (1996). The origins of the genomes of Triticum biunciale, T. ovatum, T. neglectum, T. columnare, and T. rectum (Poaceae) based on variation in repeated nucleotide sequences. Am. J. Bot. 83: 1556-1565. http://dx.doi.org/10.2307/2445829   Riley R, Chapman V and Johnson R (1968). Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217: 383-384. http://dx.doi.org/10.1038/217383a0   Schneider A, Linc G, Molnar I and Molnar-Lang M (2005). Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat - Aegilops biuncialis disomic addition lines. Genome 48: 1070- 1082. http://dx.doi.org/10.1139/g05-062 PMid:16391676   van Slageren MWSJ (1994). Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae): A Revision of All Taxa Closely Related to Wheat, Excluding Wild Triticum Species, with Notes on Other Genera in the Tribe Triticcae, Especially Triticum: Wageningen Agricultural University, Wageningen.   Wang ZG, An TG, Li JM, Marta ML, et al. (2004). Fluorescent in situ hybridization analysis of rye chromatin in the background of "Xiaoyan No. 6". Acta Bot. Sin. 46: 436-442.
J. K. Gan, Zhang, D. X., He, D. L., Zhang, X. Q., Chen, Z. Y., and Luo, Q. B., Promoter methylation negatively correlated with mRNA expression but not tissue differential expression after heat stress, vol. 12, pp. 809-819, 2013.
Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev. 16: 6-21. http://dx.doi.org/10.1101/gad.947102 PMid:11782440   Brena RM, Huang TH and Plass C (2006). Quantitative assessment of DNA methylation: Potential applications for disease diagnosis, classification, and prognosis in clinical settings. J. Mol. Med. 84: 365-377. http://dx.doi.org/10.1007/s00109-005-0034-0 PMid:16416310   Dai Z, Zhu WG, Morrison CD, Brena RM, et al. (2003). A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum. Mol. Genet. 12: 791-801. http://dx.doi.org/10.1093/hmg/ddg083 PMid:12651874   Dionello NJL, Ferro JA, Macari M, Rutz F, et al. (2001). Effect of acute heat stress on hepatic and cerebral messenger RNA heat shock protein 70 and heat shock protein 70 level of broiler chicks from 2 to 5 days old of different strains. Rev. Bras. Zootec. 5: 1506-1513. http://dx.doi.org/10.1590/S1516-35982001000600018   Ehrich M, Nelson MR, Stanssens P, Zabeau M, et al. (2005). Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 102: 15785-15790. http://dx.doi.org/10.1073/pnas.0507816102 PMid:16243968 PMCid:1276092   Esteller M (2007). Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet. 16 Spec No 1: R50-R59. http://dx.doi.org/10.1093/hmg/ddm018 PMid:17613547   Esteller M (2008). Epigenetics in evolution and disease. Lancet 372: S90-S96. http://dx.doi.org/10.1016/S0140-6736(08)61887-5   Gabriel JE, Ferro JA, Stefani RM, Ferro MI, et al. (1996). Effect of acute heat stress on heat shock protein 70 messenger RNA and on heat shock protein expression in the liver of broilers. Br. Poult. Sci. 37: 443-449. http://dx.doi.org/10.1080/00071669608417875 PMid:8773853   Givisiez PEN, Furlan RL, Malheiros EB and Macari M (2003). Incubation and rearing temperature effects on Hsp70 levels and heat stress response in broilers. Can. J. Anim. Sci. 2: 213-220. http://dx.doi.org/10.4141/A02-038   Guerreiro EN, Giachetto PF, Givisiez PEN, Ferro JA, et al. (2004). Brain and hepatic Hsp70 protein levels in heat-acclimated broiler chickens during heat stress. Braz. J. Poult. Sci. 6: 201-206. http://dx.doi.org/10.1590/S1516-635X2004000400002   Hartl FU (1996). Molecular chaperones in cellular protein folding. Nature 381: 571-579. http://dx.doi.org/10.1038/381571a0 PMid:8637592   Kregel KC (2002). Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92: 2177-2186. PMid:11960972   Kuroda A, Rauch TA, Todorov I, Ku HT, et al. (2009). Insulin gene expression is regulated by DNA methylation. PLoS One 4: e6953. http://dx.doi.org/10.1371/journal.pone.0006953 PMid:19742322 PMCid:2735004   Lopez-Serra L and Esteller M (2008). Proteins that bind methylated DNA and human cancer: reading the wrong words. Br. J. Cancer 98: 1881-1885. http://dx.doi.org/10.1038/sj.bjc.6604374 PMid:18542062 PMCid:2441952   Maak S, Melesse A, Schmidt R, Schneider F, et al. (2003). Effect of long-term heat exposure on peripheral concentrations of heat shock protein 70 (Hsp70) and hormones in laying hens with different genotypes. Br. Poult. Sci. 44: 133-138. http://dx.doi.org/10.1080/0007166031000085319 PMid:12737235   Mahmoud KZ (2000). Genetic and Environmental Variations of Chicken Heat Shock Proteins. PhD thesis, North Carolina State University, North Carolina.   