Publications

Found 12 results
Filters: Author is M.A. Khan  [Clear All Filters]
2012
S. S. Ahmed, Gong, Z. - H., Ji, J. - J., Yin, Y. - X., Xiao, H. - J., Khan, M. A., Rehman, A., and Ahmad, I., Construction of the intermediate vector pVBG2307 by incorporating vital elements of expression vectors pBI121 and pBI221, vol. 11, pp. 3091-3104, 2012.
Ahmed SS, Gong ZH, Khan MA, Yin YX, et al. (2011). Activity and expression of polygalacturonase vary at different fruit ripening stages of sweet pepper cultivars. Genet. Mol. Res. 10: 3275-3290. http://dx.doi.org/10.4238/2011.November.22.10 PMid:22180000   Akiyoshi DE, Klee H, Amasino RM, Nester EW, et al. (1984). T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 81: 5994-5998. http://dx.doi.org/10.1073/pnas.81.19.5994 PMid:6091129 PMCid:391845   Anonymous (2003). The production and post-harvest handling of sweet pepper in Kenya. Horticultural Crops Development Authority (HCDA), Kenia.   AVRDC (2005). The World Vegetable Centre. Available at [www.avrdc.org/pdf/brief-poverty.pdf]. Accessed July 20, 2011.   Barry GF, Rogers SG, Fraley RT and Brand L (1984). Identification of a cloned cytokinin biosynthetic gene. Proc. Natl. Acad. Sci. U. S. A. 81: 4776-4780. http://dx.doi.org/10.1073/pnas.81.15.4776 PMid:16593495 PMCid:391573   Broglie KE, Gaynor JJ and Broglie RM (1986). Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris. Proc. Natl. Acad. Sci. U. S. A. 83: 6820-6824. http://dx.doi.org/10.1073/pnas.83.18.6820 PMid:2428042 PMCid:386601   Chen PY, Wang CK, Soong SC and To KY (2003). Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol. Breed. 11: 287-293. http://dx.doi.org/10.1023/A:1023475710642   Chen RG, Yang RP, Gong ZH, Li DW, et al. (2010). Cloning and sequence analysis of the polygalacturonase gene CaPG in pepper. Acta Bot. Boreal.-Occident. Sin. 30: 1941-1945.   Deikman J and Fischer RL (1988). Interaction of a DNA binding factor with the 5'-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J. 7: 3315-3320. PMid:3208738 PMCid:454826   Deikman J, Xu R, Kneissl ML, Ciardi JA, et al. (1998). Separation of cis elements responsive to ethylene, fruit development, and ripening in the 5'-flanking region of the ripening-related E8 gene. Plant Mol. Biol. 37: 1001-1011. http://dx.doi.org/10.1023/A:1006091928367 PMid:9700072   Fischer RL and Bennett AB (1991). Role of cell wall hydrolases in fruit ripening. Annu. Rev. Plant Physiol. 42: 675-703. http://dx.doi.org/10.1146/annurev.pp.42.060191.003331   Giorno F, Wolters-Arts M, Grillo S, Scharf KD, et al. (2010). Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 61: 453-462. http://dx.doi.org/10.1093/jxb/erp316 PMid:19854799 PMCid:2803211   Guivarc'h A, Rembur J, Goetz M, Roitsch T, et al. (2002). Local expression of the ipt gene in transgenic tobacco (Nicotiana tabacum L. cv. SR1) axillary buds establishes a role for cytokinins in tuberization and sink formation. J. Exp. Bot. 53: 621-629. http://dx.doi.org/10.1093/jexbot/53.369.621 PMid:11886881   Holdsworth MJ, Bird CR, Ray J, Schuch W, et al. (1987). Structure and expression of an ethylene-related mRNA from tomato. Nucleic Acids Res. 15: 731-739. http://dx.doi.org/10.1093/nar/15.2.731 PMid:3029690 PMCid:340463   Ishikawa M, Murata T, Sato Y, Nishiyama T, et al. (2011). Physcomitrella cyclin-dependent kinase A links cell cycle reactivation to other cellular changes during reprogramming of leaf cells. Plant Cell 23: 2924-2938. http://dx.doi.org/10.1105/tpc.111.088005 PMid:21862705 PMCid:3180801   Kahl G and Winter P (1995). Plant genetic engineering for crop improvement. World J. Microbiol. Biotechnol. 