Publications
Found 25 results
Filters: Author is R.X. Wang [Clear All Filters]
“Chromosome 7 translocation breakpoints in male carriers: clinical features and implications for genetic counseling”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
We express our sincere gratitude to the staff of the Genetics Laboratory, Center for Prenatal Diagnosis, First Hospital, Jilin University, for their support. Research supported by the National Natural Science Fund (#81471515).
REFERENCES
Avidan N, Tamary H, Dgany O, Cattan D, et al (2003). CATSPER2, a human autosomal nonsyndromic male infertility gene. Eur. J. Hum. Genet. 11: 497-502. http://dx.doi.org/10.1038/sj.ejhg.5200991
Bianco B, Christofolini D, Gava M, Mafra F, et al (2011). Severe oligospermia associated with a unique balanced reciprocal translocation t(6;12)(q23;q24.3): male infertility related to t(6;12). Andrologia 43: 145-148. http://dx.doi.org/10.1111/j.1439-0272.2009.01020.x
Dutta UR, Rajitha P, Pidugu VK, Dalal AB, et al (2011). Cytogenetic abnormalities in 1162 couples with recurrent miscarriages in southern region of India: report and review. J. Assist. Reprod. Genet. 28: 145-149. http://dx.doi.org/10.1007/s10815-010-9492-6
Fryns JP, Van Buggenhout G, et al (1998). Structural chromosome rearrangements in couples with recurrent fetal wastage. Eur. J. Obstet. Gynecol. Reprod. Biol. 81: 171-176. http://dx.doi.org/10.1016/S0301-2115(98)00185-7
Gaboon NE, Mohamed AR, Elsayed SM, Zaki OK, et al (2015). Structural chromosomal abnormalities in couples with recurrent abortion in Egypt. Turk. J. Med. Sci. 45: 208-213. http://dx.doi.org/10.3906/sag-1310-5
Gada Saxena S, Desai K, Shewale L, Ranjan P, et al (2012). Chromosomal aberrations in 2000 couples of Indian ethnicity with reproductive failure. Reprod. Biomed. Online 25: 209-218. http://dx.doi.org/10.1016/j.rbmo.2012.04.004
Ghazaey S, Keify F, Mirzaei F, Maleki M, et al (2015). Chromosomal analysis of couples with repeated spontaneous abortions in northeastern iran. Int. J. Fertil. Steril. 9: 47-54.
Godo A, Blanco J, Vidal F, Anton E, et al (2013). Accumulation of numerical and structural chromosome imbalances in spermatozoa from reciprocal translocation carriers. Hum. Reprod. 28: 840-849. http://dx.doi.org/10.1093/humrep/des431
Hao Z, Wolkowicz MJ, Shetty J, Klotz K, et al (2002). SAMP32, a testis-specific, isoantigenic sperm acrosomal membrane-associated protein. Biol. Reprod. 66: 735-744. http://dx.doi.org/10.1095/biolreprod66.3.735
Harton GL, Tempest HG, et al (2012). Chromosomal disorders and male infertility. Asian J. Androl. 14: 32-39. http://dx.doi.org/10.1038/aja.2011.66
Ichioka K, Yoshimura K, Honda T, Takahashi A, et al (2005). Paracentric inversion of chromosome 7(q22-31) associated with nonobstructive azoospermia. Fertil. Steril. 83: 455-456. http://dx.doi.org/10.1016/j.fertnstert.2004.06.070
Jones MH, Davey PM, Aplin H, Affara NA, et al (1995). Expression analysis, genomic structure, and mapping to 7q31 of the human sperm adhesion molecule gene SPAM1. Genomics 29: 796-800. http://dx.doi.org/10.1006/geno.1995.9931
Kochhar PK, Ghosh P, et al (2013). Reproductive outcome of couples with recurrent miscarriage and balanced chromosomal abnormalities. J. Obstet. Gynaecol. Res. 39: 113-120. http://dx.doi.org/10.1111/j.1447-0756.2012.01905.x
Li L, Chen H, Yin C, Yang C, et al (2014). Mapping breakpoints of a familial chromosome insertion (18,7) (q22.1; q36.2q21.11) to DPP6 and CACNA2D1 genes in an azoospermic male. Gene 547: 43-49. http://dx.doi.org/10.1016/j.gene.2014.06.007
Li LL, Dong Y, Wang RX, An N, et al (2015). Sperm aneuploidy and implications for genetic counseling in a pedigree of three t(1;3) balanced translocation carriers. Genet. Mol. Res. 14: 5003-5009. http://dx.doi.org/10.4238/2015.May.12.3
Martin-DeLeon PA, et al (2006). Epididymal SPAM1 and its impact on sperm function. Mol. Cell. Endocrinol. 250: 114-121. http://dx.doi.org/10.1016/j.mce.2005.12.033
Niroumanesh S, Mehdipour P, Farajpour A, Darvish S, et al (2011). A cytogenetic study of couples with repeated spontaneous abortions. Ann. Saudi Med. 31: 77-79. http://dx.doi.org/10.4103/0256-4947.75785
Pasquier L, Fradin M, Chérot E, Martin-Coignard D, et al (2016). Karyotype is not dead (yet)! Eur. J. Med. Genet. 59: 11-15. http://dx.doi.org/10.1016/j.ejmg.2015.11.016
Pastuszek E, Kiewisz J, Kulwikowska PM, Lukaszuk M, et al (2015). Sperm parameters and DNA fragmentation of balanced chromosomal rearrangements carriers. Folia Histochem. Cytobiol. 53: 314-321. http://dx.doi.org/10.5603/fhc.a2015.0032
Pernice F, Mazza G, Puglisi D, Luppino MG, et al (2002). Nonrobertsonian translocation t(6;11) is associated with infertility in an oligoazoospermic male. Fertil. Steril. 78: 192-194. http://dx.doi.org/10.1016/S0015-0282(02)03180-1
Tharapel AT, Tharapel SA, Bannerman RM, et al (1985). Recurrent pregnancy losses and parental chromosome abnormalities: a review. Br. J. Obstet. Gynaecol. 92: 899-914. http://dx.doi.org/10.1111/j.1471-0528.1985.tb03069.x
Tunç E, Tanrıverdi N, Demirhan O, Süleymanova D, et al (2016). Chromosomal analyses of 1510 couples who have experienced recurrent spontaneous abortions. Reprod. Biomed. Online 32: 414-419. http://dx.doi.org/10.1016/j.rbmo.2016.01.006
van Baren MJ, van der Linde HC, Breedveld GJ, Baarends WM, et al (2002). A double RING-H2 domain in RNF32, a gene expressed during sperm formation. Biochem. Biophys. Res. Commun. 292: 58-65. http://dx.doi.org/10.1006/bbrc.2002.6612
Vozdova M, Oracova E, Horinova V, Rubes J, et al (2008). Sperm fluorescence in situ hybridization study of meiotic segregation and an interchromosomal effect in carriers of t(11;18). Hum. Reprod. 23: 581-588. http://dx.doi.org/10.1093/humrep/dem345
Vozdova M, Oracova E, Kasikova K, Prinosilova P, et al (2013). Balanced chromosomal translocations in men: relationships among semen parameters, chromatin integrity, sperm meiotic segregation and aneuploidy. J. Assist. Reprod. Genet. 30: 391-405. http://dx.doi.org/10.1007/s10815-012-9921-9
Zhang HG, Liu XY, Hou Y, Chen S, et al (2015a). Reproductive outcome of a case with familial balanced translocation t(3;6): implications for genetic counseling. Genet. Mol. Res. 14: 2809-2815. http://dx.doi.org/10.4238/2015.March.31.11
Zhang HG, Wang RX, Li LL, Sun WT, et al (2015b). Male carriers of balanced reciprocal translocations in Northeast China: sperm count, reproductive performance, and genetic counseling. Genet. Mol. Res. 14: 18792-18798. http://dx.doi.org/10.4238/2015.December.28.28
Zhang M, Fan HT, Zhang QS, Wang XY, et al (2015c). Genetic screening and evaluation for chromosomal abnormalities of infertile males in Jilin Province, China. Genet. Mol. Res. 14: 16178-16184. http://dx.doi.org/10.4238/2015.December.8.7
“Chromosome 7 translocation breakpoints in male carriers: clinical features and implications for genetic counseling”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
We express our sincere gratitude to the staff of the Genetics Laboratory, Center for Prenatal Diagnosis, First Hospital, Jilin University, for their support. Research supported by the National Natural Science Fund (#81471515).