Mayer MP and Bukau B (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol. Life Sci. 62: 670-684. http://dx.doi.org/10.1007/s00018-004-4464-6 PMid:15770419 PMCid:2773841   Mazzi CM, Ferro MIT, Coelho AAD, Savino VJM, et al. (2002). Effect of heat exposure on the thermoregulatory responses of selected naked neck chickens. Arq. Bras. Med. Vet. Zootec. 54: 35-41. http://dx.doi.org/10.1590/S0102-09352002000100006   Mazzi CM, Ferro JA, Ferro MIT, Savino VJM, et al. (2003). Polymorphism analysis of the hsp70 stress gene in Broiler chickens (Gallus gallus) of different breeds. Genet. Mol. Biol. 3: 275-281.   Robertson KD and Wolffe AP (2000). DNA methylation in health and disease. Nat. Rev. Genet. 1: 11-19. http://dx.doi.org/10.1038/35049533 PMid:11262868   Safe S and Abdelrahim M (2005). Sp transcription factor family and its role in cancer. Eur. J. Cancer 41: 2438-2448. http://dx.doi.org/10.1016/j.ejca.2005.08.006 PMid:16209919   Samson SL and Wong NC (2002). Role of Sp1 in insulin regulation of gene expression. J. Mol. Endocrinol. 29: 265-279. http://dx.doi.org/10.1677/jme.0.0290265 PMid:12459029   Song F, Smith JF, Kimura MT, Morrow AD, et al. (2005). Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc. Natl. Acad. Sci. U. S. A. 102: 3336-3341. http://dx.doi.org/10.1073/pnas.0408436102 PMid:15728362 PMCid:552919   Straussman R, Nejman D, Roberts D, Steinfeld I, et al. (2009). Developmental programming of CpG island methylation profiles in the human genome. Nat. Struct. Mol. Biol. 16: 564-571. http://dx.doi.org/10.1038/nsmb.1594 PMid:19377480   Strichman-Almashanu LZ, Lee RS, Onyango PO, Perlman E, et al. (2002). A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res. 12: 543-554. PMid:11932239 PMCid:187522   Ushijima T and Asada K (2010). Aberrant DNA methylation in contrast with mutations. Cancer Sci. 101: 300-305. http://dx.doi.org/10.1111/j.1349-7006.2009.01434.x PMid:19958364   Wang S and Edens FW (1998). Heat conditioning induces heat shock proteins in broiler chickens and turkey poults. Poult. Sci. 77: 1636-1645. PMid:9835337   Watanabe Y and Maekawa M (2010). Methylation of DNA in cancer. Adv. Clin. Chem. 52: 145-167. http://dx.doi.org/10.1016/S0065-2423(10)52006-7   Xing JY, Kang L, Hu Y, Jiang YL, et al. (2011). Effect of dietary betaine supplementation on mRNA expression and promoter CpG methylation of lipoprotein lipase gene in laying hens. J. Poult. Sci. 3: 224-228.   Xu Q, Zhang Y, Sun D, Wang Y, et al. (2007). Analysis on DNA methylation of various tissues in chicken. Anim. Biotechnol. 18: 231-241. http://dx.doi.org/10.1080/10495390701574838 PMid:17934897   Yossifoff M, Kisliouk T and Meiri N (2008). Dynamic changes in DNA methylation during thermal control establishment affect CREB binding to the brain-derived neurotrophic factor promoter. Eur. J. Neurosci. 28: 2267-2277. http://dx.doi.org/10.1111/j.1460-9568.2008.06532.x PMid:19046370   Zaid A, Li R, Luciakova K, Barath P, et al. (1999). On the role of the general transcription factor Sp1 in the activation and repression of diverse mammalian oxidative phosphorylation genes. J. Bioenerg. Biomembr. 31: 129-135. http://dx.doi.org/10.1023/A:1005499727732 PMid:10449239   Zhang X, Du H and Li J (2002). Single Nucleotide Polymorphism of Chicken Heat Shock Protein 70 Gene. 7th World Congress on Genetics Applied to Livestock Production, Montpellier.   Zhen FS, Du HL, Xu HP, Luo QB, et al. (2006). Tissue and allelic-specific expression of hsp70 gene in chickens: basal and heat-stress-induced mRNA level quantified with real-time reverse transcriptase polymerase chain reaction. Br. Poult. Sci. 47: 449-455. http://dx.doi.org/10.1080/00071660600827690 PMid:16905471
2012
W. G. Xie, Lu, X. F., Zhang, X. Q., Huang, L. K., and Cheng, L., Genetic variation and comparison of orchardgrass (Dactylis glomerata L.) cultivars and wild accessions as revealed by SSR markers, vol. 11, pp. 425-433, 2012.