11: 449-460. http://dx.doi.org/10.1007/BF00364620   Kim DH, Kang JG and Kim BD (2007). Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.). Plant Mol. Biol. 63: 519-532. http://dx.doi.org/10.1007/s11103-006-9106-y PMid:17238047   Kothari SL, Joshi A, Kachhwaha S and Ochoa-Alejo N (2010). Chilli peppers-a review on tissue culture and transgenesis. Biotechnol. Adv. 28: 35-48. http://dx.doi.org/10.1016/j.biotechadv.2009.08.005 PMid:19744550   Lincoln JE, Cordes S, Read E and Fischer RL (1987). Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development. Proc. Natl. Acad. Sci. U. S. A. 84: 2793-2797. http://dx.doi.org/10.1073/pnas.84.9.2793 PMid:3472237 PMCid:304745   McGarvey DJ, Sirevag R and Christoffersen RE (1992). Ripening-related gene from avocado fruit: ethylene-inducible expression of the mRNA and polypeptide. Plant Physiol. 98: 554-559. http://dx.doi.org/10.1104/pp.98.2.554 PMid:16668676 PMCid:1080225   Miller CO, Skoog F, Okumura FS, Von-Salza MH, et al. (1956). Isolation, structure and synthesis of kinetin, a substance promoting cell division. J. Am. Chem. Soc. 78: 1375-1380. http://dx.doi.org/10.1021/ja01588a032   Pruti JS and Sharma RP (1998). Major Spices of India Crop Management and Post Harvest Technology. In: Chapter IV: Chillies or Capsicum. Indian Council of Agricultural Research Publications and Information Division, New Delhi, 558-670.   Sambrook J and Russell DW (2000). Molecular Cloning: A Laboratory Manual. 3rd edn. CSHL Press, New York.   Schnable PS and Wise RP (1998). The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3: 175-180. http://dx.doi.org/10.1016/S1360-1385(98)01235-7   Smith CJ, Watson CF, Bird CR, Ray J, et al. (1990). Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol. Gen. Genet. 224: 477-481. http://dx.doi.org/10.1007/BF00262443 PMid:2266949   Tanaka Y, Nakamura S, Kawamukai M, Koizumi N, et al. (2011). Development of a series of gateway binary vectors possessing a tunicamycin resistance gene as a marker for the transformation of Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 75: 804-807. http://dx.doi.org/10.1271/bbb.110063 PMid:21512216   Wang ZY, MacRae EA, Wright MA, Bolitho KM, et al. (2000). Polygalacturonase gene expression in kiwifruit: relationship to fruit softening and ethylene production. Plant Mol. Biol. 42: 317-328. http://dx.doi.org/10.1023/A:1006309529922 PMid:10794531   Watson AA, Alm RA and Mattick JS (1996). Construction of improved vectors for protein production in Pseudomonas aeruginosa. Gene 172: 163-164. http://dx.doi.org/10.1016/0378-1119(96)00026-1   Xu G, Sui N, Tang Y, Xie K, et al. (2010). One-step, zero-background ligation-independent cloning intro-containing hairpin RNA constructs for RNAi in plants. New Phytol. 187: 240-250. http://dx.doi.org/10.1111/j.1469-8137.2010.03253.x PMid:20406406   Xu WR, Wang YJ, Wang XP, Hao W, et al. (2005). Construction of the plant expression vectors carrying resistant genes to powdery mildew and adversities in wild species of Vitis in China. Acta Bot. Boreal.-Occident. Sin. 25: 851-857.   Xue GP and Loveridge CW (2004). HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J. 37: 326-339. http://dx.doi.org/10.1046/j.1365-313X.2003.01963.x PMid:14731254   Zhao LX, Lu L, Zhang L, Wang A, et al. (2009). Molecular evolution of the E8 promoter in tomato and some of its relative wild species. J. Biosci. 34: 71-84. http://dx.doi.org/10.1007/s12038-009-0010-x PMid:19430120
Z. - H. Cheng, Zhou, X. - J., Khan, M. A., Su, L., and Meng, H. - W., In vitro induction of tetraploid garlic with trifluralin, vol. 11, pp. 2620-2628, 2012.