REFERENCES
Avidan N, Tamary H, Dgany O, Cattan D, et al (2003). CATSPER2, a human autosomal nonsyndromic male infertility gene. Eur. J. Hum. Genet. 11: 497-502. http://dx.doi.org/10.1038/sj.ejhg.5200991
Bianco B, Christofolini D, Gava M, Mafra F, et al (2011). Severe oligospermia associated with a unique balanced reciprocal translocation t(6;12)(q23;q24.3): male infertility related to t(6;12). Andrologia 43: 145-148. http://dx.doi.org/10.1111/j.1439-0272.2009.01020.x
Dutta UR, Rajitha P, Pidugu VK, Dalal AB, et al (2011). Cytogenetic abnormalities in 1162 couples with recurrent miscarriages in southern region of India: report and review. J. Assist. Reprod. Genet. 28: 145-149. http://dx.doi.org/10.1007/s10815-010-9492-6
Fryns JP, Van Buggenhout G, et al (1998). Structural chromosome rearrangements in couples with recurrent fetal wastage. Eur. J. Obstet. Gynecol. Reprod. Biol. 81: 171-176. http://dx.doi.org/10.1016/S0301-2115(98)00185-7
Gaboon NE, Mohamed AR, Elsayed SM, Zaki OK, et al (2015). Structural chromosomal abnormalities in couples with recurrent abortion in Egypt. Turk. J. Med. Sci. 45: 208-213. http://dx.doi.org/10.3906/sag-1310-5
Gada Saxena S, Desai K, Shewale L, Ranjan P, et al (2012). Chromosomal aberrations in 2000 couples of Indian ethnicity with reproductive failure. Reprod. Biomed. Online 25: 209-218. http://dx.doi.org/10.1016/j.rbmo.2012.04.004
Ghazaey S, Keify F, Mirzaei F, Maleki M, et al (2015). Chromosomal analysis of couples with repeated spontaneous abortions in northeastern iran. Int. J. Fertil. Steril. 9: 47-54.
Godo A, Blanco J, Vidal F, Anton E, et al (2013). Accumulation of numerical and structural chromosome imbalances in spermatozoa from reciprocal translocation carriers. Hum. Reprod. 28: 840-849. http://dx.doi.org/10.1093/humrep/des431
Hao Z, Wolkowicz MJ, Shetty J, Klotz K, et al (2002). SAMP32, a testis-specific, isoantigenic sperm acrosomal membrane-associated protein. Biol. Reprod. 66: 735-744. http://dx.doi.org/10.1095/biolreprod66.3.735
Harton GL, Tempest HG, et al (2012). Chromosomal disorders and male infertility. Asian J. Androl. 14: 32-39. http://dx.doi.org/10.1038/aja.2011.66
Ichioka K, Yoshimura K, Honda T, Takahashi A, et al (2005). Paracentric inversion of chromosome 7(q22-31) associated with nonobstructive azoospermia. Fertil. Steril. 83: 455-456. http://dx.doi.org/10.1016/j.fertnstert.2004.06.070
Jones MH, Davey PM, Aplin H, Affara NA, et al (1995). Expression analysis, genomic structure, and mapping to 7q31 of the human sperm adhesion molecule gene SPAM1. Genomics 29: 796-800. http://dx.doi.org/10.1006/geno.1995.9931
Kochhar PK, Ghosh P, et al (2013). Reproductive outcome of couples with recurrent miscarriage and balanced chromosomal abnormalities. J. Obstet. Gynaecol. Res. 39: 113-120. http://dx.doi.org/10.1111/j.1447-0756.2012.01905.x
Li L, Chen H, Yin C, Yang C, et al (2014). Mapping breakpoints of a familial chromosome insertion (18,7) (q22.1; q36.2q21.11) to DPP6 and CACNA2D1 genes in an azoospermic male. Gene 547: 43-49. http://dx.doi.org/10.1016/j.gene.2014.06.007
Li LL, Dong Y, Wang RX, An N, et al (2015). Sperm aneuploidy and implications for genetic counseling in a pedigree of three t(1;3) balanced translocation carriers. Genet. Mol. Res. 14: 5003-5009. http://dx.doi.org/10.4238/2015.May.12.3
Martin-DeLeon PA, et al (2006). Epididymal SPAM1 and its impact on sperm function. Mol. Cell. Endocrinol. 250: 114-121. http://dx.doi.org/10.1016/j.mce.2005.12.033
Niroumanesh S, Mehdipour P, Farajpour A, Darvish S, et al (2011). A cytogenetic study of couples with repeated spontaneous abortions. Ann. Saudi Med. 31: 77-79. http://dx.doi.org/10.4103/0256-4947.75785
Pasquier L, Fradin M, Chérot E, Martin-Coignard D, et al (2016). Karyotype is not dead (yet)! Eur. J. Med. Genet. 59: 11-15. http://dx.doi.org/10.1016/j.ejmg.2015.11.016
Pastuszek E, Kiewisz J, Kulwikowska PM, Lukaszuk M, et al (2015). Sperm parameters and DNA fragmentation of balanced chromosomal rearrangements carriers. Folia Histochem. Cytobiol. 53: 314-321. http://dx.doi.org/10.5603/fhc.a2015.0032
Pernice F, Mazza G, Puglisi D, Luppino MG, et al (2002). Nonrobertsonian translocation t(6;11) is associated with infertility in an oligoazoospermic male. Fertil. Steril. 78: 192-194. http://dx.doi.org/10.1016/S0015-0282(02)03180-1
Tharapel AT, Tharapel SA, Bannerman RM, et al (1985). Recurrent pregnancy losses and parental chromosome abnormalities: a review. Br. J. Obstet. Gynaecol. 92: 899-914. http://dx.doi.org/10.1111/j.1471-0528.1985.tb03069.x
Tunç E, Tanrıverdi N, Demirhan O, Süleymanova D, et al (2016). Chromosomal analyses of 1510 couples who have experienced recurrent spontaneous abortions. Reprod. Biomed. Online 32: 414-419. http://dx.doi.org/10.1016/j.rbmo.2016.01.006
van Baren MJ, van der Linde HC, Breedveld GJ, Baarends WM, et al (2002). A double RING-H2 domain in RNF32, a gene expressed during sperm formation. Biochem. Biophys. Res. Commun. 292: 58-65. http://dx.doi.org/10.1006/bbrc.2002.6612
Vozdova M, Oracova E, Horinova V, Rubes J, et al (2008). Sperm fluorescence in situ hybridization study of meiotic segregation and an interchromosomal effect in carriers of t(11;18). Hum. Reprod. 23: 581-588. http://dx.doi.org/10.1093/humrep/dem345
Vozdova M, Oracova E, Kasikova K, Prinosilova P, et al (2013). Balanced chromosomal translocations in men: relationships among semen parameters, chromatin integrity, sperm meiotic segregation and aneuploidy. J. Assist. Reprod. Genet. 30: 391-405. http://dx.doi.org/10.1007/s10815-012-9921-9
Zhang HG, Liu XY, Hou Y, Chen S, et al (2015a). Reproductive outcome of a case with familial balanced translocation t(3;6): implications for genetic counseling. Genet. Mol. Res. 14: 2809-2815. http://dx.doi.org/10.4238/2015.March.31.11
Zhang HG, Wang RX, Li LL, Sun WT, et al (2015b). Male carriers of balanced reciprocal translocations in Northeast China: sperm count, reproductive performance, and genetic counseling. Genet. Mol. Res. 14: 18792-18798. http://dx.doi.org/10.4238/2015.December.28.28
Zhang M, Fan HT, Zhang QS, Wang XY, et al (2015c). Genetic screening and evaluation for chromosomal abnormalities of infertile males in Jilin Province, China. Genet. Mol. Res. 14: 16178-16184. http://dx.doi.org/10.4238/2015.December.8.7
“Effect of dual Bt-expression transformation vectors on transgene expression in tobacco”, vol. 15, p. -, 2016.
, “Effect of dual Bt-expression transformation vectors on transgene expression in tobacco”, vol. 15, p. -, 2016.
, , , “Clinical and cytogenetic results of a series of amniocentesis cases from Northeast China: a report of 2500 cases”, vol. 14, pp. 15660-15667, 2015.
, “Correlation between chromosomal polymorphisms and male infertility in a Northeast Chinese population”, vol. 14, pp. 15435-15443, 2015.
, “Inheritance of balanced translocation t(17; 22) from a Down syndrome mother to a phenotypically normal daughter”, vol. 14, pp. 10267-10272, 2015.
, “Male carriers of balanced reciprocal translocations in Northeast China: sperm count, reproductive performance, and genetic counseling”, vol. 14, pp. 18792-18798, 2015.
, “Pedigrees of infertile Chinese men with Y chromosome microdeletions derived from natural transmission and de novo mutation”, vol. 14, pp. 1932-1941, 2015.
, “Genetic diversity and population structure in Harpadon nehereus based on sequence-related amplified polymorphism markers”, vol. 13, pp. 5974-5981, 2014.
, , “Isolation and characterization of polymorphic microsatellite loci in the swimming crab Portunus trituberculatus (Portunidae)”, vol. 12, pp. 5911-5915, 2013.
, “Universal primers to amplify the complete mitochondrial 12S rRNA gene in marine fish species”, vol. 12. pp. 4575-4578, 2013.
, “Characterization of nine novel microsatellite loci for the Venus clam (Cyclina sinensis)”, vol. 11. pp. 379-382, 2012.
, Bai HM, Gao YM and Yao HW (2008). RAPD analysis of three geographical stocks of clam Cyclina sinensis. Fish. Sci. 27: 487-489.