Benjamin EU, Kolliker R, Fujimori M and Komatsu T (2003). Genetic diversity in diploid cultivars of rhodesgrass determined on the basis of amplified fragment length polymorphism markers. Crop Sci. 43: 1516-1522. http://dx.doi.org/10.2135/cropsci2003.1516 Bolaric S, Barth S, Melchinger AE and Posselt UK (2005). Genetic diversity in European perennial ryegrass cultivars investigated with RAPD markers. Plant Breed. 124: 161-166. http://dx.doi.org/10.1111/j.1439-0523.2004.01032.x Charmet G and Balfourier F (1994). Isozyme variation and species relationships in the genus Lolium L. (Ryegrasses, Graminaceae). Theor. Appl. Genet. 87: 641-649. http://dx.doi.org/10.1007/BF00222888 Cheng ZP and Huang HW (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193. http://dx.doi.org/10.1016/j.scienta.2008.10.008 Clunies-Ross T (1995). Mangolds, manure and mixtures. The importance of crop diversity on British farms. Ecologist 25: 181-187. Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15. Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282    PMCid:1205020 Fjellheim S and Rognli OA (2005). Genetic diversity within and among Nordic meadow fescue (Festuca pratensis Huds.) cultivars determined on the basis of AFLP markers. Crop Sci. 45: 2081-2086. http://dx.doi.org/10.2135/cropsci2005.0091 Hamrick JL and Godt MJW (1990). Allozyme Diversity in Plant Species. In: Plant Population Genetics, Breeding, and Genetic Resources (Brown AHD, Clegg MT and Kahler AL, eds.). Sinauer, Sunderland, 43-63. Larson SR, Jones TA and Jensen KB (2004). Population structure in Pseudoroegneria spicata (Poaceae: Triticeae) modeled by Bayesian clustering of AFLP genotypes. Am. J. Bot. 91: 1789-1801. http://dx.doi.org/10.3732/ajb.91.11.1789 PMid:21652326 Nei M (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70: 3321-3323. http://dx.doi.org/10.1073/pnas.70.12.3321 Peng Y, Zhang X, Deng Y and Ma X (2008). Evaluation of genetic diversity in wild orchardgrass (Dactylis glomerata L.) based on AFLP markers. Hereditas 145: 174-181. http://dx.doi.org/10.1111/j.0018-0661.2008.02038.x Rohlf FJ (1997). NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Ver. 108. Applied Biostatistics Inc., New York. Tahan O, Geng Y, Zeng L, Dong S, et al. (2009). Assessment of genetic diversity and population structure of Chinese wild almond, Amygdalus nana, using EST- and genomic-SSRs. Biochem. Syst. Ecol. 37: 146-153. http://dx.doi.org/10.1016/j.bse.2009.02.006 Xie WG, Zhang XQ, Cai HW, Liu W, et al. (2010). Genetic diversity analysis and transferability of cereal EST-SSR markers to orchardgrass (Dactylis glomerata L.). Biochem. Syst. Ecol. 38: 740-749. http://dx.doi.org/10.1016/j.bse.2010.06.009 Yeh FC, Yang RC and Boyle T (1999). POPGENE ver. 1.32. Microsoft Windows-Based Freeware for Population Genetic Analysis. Quick User Guide. Center Int. For. Res. University of Alberta, Edmonton. Zeng B, Zhang XQ, Fan Y, Lan Y, et al. (2006). Genetic diversity of Dactylis glomerata germplasm resources detected by inter-simple sequence repeats (ISSRS) molecular markers. Yi. Chuan 28: 1093-1100. http://dx.doi.org/10.1360/yc-006-1093 PMid:16963418 Zeng B, Zhang XQ and Lan Y (2008). Evaluation of genetic diversity and relationships in orchardgrass (Dactylis glomerata L.) germplasm based on SRAP markers. Can. J. Plant Sci. 88: 53-60. http://dx.doi.org/10.4141/CJPS07017 Zhang FM (2001). DCFA 1.1, a Program Companied with AMOVA to Compute the Matrix of Distance. Laboratory of Systematics and Evolutionary Botany, Institute of Botany. The Chinese Academy of Sciences, Beijing. Zoghlami N, Riahi L, Laucou V, Lacombe T, et al. (2009). Origin and genetic diversity of Tunisian grapes as revealed by microsatellite markers. Sci. Hortic. 120: 479-486. http://dx.doi.org/10.1016/j.scienta.2008.12.011
2011
H. P. Xu, He, X. M., Fang, M. X., Hu, Y. S., Jia, X. Z., Nie, Q. H., and Zhang, X. Q., Molecular cloning, expression and variation analyses of the dopamine D2 receptor gene in pig breeds in China, vol. 10, pp. 3371-3384, 2011.
Baskerville TA and Douglas AJ (2010). Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders. CNS Neurosci. Ther. 16: e92-123. http://dx.doi.org/10.1111/j.1755-5949.2010.00154.x PMid:20557568   Blasi G, Lo Bianco L, Taurisano P, Gelao B, et al. (2009). Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans. J. Neurosci. 29: 14812-14819. http://dx.doi.org/10.1523/JNEUROSCI.3609-09.2009 PMid:19940176 PMCid:2834475   Bunzow JR, Van Tol HH, Grandy DK, Albert P, et al. (1988). Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336: 783-787. http://dx.doi.org/10.1038/336783a0 PMid:2974511   Dal Toso R, Sommer B, Ewert M, Herb A, et al. (1989). The dopamine D2 receptor: two molecular forms generated by alternative splicing. EMBO J. 8: 4025-4034. PMid:2531656 PMCid:401577   Duan J, Wainwright MS, Comeron JM, Saitou N, et al. (2003). Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet. 12: 205-216. http://dx.doi.org/10.1093/hmg/ddg055 PMid:12554675   Grandy DK, Marchionni MA, Makam H, Stofko RE, et al. (1989). Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc. Natl. Acad. Sci. U. S. A. 86: 9762-9766. http://dx.doi.org/10.1073/pnas.86.24.9762 PMid:2532362 PMCid:298581   Guiramand J, Montmayeur JP, Ceraline J, Bhatia M, et al. (1995). Alternative splicing of the dopamine D2 receptor directs specificity of coupling to G-proteins. J. Biol. Chem. 270: 7354-7358. http://dx.doi.org/10.1074/jbc.270.13.7354 PMid:7706278   Hearn MG, Ren Y, McBride EW, Reveillaud I, et al. (2002). A Drosophila dopamine 2-like receptor: Molecular characterization and identification of multiple alternatively spliced variants. Proc. Natl. Acad. Sci. U. S. A. 99: 14554- 14559. http://dx.doi.org/10.1073/pnas.202498299 PMid:12391323 PMCid:137921   Jungerius BJ, Gu J, Crooijmans RP, van der Poel JJ, et al. (2005). Estimation of the extent of linkage disequilibrium in seven regions of the porcine genome. Anim. Biotechnol. 16: 41-54. http://dx.doi.org/10.1081/ABIO-200053402 PMid:15926262   Kalani MY, Vaidehi N, Hall SE, Trabanino RJ, et al. (2004). The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proc. Natl. Acad. Sci. U. S. A. 101: 3815-3820. http://dx.doi.org/10.1073/pnas.0400100101 PMid:14999101 PMCid:374327   Korchounov A, Meyer MF and Krasnianski M (2010). Postsynaptic nigrostriatal dopamine receptors and their role in movement regulation. J. Neural. Transm. 117: 1359-1369. http://dx.doi.org/10.1007/s00702-010-0454-z PMid:21076988 PMCid:3000910   Kruger J and Rehmsmeier M (2006). RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 34: W451-W454. http://dx.doi.org/10.1093/nar/gkl243 PMid:16845047 PMCid:1538877   Levavi-Sivan B, Aizen J and Avitan A (2005). Cloning, characterization and expression of the D2 dopamine receptor from the tilapia pituitary. Mol. Cell Endocrinol. 236: 17-30. http://dx.doi.org/10.1016/j.mce.2005.03.010 PMid:15876479   Lindgren N, Usiello A, Goiny M, Haycock J, et al. (2003). Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites. Proc. Natl. Acad. Sci. U. S. A. 100: 4305-4309. http://dx.doi.org/10.1073/pnas.0730708100 PMid:12651945 PMCid:153088   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Mack KJ, Todd RD and O'Malley KL (1991). The mouse dopamine D2A receptor gene: sequence homology with the rat and human genes and expression of alternative transcripts. J. Neurochem. 57: 795-801. http://dx.doi.org/10.1111/j.1471-4159.1991.tb08221.x PMid:1861151   Missale C, Nash SR, Robinson SW, Jaber M, et al. (1998). Dopamine receptors: from structure to function. Physiol. Rev. 78: 189-225. PMid:9457173   Montmayeur JP, Bausero P, Amlaiky N, Maroteaux L, et al. (1991). Differential expression of the mouse D2 dopamine receptor isoforms. FEBS Lett. 278: 239-243. http://dx.doi.org/10.1016/0014-5793(91)80125-M   Moyer RA, Wang D, Papp AC, Smith RM, et al. (2011). Intronic polymorphisms affecting alternative splicing of human dopamine D2 receptor are associated with cocaine abuse. Neuropsychopharmacology 36: 753-762. http://dx.doi.org/10.1038/npp.2010.208 PMid:21150907 PMCid:3055737   Myeong H, Jeoung D, Kim H, Ha JH, et al. (2000). Genomic analysis and functional expression of canine dopamine D2 receptor. Gene 257: 99-107. http://dx.doi.org/10.1016/S0378-1119(00)00384-X   Nakano M, Hasunuma I, Okada R, Yamamoto K, et al. (2010). Molecular cloning of bullfrog D2 dopamine receptor cDNA: Tissue distribution of three isoforms of D2 dopamine receptor mRNA. Gen. Comp. Endocrinol. 168: 143- 148. http://dx.doi.org/10.1016/j.ygcen.2010.04.016 PMid:20417207   Neve KA, Neve RL, Fidel S, Janowsky A, et al. (1991). Increased abundance of alternatively spliced forms of D2 dopamine receptor mRNA after denervation. Proc. Natl. Acad. Sci. U. S. A. 88: 2802-2806. http://dx.doi.org/10.1073/pnas.88.7.2802 PMid:1826366 PMCid:51327   O'Malley KL, Mack KJ, Gandelman KY and Todd RD (1990). Organization and expression of the rat D2A receptor gene: identification of alternative transcripts and a variant donor splice site. Biochemistry 29: 1367-1371. http://dx.doi.org/10.1021/bi00458a003 PMid:2139794   Obadiah J, Avidor-Reiss T, Fishburn CS, Carmon S, et al. (1999). Adenylyl cyclase interaction with the D2 dopamine receptor family; differential coupling to Gi, Gz, and Gs. Cell Mol. Neurobiol. 