Afzal M, Ali M, Thomson M and Armstrong D (2000). Garlic and its medicinal potential. Inflammopharmacology 8: 123-148. http://dx.doi.org/10.1163/15685600038134   Al-Zahim MA, Ford-Lloyd BV and Newbury HJ (1999). Detection of somaclonal variation in garlic (Allium sativum L.) using RAPD and cytological analysis. Plant Cell Rep. 18: 473-477. http://dx.doi.org/10.1007/s002990050606   Ayabe M and Sumi S (1998). Establishment of a novel tissue culture method, stem-disc culture, and its practical application to micropropagation of garlic (Allium sativum L.). Plant Cell Rep. 17: 773-779. http://dx.doi.org/10.1007/s002990050481   Campion B, Perri E, Azzimonti MT, Vicini E, et al. (1995). Spontaneous and induced chromosome doubling in gynogenic lines of onion (Allium cepa L.). Plant Breed. 114: 243-246. http://dx.doi.org/10.1111/j.1439-0523.1995.tb00802.x   Grzebelus E and Adamus A (2004). Effect of anti-mitotic agents on development and genome doubling of gynogenic onion (Allium cepa L.) embryos. Plant Sci. 167: 569-574. http://dx.doi.org/10.1016/j.plantsci.2004.05.001   Guo RF and Xian F (2011). Research advance of garlic breeding technology. J. Anhui Agric. Sci. 39: 2617-2619, 2890.   Hansen AL, Gertz A, Joersbo M and Andersen SB (2000). Chromosome doubling in vitro with amiprophos-methyl in Beta vulgaris ovule culture. Acta Agric. Scand. B Soil Plant Sci. 50: 89-95.   Harris JC, Cottrell SL, Plummer S and Lloyd D (2001). Antimicrobial properties of Allium sativum (garlic). Appl. Microbiol. Biotechnol. 57: 282-286. http://dx.doi.org/10.1007/s002530100722 PMid:11759674   Kamenetsky R and Rabinowitch HD (2001). Floral development in bolting garlic. Sex. Plant Reprod. 13: 235-241. http://dx.doi.org/10.1007/s004970000061   Khan MA, Cheng ZH, Xiao XM, Khan AR, et al. (2011). Ultrastructural studies of the inhibition effect against Phytophthora capsici of root exudates collected from two garlic cultivars along with their qualitative analysis. Crop Protect. 30: 1149-1155. http://dx.doi.org/10.1016/j.cropro.2011.04.013   Khosravi P, Kermani MJ, Nematzadeh GA, Bihamta MR, et al. (2008). Role of mitotic inhibitors and genotype on chromosome doubling of Rosa. Euphytica 160: 267-275. http://dx.doi.org/10.1007/s10681-007-9571-7   Long YJ, Wu Z, Yang Y, Li CH, et al. (2008). Anatomy of organogenesis from garlic (Allium sativum L.) rachis in vitro culture. Acta Bot. Boreali-Occidentalia Sin. 28: 470-474.   McCollum GD (1987). Onion and Allies. In: Evolution of Crop Plants (Simmomds NW, ed.). Longman S & T, London, 186-190.   Mousumi B and Prabir KS (2003). Inhibitory effect of garlic on bacterial pathogens from spices. World J. Microbiol. Biotechnol. 19: 565-569. http://dx.doi.org/10.1023/A:1025108116389   Mu XQ and Cao W (1999). Herbicide on the plant cell mitosis impact. Weed Sci. 1: 11-13.   Muhammad SH, Tomikichi W and Kazumi H (1997). High frequency shoot regeneration and plantlet formation from root tip of garlic. Plant Cell Tissue Organ Cult. 50: 83-89. http://dx.doi.org/10.1023/A:1005973929862   Myers JM and Simon PW (1998). Continuous callus production and regeneration of garlic (Allium sativum L.) using root segments from shoot tip-derived plantlets. Plant Cell Rep. 17: 726-730. http://dx.doi.org/10.1007/s002990050473   Pang RY and Huang ZY (2003). The way to improve the inducing polyploid in experiment. J. Yulin Teach. Coll. 87-88.   Qin SP, Chen YH, Lin XH, Zhou LY, et al. (2006). Effects of colchicine on mitosis and polyploid induction in rye. J. Nuclear Agr. Sci. 20: 321-323.   