Chen DP, Shen HS and Ding YP (2004). Randomly amplified polymorphic DNA analysis of Meretrix meretrix, Cyclina sinesis and Mactra vecerifermis. Marine Sci. Bull. 23: 84-87.
Feng YW, Li Q and Kong LF (2010). Twenty microsatellite DNA markers for the Venus clam (Cyclina sinensis Gmelin). Conserv. Genet. 11: 1189-1192.
http://dx.doi.org/10.1007/s10592-009-9914-0
Hua PY, Chen JP, Zhang LB, Liang B, et al. (2007). Isolation and characterization of microsatellite loci in the flat-headed bat (Tylonycteris pachypus). Mol. Ecol. Notes 7: 486-488.
http://dx.doi.org/10.1111/j.1471-8286.2006.01629.x
Pan BP, Song LS, Bu WJ and Sun JS (2005). Studies on genetic diversity and differentiation between two allopatric populations of Cyclina sinensis. Acta Hydrobiol. Sin. 29: 372-378.
Raymond M and Rousset F (1995). GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249.
Shen BP, Sun YK and Yu YS (2007). Biology of embryonic development of Cyclina sinesis (Gmelin). Mod. Fish. Inform. 22: 28-30.
Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4: 535-538.
http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
Wang XQ, Cao M, Yan BL, Ma S, et al. (2006). Biology and reproduction of Clam Cyclina sinensis. Fish. Sci. 25: 312- 316.
Xu FS (1997). Bivalve Mollusca of China Seas. Science Press China, Beijing.
Yao ZL, Zhou K, Lai QF, Wang H, et al. (2005). Analysis of genetic variations of five geographical populations in Cyclina sinensis (Gmelin) of China by RAPD. Marine Fish. 27: 102-108.
Yu YS and Zheng XD (1995). The morphology and structure of Cyclina sinensis. Marine Fish. 59-62.
Yuan Y, Gao WW, Wu Q and Pan BP (2008). Genetic variation and structure of Cyclina sinensis populations in the yellow and Bohai sea of China. Oceanol. Limnol. Sin. 39: 665-670.
Zhao YM, Li Q, Kong LF, Bao ZM, et al. (2007). Genetic diversity and divergence among clam Cyclina sinensis populations assessed using amplified fragment length polymorphism. Fish. Sci. 73: 1338-1343.
“Development of microsatellite markers for the small yellow croaker Larimichthys polyactis (Sciaenidae) by cross-species amplification”, vol. 11, pp. 1469-1474, 2012.
,
Angers B and Bernatchez L (1997). Complex evolution of a salmonid microsatellite locus and its consequences in inferring allelic divergence from size information. Mol. Biol. Evol. 14: 230-238.
http://dx.doi.org/10.1093/oxfordjournals.molbev.a025759
PMid:9066791
Byrne M, Marquez-Garcia MI, Uren T and Smith DS (1996). Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus. Aust. J. Bot. 44: 331-341.
http://dx.doi.org/10.1071/BT9960331
Colson I and Goldstein DB (1999). Evidence for complex mutations at microsatellite loci in Drosophila. Genetics 152: 617-627.
PMid:10353904 PMCid:1460615
Crow JF and Kimura M (1965). Evolution in sexual and asexual populations. Am. Nat. 99: 439-450.
http://dx.doi.org/10.1086/282389
Engel SR, Linn RA, Taylor JF and Davis SK (1996). Conservation of microsatellite loci across species of Artiodactyls: implications for population studies. J. Mammal. 77: 504-518.
http://dx.doi.org/10.2307/1382825
Froese R and Pauly D (2011). FishBase. World Wide Web Electronic Publication. Available at [www.fishbase.org].
Grimaldi MC and Crouau-Roy B (1997). Microsatellite allelic homoplasy due to variable flanking sequences. J. Mol. Evol. 44: 336-340.
http://dx.doi.org/10.1007/PL00006151
PMid:9060400
Jin X (2004). Long-term changes in fish community structure in the Bohai Sea, China. Estuar. Coast. Shelf Sci. 59: 163-171.
http://dx.doi.org/10.1016/j.ecss.2003.08.005
Kuhn R, Anastassiadis C and Pirchner F (1996). Transfer of bovine microsatellites to the cervine (Cervus elaphus). Anim. Genet. 27: 199-201.
http://dx.doi.org/10.1111/j.1365-2052.1996.tb00952.x
PMid:8759122
Lin LS, Cheng JH and Ren YP (2004). Analysis of population biology of small yellow croaker Pseudosciaena polyactis in the East China Sea region. J. Fish Sci. China 11: 338.
Lin LS, Chen JH and Li HY (2008). The fishery biology of Trichiurus japonicus and Larimichthys polyactis in the East China Sea region. Mar. Fish. 30: 126-134.
Lin LS, Ying YP, Han ZQ and Xiao SY (2009). AFLP analysis on genetic diversity and population structure of small yellow croaker Larimichthys polyactis. Afr. J. Biotechnol. 8: 2700-2706.
Liu YG, Zheng MG, Liu LX and Lin H (2006). Five new microsatellite loci for Oliver flounder (Paralichthys olivaceus) from an expressed sequence tag (EST) library and cross-species amplification. Mol. Ecol. Note 6: 371-373.
http://dx.doi.org/10.1111/j.1471-8286.2005.01237.x
Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, et al. (2002). Microsatellites in Zea - variability, patterns of mutations, and use for evolutionary studies. Theor. Appl. Genet. 104: 436-450.
http://dx.doi.org/10.1007/s001220100694
PMid:12582717
Meng ZN, Zhuang ZM, Jin XS and Tang QS (2003). Genetic diversity in small yellow croaker (Pseudosciaena polyactis) by RAPD analysis. Biodivers. Sci. 11: 197-203.
Moore SS, Sargeant LL, King TJ and Mattick JS (1991). The consideration of dinucleotide microsatellite among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics 10: 654-660.
http://dx.doi.org/10.1016/0888-7543(91)90448-N
Morgante M and Olivieri AM (1993). PCR-amplified microsatellites as markers in plant genetics. Plant J. 3: 175-182.
http://dx.doi.org/10.1111/j.1365-313X.1993.tb00020.x
PMid:8401603
Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, et al. (2006). Origin, evolution and genome distribution of microsatellites. Genet. Mol. Biol. 29: 294-307.
http://dx.doi.org/10.1590/S1415-47572006000200018
Peakall R, Gilmore S, Keys W, Morgante M, et al. (1998). Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol. Biol. Evol. 15: 1275-1287.
http://dx.doi.org/10.1093/oxfordjournals.molbev.a025856
PMid:9787434
Pepin L, Amigues Y, Lepingle A, Berthier JL, et al. (1995). Sequence conservation of microsatellites between Bos taurus (cattle), Capra hircus (goat) and related species. Examples of use in parentage testing and phylogeny analysis. Heredity 74: 53-61.
http://dx.doi.org/10.1038/hdy.1995.7
PMid:7852099
Rice WE (1989). Analyzing tables of statistical tests. Evolution 43: 223-225.
http://dx.doi.org/10.2307/2409177
Rico C, Rico I and Hewitt G (1996). 470 million years of conservation of microsatellite loci among fish species. Proc. Biol. Sci. 263: 549-557.
http://dx.doi.org/10.1098/rspb.1996.0083
PMid:8677258
Schneider S, Roessli D and Excoffier L (2000). ARLEQUIN: A Software for Population Genetics Data Analysis, Version 2.000. Genetics and Biometry Laboratory, Department of Anthropology. University of Geneva, Geneva.
Seikai National Fisheries Research Institute (2001). Biological and Ecological Characteristics of Valuable Fisheries Resources from the East China Sea and the Yellow Sea, Comparison Between the Chinese and Japanese Knowledges. Seikai National Fisheries Research Institute, Nagasaki.
Slate J, Coltman DW, Goodman SJ, MacLean I, et al. (1998). Bovine microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries). Anim. Genet. 29: 307-315.
http://dx.doi.org/10.1046/j.1365-2052.1998.00347.x
PMid:9745670
Wan RJ and Sun S (2006). The category composition and abundance of ichthyoplankton in the ecosystem of the Yellow Sea and the East China Sea. Acta Zool. Sin. 52: 28-44.