19: 653-664. http://dx.doi.org/10.1023/A:1006988603199 PMid:10384262   Pasqualini C, Weltzien FA, Vidal B, Baloche S, et al. (2009). Two distinct dopamine D2 receptor genes in the European eel: molecular characterization, tissue-specific transcription, and regulation by sex steroids. Endocrinology 150: 1377-1392. http://dx.doi.org/10.1210/en.2008-0578 PMid:18974275   Pivonello R, Ferone D, Lombardi G, Colao A, et al. (2007). Novel insights in dopamine receptor physiology. Eur. J. Endocrinol. 156 (Suppl 1): S13-S21. http://dx.doi.org/10.1530/eje.1.02353 PMid:17413183   Ramírez AR, Castro MA, Angulo C, Ramió L, et al. (2009). The presence and function of dopamine type 2 receptors in boar sperm: a possible role for dopamine in viability, capacitation, and modulation of sperm motility. Biol. Reprod. 80: 753-761. http://dx.doi.org/10.1095/biolreprod.108.070961 PMid:19074002   Sasabe T and Ishiura S (2010). Alcoholism and alternative splicing of candidate genes. Int. J. Environ. Res. Public Health 7: 1448-1466. http://dx.doi.org/10.3390/ijerph7041448 PMid:20617039 PMCid:2872348   Schnell SA, You S, Foster DN and El Halawani ME (1999). Molecular cloning and tissue distribution of an avian D2 dopamine receptor mRNA from the domestic turkey (Maleagris gallopavo). J. Comp. Neurol. 407: 543-554. http://dx.doi.org/10.1002/(SICI)1096-9861(19990517)407:4<543::AID-CNE6>3.0.CO;2-O   Seeman P, Nam D, Ulpian C, Liu IS, et al. (2000). New dopamine receptor, D2(Longer), with unique TG splice site, in human brain. Brain Res. Mol. Brain Res. 76: 132-141. http://dx.doi.org/10.1016/S0169-328X(99)00343-5   Senogles SE, Heimert TL, Odife ER and Quasney MW (2004). A region of the third intracellular loop of the short form of the D2 dopamine receptor dictates Gi coupling specificity. J. Biol. Chem. 279: 1601-1606. http://dx.doi.org/10.1074/jbc.M309792200 PMid:14581469   Shi L and Javitch JA (2002). The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu. Rev. Pharmacol. Toxicol. 42: 437-467. http://dx.doi.org/10.1146/annurev.pharmtox.42.091101.144224 PMid:11807179   Taylor TD, Noguchi H, Totoki Y, Toyoda A, et al. (2006). Human chromosome 11 DNA sequence and analysis including novel gene identification. Nature 440: 497-500. http://dx.doi.org/10.1038/nature04632 PMid:16554811   Usiello A, Baik JH, Rougé-Pont F, Picetti R, et al. (2000). Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408: 199-203. http://dx.doi.org/10.1038/35041572 PMid:11089973   Wiedmann RT, Smith TP and Nonneman DJ (2008). SNP discovery in swine by reduced representation and high throughput pyrosequencing. BMC Genet. 9: 81. http://dx.doi.org/10.1186/1471-2156-9-81 PMid:19055830 PMCid:2612698   Zhang Y, Bertolino A, Fazio L, Blasi G, et al. (2007). Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc. Natl. Acad. Sci. U. S. A. 104: 20552- 20557. http://dx.doi.org/10.1073/pnas.0707106104 PMid:18077373 PMCid:2154469   Zimin AV, Delcher AL, Florea L, Kelley DR, et al. (2009). A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10: R42. http://dx.doi.org/10.1186/gb-2009-10-4-r42 PMid:19393038 PMCid:2688933
H. P. Xu, Zeng, H., Zhang, D. X., Jia, X. L., Luo, C. L., Fang, M. X., Nie, Q. H., and Zhang, X. Q., Polymorphisms associated with egg number at 300 days of age in chickens, vol. 10, pp. 2279-2289, 2011.
Al Kahtane, Chaiseha Y and El Halawani M (2003). Dopaminergic regulation of avian prolactin gene transcription. J. Mol. Endocrinol. 31: 185-196. http://dx.doi.org/10.1677/jme.0.0310185 PMid:12914535 Caldwell SR, Johnson AF, Yule TD, Grimes JL, et al. (1999). Increased egg production in juvenile turkey hens after active immunization with vasoactive intestinal peptide. Poult. Sci. 78: 899-901. PMid:10438136 Chaiseha Y, Youngren OM and El Halawani ME (2004). Expression of vasoactive intestinal peptide receptor messenger RNA in the hypothalamus and pituitary throughout the turkey reproductive cycle. Biol. Reprod. 70: 593-599. http://dx.doi.org/10.1095/biolreprod.103.022715 PMid:14568918 Chatterjee R, Sharma RP, Bhattacharya TK, Niranjan M, et al. (2010). Microsatellite variability and its relationship with growth, egg production, and immunocompetence traits in chickens. Biochem. Genet. 48: 71-82. http://dx.doi.org/10.1007/s10528-009-9296-5 PMid:20094843 Chen CF, Shiue YL, Yen CJ, Tang PC, et al. (2007). Laying traits and underlying transcripts, expressed in the hypothalamus and pituitary gland, that were associated with egg production variability in chickens. Theriogenology 68: 1305-1315. http://dx.doi.org/10.1016/j.theriogenology.2007.08.032 PMid:17931698 Cui JX, Du HL, Liang Y, Deng XM, et al. (2006). Association of polymorphisms in the promoter region of chicken prolactin with egg production. Poult. Sci. 85: 26-31. PMid:16493942 Dhillon SS, Gingerich S and Belsham DD (2009). Neuropeptide Y induces gonadotropin-releasing hormone gene expression directly and through conditioned medium from mHypoE-38 NPY neurons. Regul. Pept. 156: 96-103. http://dx.doi.org/10.1016/j.regpep.2009.04.005 PMid:19371763 Dunn IC, Miao YW, Morris A, Romanov MN, et al. (2004). A study of association between genetic markers in candidate genes and reproductive traits in one generation of a commercial broiler breeder hen population. Heredity 92: 128-134. http://dx.doi.org/10.1038/sj.hdy.6800396 PMid:14679392 El Halawani ME, Silsby JL, Rozenboim I and Pitts GR (1995). Increased egg production by active immunization against vasoactive intestinal peptide in the turkey (Meleagris gallopavo). Biol. Reprod. 