Robledo-Paz A, Villalobos-Arambula VM and Jofre-Garfias AE (2000). Efficient plant regeneration of garlic (Allium sativum L.) by root-tip culture. In Vitro Cell. Dev. Biol. Plant 36: 416-419. http://dx.doi.org/10.1007/s11627-000-0075-6   Simon PW and Jenderekm M (2003). Flowering, seed production and the genesis of garlic breeding. Plant Breed. Rev. 32: 211-244.   Stanys V, Weckman A, Staniene G and Duchovskis P (2006). In vitro induction of polyploidy in Japanese quince (Chaenomeles japonica). Plant Cell Tissue Organ Cult. 84: 263-268. http://dx.doi.org/10.1007/s11240-005-9029-3   Thao NTP, Ureshino K, Miyajima I, Ozaki Y, et al. (2003). Induction of tetraploids in ornamental Alocasia through colchicine and oryzalin treatments. Plant Cell Tissue Organ Cult. 72: 19-25. http://dx.doi.org/10.1023/A:1021292928295   Wang MQ and Wang XH (2000). A primary study on induction of grape polyploidy. Shandong Agr. Sci. 1: 19-20.   Wei YG and Jiang JF (2008). The preliminary explore on induction of tetraplodin muskmelon with trifluralin. Acta Agric. Boreali-Sin. 21: 73-76.   Xie XL and Deng ZF (2009). Analysis on the influences of colchicine on the growth of Allium sativum and its polyploid induction effect. J. Anhui Agric. Sci. 37: 4191-4194.   Yamashita K, Hisatune Y and Sakamoto T (2002). Chromosome and cytoplasm analyses of somatic hybrids between onion (Allium cepa L.) and garlic (A. sativum L.). Euphytica 125: 163-167. http://dx.doi.org/10.1023/A:1015826702550   Yan ZH, Liu WG, Zhao SJ and He N (2008). In vitro induction of tetraploid watermelon using dinitroaniline herbicide. Acta Hortic. Sin. 35: 1621-1626.   Yanagino T, Sugawara E and Watanabe M (2003). Production and characterization of an interspecific hybrid between leek and garlic. Theor. Appl. Genet. 107: 1-5. PMid:12835927   Zhang ER and Cheng ZH (2003). Study on in vitro selection of salt-tolerant calluses of garlic. Acta Bot. Boreali- Occidentalia Sin. 23: 1571-1576.   Zhang LQ, Cheng ZH, Khan MA and Zhou Yl (2012). In vitro selection of resistant mutant garlic lines by using crude pathogen culture filtrate of Sclerotium cepivorum. Aust. Plant Pathol. 41: 211-217. http://dx.doi.org/10.1007/s13313-011-0109-z   Zhang QM and Zhang MF (2003). Progresses on polyploid induction of horticultural crops. Chin. J. Cell Biol. 223-228.   Zhang SZ and Li JR (2006a). Effect of plant growth regulators combination to the stem disc callus regeneration system of garlic (Allium sativum L.). Seed 6: 38-40.   Zhang SZ and Li JR (2006b). Study on colchicine-induced tetraploid in garlic (Allium sativum L.). J. Nuclear Agric. Sci. 20: 303-308.   Zhao J and Simmonds DH (1995). Application of trifluralin to embryogenic microspore cultures to generate doubles haploid plants in Brassica napus. Physiol. Plant 95: 304-309. http://dx.doi.org/10.1111/j.1399-3054.1995.tb00842.x   Zhou XJ, Cheng ZH and Meng HW (2009). Effects of pendimethalin on garlic chromosome doubling in vitro. Acta Bot. Boreali-Occidentalia Sin. 29: 2571-2575.Veliqui quaectio. Ro beatis rem solores sinciis soloreicid ut hillaciendae prore con culparu mquiandita acernam, ut ipsa nescipitatur sim landam labo. Ferae officatem facerempos quas erchill
2011
S. S. Ahmed, Gong, Z. - H., Khan, M. A., Yin, Y. - X., Guo, W. - L., and Imran, J., Activity and expression of polygalacturonase vary at different fruit ripening stages of sweet pepper cultivars, vol. 10, pp. 3275-3290, 2011.