Wang RX, Xu TJ, Sun YN and He GY (2010). Polymorphic microsatellite loci from two enriched genomic libraries for the genetic analysis of the miiuy croaker, Miichthys miiuy (Sciaenidae). Genet. Mol. Res. 9: 931-934.
http://dx.doi.org/10.4238/vol9-2gmr806
PMid:20486088
Wilson ACC, Massonnet B, Simon JC, Leterme NP, et al. (2004). Cross-species amplification of microsatellite loci in aphids: assessment and application. Mol. Ecol. Notes 4: 104-109.
http://dx.doi.org/10.1046/j.1471-8286.2004.00584.x
Wilson GA, Strobeck C, Wu L and Coffin JW (1997). Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol. Ecol. 6: 697-699.
http://dx.doi.org/10.1046/j.1365-294X.1997.00237.x
PMid:9226951
Xiao Y, Zhang Y, Gao T, Takashi Y, et al. (2009). Genetic diversity in the mtDNA control region and population structure in the small yellow croaker Larimichthys polyactis. Environ. Biol. Fish. 85: 303-314.
http://dx.doi.org/10.1007/s10641-009-9497-0
Xu T, Sun D, Sun Y and Wang R (2011). Development of 30 novel polymorphic expressed eequence tags (EST)-derived microsatellite markers for the Miiuy Croaker, Miichthys miiuy. Int. J. Mol. Sci. 12: 4021-4026.
http://dx.doi.org/10.3390/ijms12064021
PMid:21747722 PMCid:3131606
Xue Y, Jin XS, Zhang B and Liang ZL (2004). Diet composition and seasonal variation in feeding habits of small yellow croaker Pseudosciaena polyactis Bleeker in the central Yellow Sea. J. Fish. Sci. China 3: 237-243.
Yan LP, Hu F, Ling JZ and Li SF (2006). Study on age and growth of Larimichthys polyactis in the East China Sea. Period. Ocean Univ. China 36: 95-100.
Yeh FC and Boyle TJB (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian J. Bot. 129: 157.
“Genetic diversity of Setipinna taty (Engraulidae) populations from the China Sea based on mitochondrial DNA control region sequences”, vol. 11, pp. 1230-1237, 2012.
,
Avise JC (1994). Molecular Markers, Natural History and Evolution. Sinauer Associates, New York.
http://dx.doi.org/10.1007/978-1-4615-2381-9
Bremer JRA, Mejuto J, Greig TW and Ely B (1996). Global population structure of the swordfish (Xiphias gladius L.) as revealed by analysis of the mitochondrial DNA control region. J. Exp. Mar. Biol. Ecol. 197: 295-310.
http://dx.doi.org/10.1016/0022-0981(95)00164-6
Broughton RE and Dowling TE (1994). Length variation in mitochondrial DNA of the minnow Cyprinella spiloptera. Genetics 138: 179-190.
PMid:8001785 PMCid:1206129
Broughton RE and Dowling TE (1997). Evolutionary dynamics of tandem repeats in the mitochondrial DNA control region of the minnow Cyprinella spiloptera. Mol. Biol. Evol. 14: 1187-1196.
http://dx.doi.org/10.1093/oxfordjournals.molbev.a025728
PMid:9402730
Brown GG, Gadaleta G, Pepe G, Saccone C, et al. (1986). Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J. Mol. Biol. 192: 503-511.
http://dx.doi.org/10.1016/0022-2836(86)90272-X
Cheng Y, Xu T, Shi G and Wang R (2010). Complete mitochondrial genome of the miiuy croaker Miichthys miiuy (Perciformes, Sciaenidae) with phylogenetic consideration. Mar. Genomics 3: 201-209.
http://dx.doi.org/10.1016/j.margen.2010.10.003
PMid:21798214
Clayton DA (1991). Nuclear gadgets in mitochondrial DNA replication and transcription. Trends Biochem. Sci. 16: 107- 111.
http://dx.doi.org/10.1016/0968-0004(91)90043-U
Guo B, Zhang B, Dai FQ and Jin XS (2010). Diet composition and ontogenetic variation in feeding habits of juvenile Setipinna taty in the Haizhou bay. J. Fish. China 34: 741-747.
http://dx.doi.org/10.3724/SP.J.1231.2010.06798
Guo X, Liu S and Liu Y (2003). Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level. Aquaculture 224: 25-38.
http://dx.doi.org/10.1016/S0044-8486(03)00168-6
Guo XH, Liu SJ, Liu Q and Liu Y (2004). New progresses on mitochondrial DNA in fish. Yi Chuan Xue Bao 31: 983-1000.
PMid:15493150
Huang ZJ, Xu XP, Tang JJ, Zhang JQ, et al. (2009). Application and primer design of mitochondrial DNA D-loop of freshwater fishes. Acta Sci. Nat. Univ. Sunyatseni. DOI [CNKI:SUN:ZSDZ.0.2009-04-017].
Iguchi K, Tanimura Y, Takeshima H and Nishida M (1999). Genetic variation and geographic population structure of amphidromous ayu Plecoglossus altivelis as examined by mitochondrial DNA sequencing. Fish. Sci. 65: 63-67.
Ishikawa S, Aoyama J, Tsukamoto K and Nishida M (2001). Population structure of the Japanese Eel, Anguilla japonica as examined by mitochondrial DNA sequencing. Fish. Sci. 67: 246-253.
http://dx.doi.org/10.1046/j.1444-2906.2001.00227.x
Lee WJ, Conroy J, Howell WH and Kocher TD (1995). Structure and evolution of teleost mitochondrial control regions. J. Mol. Evol. 41: 54-66.
http://dx.doi.org/10.1007/BF00174041
PMid:7608989
Liu HY, Jing SG, Su TF and Gong SY (2004). Polymorphism study of the mitochondrial DNA D-loop gene sequences from Sparus latus. J. Fish. China 28: 371-374.
Liu HZ (2002). The structure and evolution of the mtDNA control region in fish: taking example for Acheilognathinae. Prog. Nat. Sci. 12: 266-270.
Liu Y, Cheng J and Li S (2004). A study on the distribution of Sefipinna taty in the East China Sea. Mar. Fish. 26: 255-260.
Liu Y, Cheng JH and Chen XG (2006). Studies on the seasonal distribution of Setipinna taty in the East China Sea. Mar. Fish. Res. 27: 1-6.
Liu Y and Cui Z (2009). The complete mitochondrial genome sequence of the cutlassfish Trichiurus japonicus (Perciformes: Trichiuridae): Genome characterization and phylogenetic considerations. Mar. Genomics 2: 133-142.
http://dx.doi.org/10.1016/j.margen.2009.07.003
PMid:21798182
Peng SM, Shi ZH and Hou J (2010). Comparative analysis on the genetic diversity of cultured and wild silver pomfret populations based on mtD-loop and COI gene. J. Fish. China 34: 19-24.
http://dx.doi.org/10.3724/SP.J.1231.2010.06384
Rand E (2000). Mitochondrial DNA. Blackwell, Oxford.
Saccone C, Attimonelli M and Sbisa E (1987). Structural elements highly preserved during the evolution of the D-loop-containing region in vertebrate mitochondrial DNA. J. Mol. Evol. 26: 205-211.
http://dx.doi.org/10.1007/BF02099853
PMid:3129568
Sbisa E, Tanzariello F, Reyes A, Pesole G, et al. (1997). Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205: 125-140.
http://dx.doi.org/10.1016/S0378-1119(97)00404-6
Shadel GS and Clayton DA (1997). Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66: 409-435.
http://dx.doi.org/10.1146/annurev.biochem.66.1.409
PMid:9242913
Southern SO, Southern PJ and Dizon AE (1988). Molecular characterization of a cloned dolphin mitochondrial genome. J. Mol. Evol. 28: 32-42.
http://dx.doi.org/10.1007/BF02143495
PMid:3148740
Sun SD and Ren YP (2003). Study on the fishery biology of Setipinna taty in the southern yellow sea. Trans. Oceanol. Limnol. 1: 62-65.
Tabata K and Taniguchi N (2000). Differences between Pargus major and Pagrus auratus through mainly mtDNA control region analysis. Fish. Sci. 66: 9-18.
http://dx.doi.org/10.1046/j.1444-2906.2000.00032.x
Xiong Y, Tang JH, Liu PT, Zhang XM, et al. (2009). Resource estimate on Setipinna taty in the southern yellow sea. Oceanol. Limnol. 40: 500-505.
Yang B, Chen XY and Yang JX (2008). Structure of the mitochondrial DNA control region and population genetic diversity analysis of Anabarilius grahami (Regan). Zool. Res. 29: 379-385.
http://dx.doi.org/10.3724/SP.J.1141.2008.00379
Zeng QL and Liu HZ (2001). Study on mitochondrial DNA control region of the Ictiobus cypriellus. J. Hubei Univ. 23: 261-264.
Zhang C, Chen X, He T, Liu X, et al. (2007). Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers. J. Genet. Genomics 34: 947-955
http://dx.doi.org/10.1016/S1673-8527(07)60106-4
Zhang MH, Wang Y and Zhang J (2004). Studies on the growth and death character of Setipinna taty in the South of Bohai Sea. J. Zhejiang Ocean Univ. 23: 31-36.
Zhang Y, Zhang E and He SP (2003). Studies on the structure of the control region of the bagridae in China and its phylogenetic significance. Acta Hydrobiol. Sin. 27: 463-467.
Zhu TJ, Yang JQ and Tang WQ (2008). MtDNA control region sequence structure of the genus Coilia in Yangtze river estuary. J. Shanghai Fish. Univ. 17: 152-157.
http://dx.doi.org/10.1007/s11741-008-0213-1
“Homology cloning, sequence characterization, and expression analysis of cDNA encoding electron transfer flavoprotein beta polypeptide in mud crab (Scylla paramamosain)”, vol. 11, pp. 4316-4322, 2012.