52: 179-183. http://dx.doi.org/10.1095/biolreprod52.1.179 PMid:7711177 El Halawani ME, Pitts GR, Sun S, Silsby JL, et al. (1996). Active immunization against vasoactive intestinal peptide prevents photo-induced prolactin secretion in turkeys. Gen. Comp. Endocrinol. 104: 76-83. http://dx.doi.org/10.1006/gcen.1996.0143 PMid:8921358 Emsley A (1997). Integration of classical and molecular approaches of genetic selection: egg production. Poult. Sci. 76: 1127-1130. PMid:9251140 Hansen C, Yi N, Zhang YM, Xu S, et al. (2005). Identification of QTL for production traits in chickens. Anim. Biotechnol. 16: 67-79. http://dx.doi.org/10.1081/ABIO-200055016 PMid:15926264 Hirayama S, Bajari TM, Nimpf J and Schneider WJ (2003). Receptor-mediated chicken oocyte growth: differential expression of endophilin isoforms in developing follicles. Biol. Reprod. 68: 1850-1860. http://dx.doi.org/10.1095/biolreprod.102.012427 PMid:12606338 Kim MH, Seo DS and Ko Y (2004). Relationship between egg productivity and insulin-like growth factor-I genotypes in Korean native Ogol chickens. Poult. Sci. 83: 1203-1208. PMid:15285513 Klenke U, Constantin S and Wray S (2010). Neuropeptide Y directly inhibits neuronal activity in a subpopulation of gonadotropin-releasing hormone-1 neurons via Y1 receptors. Endocrinology 151: 2736-2746. http://dx.doi.org/10.1210/en.2009-1198 PMid:20351316    PMCid:2875836 Kuo YM, Shiue YL, Chen CF, Tang PC, et al. (2005). Proteomic analysis of hypothalamic proteins of high and low egg production strains of chickens. Theriogenology 64: 1490-1502. http://dx.doi.org/10.1016/j.theriogenology.2005.03.020 PMid:16182870 Leska A and Dusza L (2007). Seasonal changes in the hypothalamo-pituitary-gonadal axis in birds. Reprod. Biol. 7: 99- 126. PMid:17873963 Lewis PD and Gous RM (2006). Effect of final photoperiod and twenty-week body weight on sexual maturity and early egg production in broiler breeders. Poult. Sci. 85: 377-383. PMid:16553263 Liu HK, Lilburn MS, Koyyeri B, Anderson JW, et al. (2004). Preovulatory surge patterns of luteinizing hormone, progesterone, and estradiol-17beta in broiler breeder hens fed ad libitum or restricted fed. Poult. Sci. 83: 823-829. PMid:15141842 Luo PT, Yang RQ and Yang N (2007). Estimation of genetic parameters for cumulative egg numbers in a broiler dam line by using a random regression model. Poult. Sci. 86: 30-36. PMid:17179412 Proudman JA, Scanes CG, Johannsen SA, Berghman LR, et al. (2006). Comparison of the ability of the three endogenous GnRHs to stimulate release of follicle-stimulating hormone and luteinizing hormone in chickens. Domest. Anim. Endocrinol. 31: 141-153. http://dx.doi.org/10.1016/j.domaniend.2005.10.002 PMid:16300920 Reddy IJ, David CG and Raju SS (2007). Effect of suppression of plasma prolactin on luteinizing hormone concentration, intersequence pause days and egg production in domestic hen. Domest. Anim. Endocrinol. 33: 167-175. http://dx.doi.org/10.1016/j.domaniend.2006.05.002 PMid:16787735 Reutens AT and Begley CG (2002). Endophilin-1: a multifunctional protein. Int. J. Biochem. Cell Biol. 34: 1173-1177. http://dx.doi.org/10.1016/S1357-2725(02)00063-8 Rodríguez S, Gaunt TR, Dennison E, Chen XH, et al. (2006). Replication of IGF2-INS-TH*5 haplotype effect on obesity in older men and study of related phenotypes. Eur. J. Hum. Genet. 14: 109-116. PMid:16251897 Sartsoongnoen N, Kosonsiriluk S, Prakobsaeng N, Songserm T, et al. (2008). The dopaminergic system in the brain of the native Thai chicken, Gallus domesticus: localization and differential expression across the reproductive cycle. Gen. Comp. Endocrinol. 159: 107-115. http://dx.doi.org/10.1016/j.ygcen.2008.08.002 PMid:18765240 Sasaki O, Odawara S, Takahashi H, Nirasawa K, et al. (2004). Genetic mapping of quantitative trait loci affecting body weight, egg character and egg production in F2 intercross chickens. Anim. Genet. 35: 188-194. http://dx.doi.org/10.1111/j.1365-2052.2004.01133.x PMid:15147389 Schmidt A, Wolde M, Thiele C, Fest W, et al. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401: 133-141. http://dx.doi.org/10.1038/43613 PMid:10490020 Schreiweis MA, Hester PY, Settar P and Moody DE (2006). Identification of quantitative trait loci associated with egg quality, egg production, and body weight in an F2 resource population of chickens. Anim. Genet. 37: 106-112. http://dx.doi.org/10.1111/j.1365-2052.2005.01394.x PMid:16573524 Shacham S, Harris D, Ben-Shlomo H, Cohen I, et al. (2001). Mechanism of GnRH receptor signaling on gonadotropin release and gene expression in pituitary gonadotrophs. Vitam. Horm. 63: 63-90. http://dx.doi.org/10.1016/S0083-6729(01)63003-6 Sharp PJ (2005). Photoperiodic regulation of seasonal breeding in birds. Ann. Acad. Sci. 1040: 189-199. http://dx.doi.org/10.1196/annals.1327.024 PMid:15891024 Shiue YL, Chen LR, Chen CF, Chen YL, et al. (2006). Identification of transcripts related to high egg production in the chicken hypothalamus and pituitary gland. Theriogenology 66: 1274-1283. http://dx.doi.org/10.1016/j.theriogenology.2006.03.037 PMid:16725186 Soñez MC, Soñez CA, Mugnaini MT, Haedo M, et al. (2010). Effects of differential pulse frequencies of chicken gonadotrophin-releasing hormone-I (cGnRH-I) on laying hen gonadotrope responses in vitro. Biotech. Histochem. 85: 355-363. http://dx.doi.org/10.3109/10520290903368774 Tuiskula-Haavisto M, Honkatukia M, Vilkki J, de Koning DJ, et al. (2002). Mapping of quantitative trait loci affecting quality and production traits in egg layers. Poult. Sci. 81: 919-927. PMid:12162350 Tuiskula-Haavisto M, de Koning DJ, Honkatukia M, Schulman NF, et al. (2004). Quantitative trait loci with parent-of-origin effects in chicken. Genet. Res. 84: 57-66. http://dx.doi.org/10.1017/S0016672304006950 PMid:15663259 Xu H, Shen X, Zhou M, Fang M, et al. (2010a). The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet. 11: 17. http://dx.doi.org/10.1186/1471-2156-11-17 PMid:20199684    PMCid:2848132 Xu HP, Shen X, Zhou M, Luo CL, et al. (2010b). The dopamine D2 receptor gene polymorphisms associated with chicken broodiness. Poult. Sci. 89: 428-438. http://dx.doi.org/10.3382/ps.2009-00428 PMid:20181857 Zhang K, Calabrese P, Nordborg M and Sun F (2002). Haplotype block structure and its applications to association studies: power and study designs. Am. J. Hum. Genet. 71: 1386-1394. http://dx.doi.org/10.1086/344780 PMid:12439824 Zhou M, Lei M, Rao Y, Nie Q, et al. (2008a). Polymorphisms of vasoactive intestinal peptide receptor-1 gene and their genetic effects on broodiness in chickens. Poult. Sci. 87: 893-903. http://dx.doi.org/10.3382/ps.2007-00495 PMid:18420979 Zhou M, Liang F, Rao Y and Zeng H (2008b). Association of twelve polymorphisms of the VIPR-1 gene with chicken early egg production traits. Chinese J. Anim. Vet. Sci. 39: 1147-1152. Zhou M, Du Y, Nie Q, Liang Y, et al. (2010). Associations between polymorphisms in the chicken VIP gene, egg production and broody traits. Br. Poult. Sci. 51: 195-203. http://dx.doi.org/10.1080/00071661003745786 PMid:20461580
2010
J. J. Zhang, Zhang, X. Q., Liu, Y. H., Liu, H. M., Wang, Y. B., Tian, M. L., and Huang, Y. B., Variation characteristics of the nitrate reductase gene of key inbred maize lines and derived lines in China, vol. 9, pp. 1824-1835, 2010.
Ali ML, Taylor JH, Jie L, Sun G, et al. (2005). Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome 48: 521-533. http://dx.doi.org/10.1139/g05-014 PMid:16121248   Appenroth K, Meco R, Jourdan VV and Lillo C (2000). Phytochrome and post-translational regulation of nitrate reductase in higher plants. Plant Sci. 159: 51-56. http://dx.doi.org/10.1016/S0168-9452(00)00323-X   Campbell WH (1999). Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Ver. Plant Physiol. Plant. Mol. Biol. 50: 277-303. http://dx.doi.org/10.1146/annurev.arplant.50.1.277 PMid:15012211   Chen Y, Chao Q, Tan G, Zhao J, et al. (2008). Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor. Appl. Genet. 117: 1241-1252. http://dx.doi.org/10.1007/s00122-008-0858-4 PMid:18762906   Chuanchai P, Tan XI, Silapapun A and Suthipong P (2010). Early hybrid testing in tropical maize: are molecular markers useful for selecting the parental component? Kasetsart J. Nat. Sci. 44: 70-78.   Desikan R, Griffiths R, Hancock J and Neill S (2002). A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 99: 16314-16318. http://dx.doi.org/10.1073/pnas.252461999 PMid:12446847 PMCid:138608   Foyer CH, Valadier MH, Migge A and Becker TW (1998). Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol. 117: 283-292. http://dx.doi.org/10.1104/pp.117.1.283 PMid:9576798 PMCid:35013   Fulton TM, Chunwongse J and Tanksley SD (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209. http://dx.doi.org/10.1007/BF02670897   Huber JL, Redinbaugh MG, Huber SC and Campbell WH (1994). Regulation of maize leaf nitrate reductase activity involves both gene expression and protein phosphorylation. Plant Physiol. 