, Baker PJ, Britton KL, Rice DW, Rob A, et al. (1992). Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold. Implications for nucleotide specificity. J. Mol. Biol. 228: 662-671.
http://dx.doi.org/10.1016/0022-2836(92)90848-E
Beckmann JD and Frerman FE (1985). Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties. Biochemistry 24: 3913-3921.
http://dx.doi.org/10.1021/bi00336a016
PMid:4052375
Davis JA (2003). Development of Hatchery Techniques for the Mud Crab Scylla serrata (Forskål) in South Africa. PhD Thesis, Ghet University, Ghent.
Frerman FE (1988). Acyl-CoA dehydrogenases, electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase. Biochem. Soc. Trans. 16: 416-418.
PMid:3053288
Izai K, Uchida Y, Orii T, Yamamoto S, et al. (1992). Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. J. Biol. Chem. 267: 1027-1033.
PMid:1730632
Liu HP, Chen RY, Zhang M and Wang KJ (2010). Isolation, gene cloning and expression profile of a pathogen recognition protein: a serine proteinase homolog (Sp-SPH) involved in the antibacterial response in the crab Scylla paramamosain. Dev. Comp. Immunol. 34: 741-748.
http://dx.doi.org/10.1016/j.dci.2010.02.005
PMid:20153768
Macnae W (1969). A general account of the fauna and flora of mangrove swamps and forests in the Indo-West-Pacific region. Adv. Mar. Biol. 6: 73-103.
http://dx.doi.org/10.1016/S0065-2881(08)60438-1
McKie JH and Douglas KT (1991). Evidence for gene duplication forming similar binding folds for NAD(P)H and FAD in pyridine nucleotide-dependent flavoenzymes. FEBS Lett. 279: 5-8.
http://dx.doi.org/10.1016/0014-5793(91)80236-V
Overton JL, Macintosh DJ and Thorpe RS (1997). Multivariate analysis of the mud crab Scylla serrata (Brachyura: Portunidae) from four locations in Southeast Asia. Mar. Biol. 128: 55-62.
http://dx.doi.org/10.1007/s002270050068
Perrine D (1979). The Mangrove Crab on Ponape. Marine Resources Division, Ponape, Eastern Caroline Islands.
Roberts DL, Frerman FE and Kim JJ (1996). Three-dimensional structure of human electron transfer flavoprotein to 2.1-A resolution. Proc. Natl. Acad. Sci. U. S. A. 93: 14355-14360.
http://dx.doi.org/10.1073/pnas.93.25.14355
PMid:8962055 PMCid:26136
Ruzicka FJ and Beinert H (1977). A new iron-sulfur flavoprotein of the respiratory chain. A component of the fatty acid beta oxidation pathway. J. Biol. Chem. 252: 8440-8445.
PMid:925004
Shen Y and Lai Q (1994). Present Status of Mangrove Crab (Scylla serrata (Forskål)) Culture in China. The ICLARM Quarterly. Naga 17: 28-29.
Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
http://dx.doi.org/10.1093/molbev/msm092
PMid:17488738
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, et al. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.
http://dx.doi.org/10.1093/nar/25.24.4876
PMid:9396791 PMCid:147148
Tsai MH and Saier MH Jr (1995). Phylogenetic characterization of the ubiquitous electron transfer flavoprotein families ETF-alpha and ETF-beta. Res. Microbiol. 146: 397-404.
http://dx.doi.org/10.1016/0923-2508(96)80285-3
Wierenga RK and Hol WG (1983). Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature 302: 842-844.
http://dx.doi.org/10.1038/302842a0
PMid:6843652
Zou Z, Zhang Z, Wang Y, Han K, et al. (2011). EST analysis on the gonad development related organs and microarray screen for differentially expressed genes in mature ovary and testis of Scylla paramamosain. Comp. Biochem. Physiol. Part D Genomics Proteomics 6: 150-157.
http://dx.doi.org/10.1016/j.cbd.2010.12.003
PMid:21262594
“Rapid isolation and characterization of polymorphic microsatellite loci in the mud crab, Scylla paramamosain (Portunidae)”, vol. 11, pp. 1503-1506, 2012.
,
Abreu MM, Pereira LHG, Vila VB, Foresti F, et al. (2009). Genetic variability of two populations of Pseudoplatystoma reticulatum from the Upper Paraguay River Basin. Genet. Mol. Biol. 32: 868-873.
http://dx.doi.org/10.1590/S1415-47572009005000075
PMid:21637467 PMCid:3036895
Babiker HM, Schlebusch CM, Hassan HY and Jakobsson M (2011). Genetic variation and population structure of Sudanese populations as indicated by 15 Identifiler sequence-tagged repeat (STR) loci. Investig. Genet. 2: 12.
http://dx.doi.org/10.1186/2041-2223-2-12
PMid:21542921 PMCid:3118356
Botstein D, White RL, Skolnick M and Davis RW (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331.
PMid:6247908 PMCid:1686077
Cowan L (1985). Crab Farming in Japan, Taiwan and the Philippines. Queensland Department of Primary Industries, Queensland.
Cui H, Ma H, Ma L, Ma C, et al. (2011). Development of eighteen polymorphic microsatellite markers in Scylla paramamosain by 5'anchored PCR technique. Mol. Biol. Rep. 38: 4999-5002.
http://dx.doi.org/10.1007/s11033-010-0645-6
PMid:21161395
Excoffier L, Laval G and Schneider S (2006). ARLEQUIN Ver 3.1: An Integrated Software Package for Population Genetics Date Analysis. Genetics and Molecular Genetics Population Lab, Institute of Zoology. University of Geneva, Switzerland.
Fisher PJ, Gardner RC and Richardson TE (1996). Single locus microsatellites isolated using 5' anchored PCR. Nucleic Acids Res. 24: 4369-4371.
http://dx.doi.org/10.1093/nar/24.21.4369
PMid:8932400 PMCid:146250
Keenan CP (1999). Aquaculture of the Mud Crab, Genus Scylla Past, Present and Future. In: Mud Crab Aquaculture and Biology (Keenan CP and Blackshaw A, eds.). Proceeding of an International Scientific Forum Held, Darwin, 9-13.
Ma HY, Ma CY, Ma LB and Cui HY (2010). Novel polymorphic microsatellite markers in Scylla paramamosain and cross-species amplification in related crab species. J. Crust. Biol. 30: 441-444.
http://dx.doi.org/10.1651/09-3263.1
Queller DC, Strassmann JE and Hughes CR (1993). Microsatellites and kinship. Trends Ecol. Evol. 8: 285-288.
http://dx.doi.org/10.1016/0169-5347(93)90256-O
Rice WE (1989). Analyzing tables of statistical tests. Evolution 43: 223-225.
http://dx.doi.org/10.2307/2409177
Takano M, Barinova A, Sugaya T, Obata Y, et al. (2005). Isolation and characterization of microsatellite DNA markers from mangrove crab, Scylla paramamosain. Mol. Ecol. Notes 5: 794-795.
http://dx.doi.org/10.1111/j.1471-8286.2005.01065.x
Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538.
http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
Xu XJ, Wang GZ, Wang KJ and Li SJ (2009). Isolation and characterization of ten new polymorphic microsatellite loci in the mud crab, Scylla paramamosain. Conserv. Genet. 10: 1877-1878.
http://dx.doi.org/10.1007/s10592-009-9843-y
Yeh FC, Yang R, Boyle TJ, Ye Z, et al. (2000). PopGene32, Microsoft Windows-Based Freeware for Population Genetic Analysis, Version 1.32. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton.
“Allelic polymorphism, gene duplication and balancing selection of the MHC class II DAB gene of Cynoglossus semilaevis (Cynoglossidae)”, vol. 10, pp. 53-64, 2011.
,
Aguilar A and Garza JC (2007). Patterns of historical balancing selection on the salmonid major histocompatibility complex class II beta gene. J. Mol. Evol. 65: 34-43.
http://dx.doi.org/10.1007/s00239-006-0222-8
PMid:17593422
Apanius V, Penn D, Slev PR, Ruff LR, et al. (1997). The nature of selection on the major histocompatibility complex. Crit. Rev. Immunol. 17: 179-224.
http://dx.doi.org/10.1615/CritRevImmunol.v17.i2.40
PMid:9094452
Archie EA, Henry T, Maldonado JE, Moss CJ, et al. (2010). Major histocompatibility complex variation and evolution at a single, expressed DQA locus in two genera of elephants. Immunogenetics 62: 85-100.
http://dx.doi.org/10.1007/s00251-009-0413-8
PMid:20058003
Axtner J and Sommer S (2007). Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, Clethrionomys glareolus. Immunogenetics 59: 417-426.
http://dx.doi.org/10.1007/s00251-007-0205-y
PMid:17351770
Baker CS, Vant MD, Dalebout ML, Lento GM, et al. (2006). Diversity and duplication of DQB and DRB-like genes of the MHC in baleen whales (suborder: Mysticeti). Immunogenetics 58: 283-296.
http://dx.doi.org/10.1007/s00251-006-0080-y
PMid:16568262
Brown JH, Jardetzky TS, Gorga JC, Stern LJ, et al. (1993). Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364: 33-39.
http://dx.doi.org/10.1038/364033a0
PMid:8316295
Bryja J, Galan M, Charbonnel N and Cosson JF (2006). Duplication, balancing selection and trans-species evolution explain the high levels of polymorphism of the DQA MHC class II gene in voles (Arvicolinae). Immunogenetics 58: 191-202.
http://dx.doi.org/10.1007/s00251-006-0085-6
PMid:16467985
Davies CJ, Andersson L, Ellis SA and Hensen EJ (1997). Nomenclature for factors of the BoLA system, report of the ISAG BoLA Nomenclature Committee. Anim. Genet. 28: 159-168.
http://dx.doi.org/10.1111/j.1365-2052.1997.00106.x
Eimes JA, Bollmer JL, Dunn PO, Whittingham LA, et al. (2010). Mhc class II diversity and balancing selection in greater prairie-chickens. Genetica 138: 265-271.
http://dx.doi.org/10.1007/s10709-009-9417-4
PMid:19851875
Ekblom R, Saether SA, Fiske P, Kalas JA, et al. (2010). Balancing selection, sexual selection and geographic structure in MHC genes of Great Snipe. Genetica 138: 453-461.
http://dx.doi.org/10.1007/s10709-008-9335-x
PMid:19052880
Flores-Ramirez S, Urban-Ramirez J and Miller RD (2000). Major histocompatibility complex class I loci from the gray whale (Eschrichtius robustus). J. Hered. 91: 279-282.
http://dx.doi.org/10.1093/jhered/91.4.279
PMid:10912673
Goldman N and Yang Z (1994). A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11: 725-736.
PMid:7968486
Goüy de BJ and Leirs H (2010). Polymorphism and signatures of selection in the multimammate rat DQB gene. Immunogenetics 62: 59-64.
http://dx.doi.org/10.1007/s00251-009-0411-x
PMid:19953242
Graser R, O'huigin C, Vincek V, Meyer A, et al. (1996). Trans-species polymorphism of class II Mhc loci in danio fishes. Immunogenetics 44: 36-48.
http://dx.doi.org/10.1007/BF02602655
PMid:8613141
Grimholt U, Larsen S, Nordmo R, Midtlyng P, et al. (2003). MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics 55: 210-219.
http://dx.doi.org/10.1007/s00251-003-0567-8
PMid:12811427
Harf R and Sommer S (2005). Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari. Mol. Ecol. 14: 85-91.
http://dx.doi.org/10.1111/j.1365-294X.2004.02402.x
PMid:15643953
Hedrick PW (1998). Balancing selection and MHC. Genetica 104: 207-214.
http://dx.doi.org/10.1023/A:1026494212540
PMid:10386384
Hedrick PW (2002). Pathogen resistance and genetic variation at MHC loci. Evolution 56: 1902-1908.
PMid:12449477
Hughes AL (1994). The evolution of functionally novel proteins after gene duplication. Proc. Biol. Sci. 256: 119-124.
http://dx.doi.org/10.1098/rspb.1994.0058
PMid:8029240
Hughes AL (1999). Adaptive Evolution of Genes and Genomes. Oxford University Press, New York.
Hughes AL and Nei M (1988). Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335: 167-170.
http://dx.doi.org/10.1038/335167a0
PMid:3412472
Hughes AL and Nei M (1989). Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc. Natl. Acad. Sci. U. S. A. 86: 958-962.
http://dx.doi.org/10.1073/pnas.86.3.958
PMid:2492668 PMCid:286598
Hughes AL and Nei M (1990). Evolutionary relationships of class II major-histocompatibility-complex genes in mammals. Mol. Biol. Evol. 7: 491-514.
PMid:2126590
Hughes AL and Yeager M (1998a). Natural selection at major histocompatibility complex loci of vertebrates. Annu. Rev. Genet. 32: 415-435.
http://dx.doi.org/10.1146/annurev.genet.32.1.415
PMid:9928486
Hughes AL and Yeager M (1998b). Natural selection at major histocompatibility complex loci of vertebrates. Annu. Rev. Genet. 32: 415-435.
http://dx.doi.org/10.1146/annurev.genet.32.1.415
PMid:9928486
Karaiskou N, Moran P, Georgitsakis G and Abatzopoulos TJ (2010). High allelic variation of MHC class II alpha antigen and the role of selection in wild and cultured Sparus aurata populations. Hydrobiologia 638: 11-20.
http://dx.doi.org/10.1007/s10750-009-0001-9
Meyer-Lucht Y and Sommer S (2005). MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol. Ecol. 14: 2233-2243.
http://dx.doi.org/10.1111/j.1365-294X.2005.02557.x
PMid:15910340
Nei M and Gojobori T (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3: 418-426.
PMid:3444411
Nei M and Rooney AP (2005). Concerted and birth-and-death evolution of multigene families. Annu. Rev. Genet. 39: 121-152.
http://dx.doi.org/10.1146/annurev.genet.39.073003.112240
PMid:16285855 PMCid:1464479
Nei M, Gu X and Sitnikova T (1997). Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc. Natl. Acad. Sci. U. S. A. 94: 7799-7806.
http://dx.doi.org/10.1073/pnas.94.15.7799
PMid:9223266 PMCid:33709
Oliver MK and Piertney SB (2006). Isolation and characterization of a MHC class II DRB locus in the European water vole (Arvicola terrestris). Immunogenetics 58: 390-395.
http://dx.doi.org/10.1007/s00251-006-0121-6
PMid:16738936
Parham P and Ohta T (1996). Population biology of antigen presentation by MHC class I molecules. Science 272: 67-74.
http://dx.doi.org/10.1126/science.272.5258.67
PMid:8600539
Stear MJ, Innocent GT and Buitkamp J (2005). The evolution and maintenance of polymorphism in the major histocompatibility complex. Vet. Immunol. Immunopathol. 108: 53-57.
http://dx.doi.org/10.1016/j.vetimm.2005.07.005
PMid:16099055
Stet RJM, Vries B, Mudde K, Hermsem T, et al. (2002). Unique haplotypes of co-segregating major histocompatibility complex class II A and class II B alleles in Atlantic salmon Salmo salar give rise to diverse class II genotypes. Immunogenetics 54: 320-331.
http://dx.doi.org/10.1007/s00251-002-0477-1
PMid:12185536
Xu SX, Ren WH, Li SZ, Wei FW, et al. (2009). Sequence polymorphism and evolution of three cetacean MHC genes. J. Mol. Evol. 69: 260-275.
http://dx.doi.org/10.1007/s00239-009-9272-z
PMid:19693422
Xu TJ, Chen SL, Ji XS and Tian YS (2008). MHC polymorphism and disease resistance to Vibrio anguillarum in 12 selective Japanese flounder (Paralichthys olivaceus) families. Fish Shellfish Immunol. 25: 213-221.
http://dx.doi.org/10.1016/j.fsi.2008.05.007
PMid:18603444
Xu TJ, Chen SL, Ji XS and Sha ZX (2009). Molecular cloning, genomic structure, polymorphism and expression analysis of major histocompatibility complex class IIA and IIB genes of half-smooth tongue sole (Cynoglossus semilaevis). Fish Shellfish Immunol. 27: 192-201.
http://dx.doi.org/10.1016/j.fsi.2009.04.009
PMid:19442741
Xu TJ, Sha ZX and Chen SL (2010). Unexpected variations of beta2-microglobulin gene in the half-smooth tongue sole. Fish Shellfish Immunol. 28: 212-215.
http://dx.doi.org/10.1016/j.fsi.2009.09.015
PMid:19825419
Yang Z, Wong WS and Nielsen R (2005). Bayes empirical Bayes inference of amino acid sites under positive selection. Mol. Biol. Evol. 22: 1107-1118.
http://dx.doi.org/10.1093/molbev/msi097
PMid:15689528
“Association between XPD Lys751Gln polymorphism and risk of head and neck cancer: a meta-analysis”, vol. 10, pp. 3356-3364, 2011.
,
Abbasi R, Ramroth H, Becher H, Dietz A, et al. (2009). Laryngeal cancer risk associated with smoking and alcohol consumption is modified by genetic polymorphisms in ERCC5, ERCC6 and RAD23B but not by polymorphisms in five other nucleotide excision repair genes. Int. J. Cancer 125: 1431-1439.
http://dx.doi.org/10.1002/ijc.24442
PMid:19444904
American Cancer Society (2007). Cancer Facts & Figures 2007. CA: American Cancer Society, Oakland.