106: 1667-1674. PMid:12232440 PMCid:159711   Kolbert Z and Erdei L (2008). Involvement of nitrate reductase in auxin-induced NO synthesis. Plant Signal Behav. 3: 972-973. PMid:19704423 PMCid:2633746   Krakowsky MD, Lee M, Garay L, Woodman-Clikeman W, et al. (2006). Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.). Theor. Appl. Genet. 113: 821-830. http://dx.doi.org/10.1007/s00122-006-0334-y PMid:16896717   Legesse BW, Myburg AA, Pixley KV and Botha AM (2007). Genetic diversity of African maize inbred lines revealed by SSR markers. Hereditas 144: 10-17. http://dx.doi.org/10.1111/j.2006.0018-0661.01921.x PMid:17567435   Li SS (1997). Selection and application of maize inbred line huangzaosi. Beijing Agric. Sci. 15: 19-21.   Li DH, Mao LH, Yang JS and Liu JG (2005). Breeding process and utilization of excellent maize inbred line 478. J. Laiyang Agric. Coll. 22: 159-164. http://dx.doi.org/10.1007/s10595-005-0075-7   Li XH, Yuan LX, Li XH and Zhang SH (2003). Heterotic grouping of 70 maize inbred lines by SSR markers. Sci. Agric. Sinica 36: 622-627.   Li Y, Wang Y, Wei M and Li X (2009). QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.). J. Genet. 88: 61-66. http://dx.doi.org/10.1007/s12041-009-0008-z PMid:19417545   Lu BL, Zhao WY and Liu RZ (2004). The influence and contribution of the hybrids crossed by Mo17 deriving self inbred lines to the production of China. J. Maize Sci. 12: 127-128.   Lu Y, Yan J, Guimaraes CT, Taba S, et al. (2009). Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor. Appl. Genet. 120: 93-115. http://dx.doi.org/10.1007/s00122-009-1162-7 PMid:19823800   Menkir A, Kling JG, Badu-Apraku B and Ingelbrecht I (2005). Molecular marker-based genetic diversity assessment of striga-resistant maize inbred lines. Theor. Appl. Genet. 110: 1145-1153. http://dx.doi.org/10.1007/s00122-005-1946-3 PMid:15750826   Ning JL, Gao HM, Qu G and Yu B (2002). Utilization of inbred lines of Ludahonggu group in corn breeding and production in China. Rain Fed. Crops 22: 63-65.   Qu G, Xu WW, Chen DY and Li FZ (2002). Selection and application of superior maize inbred line Dan340. J. Maize Sci. 10: 30-33.   Schrag TA, Mohring J, Melchinger AE, Kusterer B, et al. (2010). Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Theor. Appl. Genet. 120: 451-461. http://dx.doi.org/10.1007/s00122-009-1208-x PMid:19916002   Sivasankar S and Oaks A (1995). Regulation of nitrate reductase during early seedling growth (a role for asparagine and glutamine). Plant Physiol. 107: 1225-1231. PMid:12228428 PMCid:157256   Stevens R (2008). Prospects for using marker-assisted breeding to improve maize production in Africa. J. Sci. Food Agric. 88: 745-755. http://dx.doi.org/10.1002/jsfa.3154   Stöhr C and Ullrich WR (1997). A succinate-oxidising nitrate reductase is located at the plasma membrane of plant roots. Planta 203: 129-132. http://dx.doi.org/10.1007/s00050173   Szalma SJ, Hostert BM, Ledeaux JR, Stuber CW, et al. (2007). QTL mapping with near-isogenic lines in maize. Theor. Appl. Genet. 114: 1211-1228. http://dx.doi.org/10.1007/s00122-007-0512-6 PMid:17308934   Taramino G and Tingey S (1996). Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277-287. http://dx.doi.org/10.1139/g96-038 PMid:8984002   Wang CL, Cheng FF, Sun ZH, Tang JH, et al. (2008). Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor. Appl. Genet. 117: 1129-1139. http://dx.doi.org/10.1007/s00122-008-0851-y PMid:18677461   Wang YB, Wang ZH, Wang YP and Zhang X (1997). The analysis of heterotic group and improve of Chinese maize germplasm. Acta Agric. Boreali-Sinica 13: 74-80.   Xu SX, Liu J and Liu GS (2004). The use of SSRs for predicting the hybrid yield and yield heterosis in 15 key inbred lines of Chinese maize. Hereditas 141: 207-215. http://dx.doi.org/10.1111/j.1601-5223.2004.01865.x PMid:15703037   Xu YR, Liu XE, Sun FM and Jiao RH (2006). The application of Mo17 and derived in Chinese. J. Jilin Agric. Sci. 31: 26-28.   Yan JB, Tang H, Huang YQ, Shi YG, et al. (2003). Genomic analysis of plant height in maize through molecular marker. Sci. Agric. Sinica 10: 1069-1075.   Zeng SX, Ren R and Liu XZ (1996). The important position of huangzaosi in maize breeding and production in China. J. Maize Sci. 4: 1-6.   Zhang SH (2005). Maize Production and Research in China: Advancement and Challenges, p. 3. In: Proceedings of the Ninth Asia Regional Maize Workshop, September 5-9, Beijing.   Zhang JH, Zhang JY, Yang XH, Jin H, et al. (2007). A study on genetic relationship of main maize inbred lines in Yunnan by SSR markers. J. Maize Sci. 15: 30-35.   Zhuang QS (2003). Chinese Wheat Improvement and Pedigree Analysis. Agricultural Publishing House, Beijing.