An J, Liu Z, Hu Z, Li G, et al. (2007). Potentially functional single nucleotide polymorphisms in the core nucleotide excision repair genes and risk of squamous cell carcinoma of the head and neck. Canc. Epidemiol. Biomarkers Prev. 16: 1633-1638.
http://dx.doi.org/10.1158/1055-9965.EPI-07-0252
PMid:17684138
Bau DT, Tsai MH, Huang CY, Lee CC, et al. (2007). Relationship between polymorphisms of nucleotide excision repair genes and oral cancer risk in Taiwan: evidence for modification of smoking habit. Chin. J. Physiol. 50: 294-300.
PMid:18442012
Blot WJ, McLaughlin JK, Winn DM, Austin DF, et al. (1988). Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 48: 3282-3287.
PMid:3365707
Coin F, Marinoni JC, Rodolfo C, Fribourg S, et al. (1998). Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat. Genet. 20: 184-188.
http://dx.doi.org/10.1038/2491
PMid:9771713
de Boer J and Hoeijmakers JH (2000). Nucleotide excision repair and human syndromes. Carcinogenesis 21: 453-460.
http://dx.doi.org/10.1093/carcin/21.3.453
PMid:10688865
DerSimonian R and Laird N (1986). Meta-analysis in clinical trials. Control Clin. Trials 7: 177-188.
http://dx.doi.org/10.1016/0197-2456(86)90046-2
Egger M, Davey SG, Schneider M and Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634.
http://dx.doi.org/10.1136/bmj.315.7109.629
PMid:9310563 PMCid:2127453
Flejter WL, McDaniel LD, Johns D, Friedberg EC, et al. (1992). Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: involvement of the human ERCC2 DNA repair gene. Proc. Natl. Acad. Sci. U. S. A. 89: 261-265.
http://dx.doi.org/10.1073/pnas.89.1.261
PMid:1729695 PMCid:48216
Goode EL, Ulrich CM and Potter JD (2002). Polymorphisms in DNA repair genes and associations with cancer risk. Canc. Epidemiol. Biomarkers Prev. 11: 1513-1530.
PMid:12496039
Harth V, Schafer M, Abel J, Maintz L, et al. (2008). Head and neck squamous-cell cancer and its association with polymorphic enzymes of xenobiotic metabolism and repair. J. Toxicol. Environ. Health A. 71: 887-897.
http://dx.doi.org/10.1080/15287390801988160
PMid:18569591
Huang WY, Olshan AF, Schwartz SM, Berndt SI, et al. (2005). Selected genetic polymorphisms in MGMT, XRCC1, XPD, and XRCC3 and risk of head and neck cancer: a pooled analysis. Canc. Epidemiol. Biomarkers Prev. 14: 1747-1753.
http://dx.doi.org/10.1158/1055-9965.EPI-05-0162
PMid:16030112
Jelonek K, Gdowicz-Klosok A, Pietrowska M, Borkowska M, et al. (2010). Association between single-nucleotide polymorphisms of selected genes involved in the response to DNA damage and risk of colon, head and neck, and breast cancers in a Polish population. J. Appl. Genet. 51: 343-352.
http://dx.doi.org/10.1007/BF03208865
PMid:20720310
Ji YB, Tae K, Lee YS, Lee SH, et al. (2010). XPD polymorphisms and risk of Squamous cell Carcinoma of the head and neck in a Korean sample. Clin. Exp. Otorhinolaryngol. 3: 42-47.
http://dx.doi.org/10.3342/ceo.2010.3.1.42
PMid:20379402 PMCid:2848318
Kamangar F, Dores GM and Anderson WF (2006). Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol. 24: 2137-2150.
http://dx.doi.org/10.1200/JCO.2005.05.2308
PMid:16682732
Kietthubthew S, Sriplung H, Au WW and Ishida T (2006). Polymorphism in DNA repair genes and oral squamous cell carcinoma in Thailand. Int. J. Hyg. Environ. Health 209: 21-29.
http://dx.doi.org/10.1016/j.ijheh.2005.06.002
PMid:16373199
Lau J, Ioannidis JP and Schmid CH (1997). Quantitative synthesis in systematic reviews. Ann. Intern. Med. 127: 820-826.
PMid:9382404
Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, et al. (2000). Environmental and heritable factors in the causation of cancer - analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343: 78-85.
http://dx.doi.org/10.1056/NEJM200007133430201
PMid:10891514
Little J, Bradley L, Bray MS, Clyne M, et al. (2002). Reporting, appraising, and integrating data on genotype prevalence and gene-disease associations. Am. J. Epidemiol. 156: 300-310.
http://dx.doi.org/10.1093/oxfordjournals.aje.a000179
PMid:12181099
Majumder M, Sikdar N, Ghosh S and Roy B (2007). Polymorphisms at XPD and XRCC1 DNA repair loci and increased risk of oral leukoplakia and cancer among NAT2 slow acetylators. Int. J. Cancer 120: 2148-2156.
http://dx.doi.org/10.1002/ijc.22547
PMid:17290401
Matullo G, Dunning AM, Guarrera S, Baynes C, et al. (2006). DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis 27: 997-1007.
http://dx.doi.org/10.1093/carcin/bgi280
PMid:16308313
Mitra AK, Singh N, Garg VK, Chaturvedi R, et al. (2009). Statistically significant association of the single nucleotide polymorphism (SNP) rs13181 (ERCC2) with predisposition to Squamous Cell Carcinomas of the Head and Neck (SCCHN) and Breast cancer in the north Indian population. J. Exp. Clin. Cancer Res. 28: 104.
http://dx.doi.org/10.1186/1756-9966-28-104
PMid:19615095 PMCid:2724389
Pastorelli R, Cerri A, Mezzetti M, Consonni E, et al. (2002). Effect of DNA repair gene polymorphisms on BPDE-DNA adducts in human lymphocytes. Int. J. Cancer 100: 9-13.
http://dx.doi.org/10.1002/ijc.10463
PMid:12115580
Ramachandran S, Ramadas K, Hariharan R, Rejnish KR, et al. (2006). Single nucleotide polymorphisms of DNA repair genes XRCC1 and XPD and its molecular mapping in Indian oral cancer. Oral Oncol. 42: 350-362.
http://dx.doi.org/10.1016/j.oraloncology.2005.08.010
PMid:16324877
Rydzanicz M, Wierzbicka M, Gajecka M, Szyfter W, et al. (2005). The impact of genetic factors on the incidence of multiple primary tumors (MPT) of the head and neck. Cancer Lett. 224: 263-278.
http://dx.doi.org/10.1016/j.canlet.2005.01.015
PMid:15914277
Schaeffer L, Moncollin V, Roy R, Staub A, et al. (1994). The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13: 2388-2392.
PMid:8194528 PMCid:395103
Schottenfeld D and Fraumeni JF (2006). Cancer Epidemiology and Prevention, 3rd edn. Oxford University Press, New York.
http://dx.doi.org/10.1093/acprof:oso/9780195149616.001.0001
Sliwinski T, Przybylowska K, Markiewicz L, Rusin P, et al. (2011). MUTYH Tyr165Cys, OGG1 Ser326Cys and XPD Lys751Gln polymorphisms and head neck cancer susceptibility: a case control study. Mol. Biol. Rep. 38: 1251-1261.
http://dx.doi.org/10.1007/s11033-010-0224-x
PMid:20571908
Sturgis EM, Zheng R, Li L, Castillo EJ, et al. (2000). XPD/ERCC2 polymorphisms and risk of head and neck cancer: a case-control analysis. Carcinogenesis 21: 2219-2223.
http://dx.doi.org/10.1093/carcin/21.12.2219
PMid:11133811
Winkler GS, Araujo SJ, Fiedler U, Vermeulen W, et al. (2000). TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair. J. Biol. Chem. 275: 4258-4266.
http://dx.doi.org/10.1074/jbc.275.6.4258
PMid:10660593
“Development and characterization of microsatellite markers for the walking goby (Scartelaos viridis; Gobiidae)”, vol. 10. pp. 203-207, 2011.
,
Brandström M and Ellegren H (2008). Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Gen. Res. 18: 881-887.
Brown J, Hardwick LJ and Wright AF (1995). A simple method for rapid isolation of microsatellites from yeast artificial chromosomes. Mol. Cell Probes 9: 53-57.
http://dx.doi.org/10.1016/S0890-8508(95)91022-0
Brown SM, Hopkins MS, Mitchell SE, Senior ML, et al. (1996). Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 93: 190-198.
http://dx.doi.org/10.1007/BF00225745
Chen X, Temnykh S, Xu Y, Cho YG, et al. (1997). Development of a microsatellite framework map providing genome wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet. 95: 553-567.
http://dx.doi.org/10.1007/s001220050596
Kandpal RP, Kandpal G and Weissman SM (1994). Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-specific markers. Proc. Natl. Acad. Sci. U. S. A. 91: 88-92.
http://dx.doi.org/10.1073/pnas.91.1.88
PMid:8278412 PMCid:42891
Kohlmann K, Kersten P and FlajÍhans M (2005). Microsatellite based genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations. Aquaculture 247: 253-266.
http://dx.doi.org/10.1016/j.aquaculture.2005.02.024
Li CD, Rossnagel BG and Scoles GJ (2000). The development of oat microsatellite markers and their use in identifying Avena species and oat cultivars. Theor. Appl. Genet. 101: 1259-1268.
http://dx.doi.org/10.1007/s001220051605
Liu JY, Lun ZR, Zhang JB and Yang TB (2009). Population genetic structure of striped mullet, Mugil cephalus, along the coast of China, inferred by AFLP finger printing. Biochem. Syst. Ecol. 37: 266-274.
http://dx.doi.org/10.1016/j.bse.2009.04.010
Mia MY, Taggart JB, Gilmour AE, Gheyas AA, et al. (2005). Detection of hybridization between Chinese carp species (Hypophthalmichthys molitrix and Aristichthys nobilis) in hatchery broodstock in Bangladesh, using DNA microsatellite loci. Aquaculture 247: 267-273.
http://dx.doi.org/10.1016/j.aquaculture.2005.02.018
Rice WE (1989). Analyzing tables of statistical tests. Evolution 43: 223-225.
http://dx.doi.org/10.2307/2409177
Schneider S, Roessli D and Excoffier L (2000). ARLEQUIN: a software for population genetics data analysis. Version 2.0. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Switzerland.
Sekino M and Hara M (2001). Application of microsatellite markers to population genetics studies of Japanese flounder Paralichthys olivaceus. Mar. Biotechnol. 3: 572-589.
http://dx.doi.org/10.1007/s10126-001-0064-8
PMid:14961330
Selkoe KA and Toonen RJ (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9: 615-629.
http://dx.doi.org/10.1111/j.1461-0248.2006.00889.x
PMid:16643306
Senior ML, Murphy JP, Goodman MM and Stuber CW (1998). Utility of SSRs for determining genetic similarities and relationships in maize using an agarose system. Crop Sci. 38: 1088-1098.
http://dx.doi.org/10.2135/cropsci1998.0011183X003800040034x
Weber JL (1990). Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 7: 524-530.
http://dx.doi.org/10.1016/0888-7543(90)90195-Z
Weising K, Winter P, Huttel B and Kahl G (1997). Microsatellite markers for molecular breeding. J. Crop Prod. 1: 113-143.
http://dx.doi.org/10.1300/J144v01n01_06
Xu TJ, Shao CW, Liao XL and Chen SL (2009). Isolation and characterization of polymorphic microsatellite DNA markers in the rock bream (Oplegnathus fasciatus). Conserv. Genet. 10: 527-529.
http://dx.doi.org/10.1007/s10592-008-9557-6
Yeh FC and Boyle TJB (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg. J. Bot. 129: 157.
Zane L, Bargelloni L and Patarnello T (2002). Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1-16.
http://dx.doi.org/10.1046/j.0962-1083.2001.01418.x
PMid:11903900
“Development and characterization of microsatellite markers for the lizardfish known as the Bombay duck, Harpadon nehereus (Synodontidae)”, vol. 10, pp. 1701-1706, 2011.
, Brandström M and Ellegren H (2008). Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Genome Res. 18: 881-887.
http://dx.doi.org/10.1101/gr.075242.107
PMid:18356314 PMCid:2413155
Brown SM, Hopkins MS, Mitchell SE, Senior ML, et al. (1996). Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 93: 190-198.
http://dx.doi.org/10.1007/BF00225745
Chen X, Temnykh S, Xu Y, Cho YG, et al. (1997). Development of a microsatellite framework map providing genome wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet. 95: 553-567.
http://dx.doi.org/10.1007/s001220050596
Degnan PH and Arévalo E (2004). Isolation of microsatellite loci in Sceloporus grammicus (Squamata, Phrynosomatidae). Am. J. Undergrad. Res. 2: 113-120.
Kohlmann K, Kersten P and Flajšhans M (2005). Microsatellite-based genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations. Aquaculture 247: 253-266.
http://dx.doi.org/10.1016/j.aquaculture.2005.02.024
Li CD, Rossnagel BG and Scoles GJ (2000). The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor. Appl. Genet. 101: 1259-1268.
http://dx.doi.org/10.1007/s001220051605
Liu JY, Lun ZR, Zhang JB and Yang TB (2009). Population genetic structure of striped mullet, Mugil cephalus, along the coast of China, inferred by AFLP fingerprinting. Bioch. Syst. Ecol. 37: 266-274.
http://dx.doi.org/10.1016/j.bse.2009.04.010
Mia MY, Taggart JB, Gilmour AE, Gheyas AA, et al. (2005). Detection of hybridization between Chinese carp species (Hypophthalmichthys molitrix and Aristichthys nobilis) in hatchery broodstock in Bangladesh, using DNA microsatellite loci. Aquaculture 247: 267-273.
http://dx.doi.org/10.1016/j.aquaculture.2005.02.018
Rice WE (1989). Analyzing tables of statistical tests. Evolution 43: 223-225.
http://dx.doi.org/10.2307/2409177
Schneider S, Roessli D and Excoffier L (2000). ARLEQUIN: A Software for Population Genetics Data Analysis, Version 2.000. Genetics and Biometry Laboratory, Department of Anthropology. University of Geneva, Switzerland.
Sekino M and Hara M (2001). Application of microsatellite markers to population genetics studies of Japanese flounder Paralichthys olivaceus. Mar. Biotechnol. 3: 572-589.
http://dx.doi.org/10.1007/s10126-001-0064-8
PMid:14961330
Selkoe KA and Toonen RJ (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9: 615-629.
http://dx.doi.org/10.1111/j.1461-0248.2006.00889.x
PMid:16643306
Senior ML, Murphy JP, Goodman MM and Stuber CW (1998). Utility of SSRs for determining genetic similarities and relationships in maize using an agarose system. Crop Sci. 38: 1088-1098.
http://dx.doi.org/10.2135/cropsci1998.0011183X003800040034x
Weber JL (1990). Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 7: 524-530.
http://dx.doi.org/10.1016/0888-7543(90)90195-Z
Weising K, Winter P, Huttel B and Kahl G (1998). Microsatellite markers for molecular breeding. J. Crop Prod. 1: 113- 143.
http://dx.doi.org/10.1300/J144v01n01_06
Xu TJ, Shao CW, Liao XL, Ji XS, et al. (2009). Isolation and characterization of polymorphic microsatellite DNA markers in the rock bream (Oplegnathus fasciatus). Conserv. Genet. 10: 527-529.
http://dx.doi.org/10.1007/s10592-008-9557-6
Yeh FC and Boyle TJB (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian J. Bot. 129: 157.
Zane L, Bargelloni L and Patarnello T (2002). Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1-16.
http://dx.doi.org/10.1046/j.0962-1083.2001.01418.x
PMid:11903900
“Polymorphic microsatellite loci from two enriched genomic libraries for the genetic analysis of the miiuy croaker, Miichthys miiuy (Sciaenidae)”, vol. 9. pp. 931-934, 2010.
, Liu YG, Liu CY, Li FZ, Li ZX, et al. (2009). Development of microsatellite markers in sea perch, Lateolabrax japonicus, from codominant amplified fragment length polymorphism bands. J. World Aquacult. Soc. 40: 522-530.
http://dx.doi.org/10.1111/j.1749-7345.2009.00277.x
Rice WE (1989). Analyzing tables of statistical tests. Evolution 43: 223-225.
http://dx.doi.org/10.2307/2409177
Schneider S, Roessli D and Excoffier L (2000). ARLEQUIN: a software for population genetics data analysis, version 2.000. University of Geneva, Geneva.
Shan XJ, Cao L, Huang W and Dou SZ (2008a). Feeding, morphological changes and allometric growth during starvation in miiuy croaker larvae. Environ. Biol. Fishes 86: 121-130.
http://dx.doi.org/10.1007/s10641-008-9412-0
Shan XJ, Xiao ZZ, Huang W and Dou SZ (2008b). Effects of photoperiod on growth, mortality and digestive enzymes in miiuy croaker larvae and juveniles. Aquaculture 281: 70-76.
http://dx.doi.org/10.1016/j.aquaculture.2008.05.034
Shan XJ, Huang W, Cao L, Xiao ZZ, et al. (2009). Ontogenetic development of digestive enzymes and effect of starvation in miiuy croaker Miichthys miiuy larvae. Fish Physiol. Biochem. 35: 385-398.
http://dx.doi.org/10.1007/s10695-008-9263-9
PMid:18821026
Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 538.
http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
Xu TJ, Liao XL, Shao CW, Ji XS, et al. (2009). Isolation and characterization of polymorphic microsatellite DNA markers in the rock bream (Oplegnathus fasciatus). Conserv. Genet. 10: 527-529.
http://dx.doi.org/10.1007/s10592-008-9557-6
Yeh FC and Boyle TJB (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg. J. Bot. 129-157.
Zane L, Bargelloni L and Patarnello T (2002). Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1-16.
http://dx.doi.org/10.1046/j.0962-1083.2001.01418.x
PMid:11903900
Zhang QY and Hong WS (2000). Status and prospects of artificial propagation and breeding technique of marine fish in China in the 1990s (in Chinese). Mod. Fish. Info. 15:3-6.