Ahmed AE and Labavitch JM (1980). Cell wall metabolism in ripening fruit II. Changes in carbohydrate-degrading enzymes in ripening ‘Bartlett’ pears. Plant Physiol. 65: 1014-1016. http://dx.doi.org/10.1104/pp.65.5.1014 PMid:16661276    PMCid:440467 Arancibia RA and Motsenbocker CE (2006). Pectin methylesterase activity in vivo differs from activity in vitro and enhances polygalacturonase-mediated pectin degradation in tabasco pepper. J. Plant Physiol. 163: 488-496. http://dx.doi.org/10.1016/j.jplph.2005.06.022 PMid:16473653 Barrett DM and Gonzalez C (1994). Activity of softening enzymes during cherry maturation. Food Sci. 59: 574-577. http://dx.doi.org/10.1111/j.1365-2621.1994.tb05565.x Biggs SM and Handa AK (1989). Temporal regulation of polygalacturonase gene expression in fruit of normal, mutant, and heterozygous tomato genotypes. Plant Physiol. 89: 117-125. http://dx.doi.org/10.1104/pp.89.1.117 PMid:16666501    PMCid:1055806 Bird CR, Smith CJS, Ray JA, Moureau P, et al. (1988). The tomato polygalacturonase gene and ripening-specific expression in transgenic plants. Plant Mol. Biol. 11: 651-662. http://dx.doi.org/10.1007/BF00017465 Brady CJ (1987). Annual review. Plant Physiol. 38: 155. http://dx.doi.org/10.1146/annurev.pp.38.060187.001103 Brummell DA and Harpster MH (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 47: 311-340. http://dx.doi.org/10.1023/A:1010656104304 PMid:11554479 Chen RG, Yang RP, Gong ZH, Li DW, et al. (2010). Cloning and sequence analysis of the polygalacturonase gene CaPG in pepper. Acta Bot. Boreal-Occidentalia Sin. 30: 1941-1945. Crookes PR and Grierson D (1983). Ultrastructure of tomato fruit ripening and the role of polygalacturonase isoenzymes in cell wall degradation. Plant Physiol. 72: 1088-1093. http://dx.doi.org/10.1104/pp.72.4.1088 PMid:16663125    PMCid:1066379 Del E, Perez MC, Álvarez CO, Arrazate ACH, et al. (2007). Morphological variation in Guajillo chilli pepper plant (Capsicum annum L.). Afr. Crop Sci. Conf. Proceed. 8: 327-332. DellaPenna D, Kates DS and Bennett AB (1987). Polygalacturonase gene expression in rutgers, rin, nor and Nr tomato fruits. Plant Physiol. 85: 502-507. http://dx.doi.org/10.1104/pp.85.2.502 PMid:16665727    PMCid:1054285 Errington N, Mitchell JR and Tucker GA (1997). Changes in the force relaxation and compression responses of tomatoes during ripening: the effect of continual testing and polygalacturonase activity. Postharvest Biol. Tech. 11: 141-147. http://dx.doi.org/10.1016/S0925-5214(97)00020-3 Fenwick KM, Jarvis MC, Apperley DC, Seymour GB, et al. (1996). Polymer mobility in cell walls of transgenic tomatoes with reduced polygalacturonase activity. Phytochemistry 42: 301-307. http://dx.doi.org/10.1016/0031-9422(95)00873-X Geleta LF, Labuschagne MT and Viljoen CD (2005). Genetic variability in pepper (Capsicum annuum L.) estimated by morphological data and amplified fragment length polymorphism markers. Biodivers. Conserv. 14: 2361-2375. http://dx.doi.org/10.1007/s10531-004-1669-9 Georgia O, Ilias I, Giannakoula A and Papadopoulou P (2010). Comparative study on the effects of various plant growth regulators on growth, quality and physiology of Capsicum annum L. Pak. J. Bot. 42: 805-814. Giorno F, Wolters AM, Grillo S, Scharf KD, et al. (2010). Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 61: 453-462. http://dx.doi.org/10.1093/jxb/erp316 PMid:19854799    PMCid:2803211 Giovannoni JJ (2001). Molecular biology of fruit maturation and ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 725-749. http://dx.doi.org/10.1146/annurev.arplant.52.1.725 PMid:11337414 Giovannoni JJ, DellaPenna D, Bennett AB and Fischer RL (1989). Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell 1: 53-63. PMid:2535467    PMCid:159736 Giovannoni JJ, DellaPenna D, Bennett A and Fischer R (1991). Polygalacturonase and tomato fruit ripening. Hort. Rev. 13: 67-103. Hasegawa S, Maier VP, Kaszycki HP and Crawford JK (1969). Polygalacturonase content of dates and its relation to maturity and softness. J. Food Sci. 34: 527-529. http://dx.doi.org/10.1111/j.1365-2621.1969.tb12078.x Hobson GE (1965). The firmness of tomato fruit in relation to polygalacturonase activity. J. Hort. Sci. 40: 66-72. Huber DJ (1983). The role of cell wall hydrolases in fruit softening. Hort. Rev. 5: 169-219. Jarvis MC (1984). Structure and properties of pectin gels in plant cell walls. Plant Cell Environ. 7: 153-164. Ketsa S and Daengkanit T (1999). Firmness and activities of polygalacturonase, pectinesterase, β-galactosidase and cellulase in ripening durain harvested at different stages of maturity. Sci. Hort. 80: 181-188. http://dx.doi.org/10.1016/S0304-4238(98)00242-8 Ketsa SS, Chidtragool S, Klein JD, Luire S, et al. (1998). Effect of heat treatment on changes in softening, pectic substances and activities of polygalacturonase, pectinesterase and β-galactosidase of ripening mango. J. Plant Physiol. 153: 457- 461. http://dx.doi.org/10.1016/S0176-1617(98)80174-0 Khan MA, Cheng ZH, Xiao XM, Khan AR, et al. (2011). Ultrastructural studies of the inhibition effect against Phytophthora capsici of root exudates collected from two garlic cultivars along with their qualitative analysis. Crop Prot. 30: 1149-1155. Li YG, Zheng YZ, Feng FZ, Liang D, et al. (2010). Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell Tiss. Org. Cult. 102: 337-345. http://dx.doi.org/10.1007/s11240-010-9738-0 Nagy S, Marshall W, Wardowski WF and Rouseff RL (1985). Postharvest creasing of Robinson tangerines as affected by harvest date, pectinesterase activity and calcium content. J. Hort. Sci. 60: 137-140. Osteryoung KW, Toenjes K, Hall B, Winkler V, et al. (1990). Analysis of tomato polygalacturonase expression in transgenic tobacco. Plant Cell 2: 1239-1248. PMid:2152163    PMCid:159969 Paull RE and Chen NJ (1983). Postharvest variation in cell wall-degrading enzymes of papaya (Carica papaya L.) during fruit ripening. Plant Physiol. 72: 382-385. http://dx.doi.org/10.1104/pp.72.2.382 PMid:16663010    PMCid:1066241 Peigen ZL, Zhouyou Q, Xiaoyu and Bangliang W (1991). The relationship between fruit softening and changes in pectin and relative enzymes during ripening of peaches. J. Nanjing Agric. Univ. China 14: 33-37. Rao GU and Paran I (2003). Polygalacturonase: a candidate gene for the soft flesh and deciduous fruit mutation in Capsicum. Plant Mol. Biol. 51: 135-141. PMid:12602897 Roland JC and Vian B (1981). Use of purified endopolygalacturonase for a topochemical study of elongating cell walls at the ultrastructural level. J. Cell Sci. 48: 333-343. PMid:7276094 Seymour GB and Gross KC (1996). Cell wall disassembly and fruit softening. Postharvest News Inform. 7: 45-52. Smith CJ, Watson CF, Bird CR, Ray J, et al. (1990). Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol. Gen. Genet. 224: 477-481. http://dx.doi.org/10.1007/BF00262443 Themmen AP, Tucker GA and Grierson D (1982). Degradation of isolated tomato cell walls by purified polygalacturonase in vitro. Plant Physiol. 69: 122-124. http://dx.doi.org/10.1104/pp.69.1.122 PMid:16662142    PMCid:426158 Wang ZY, MacRae EA, Wright MA, Bolitho KM, et al. (2000). Polygalacturonase gene expression in kiwifruit: relationship to fruit softening and ethylene production. Plant Mol. Biol. 42: 317-328. http://dx.doi.org/10.1023/A:1006309529922 PMid:10794531 Xue GP and Loveridge CW (2004). HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J. 37: 326-339. http://dx.doi.org/10.1046/j.1365-313X.2003.01963.x Yoshida K and Komae K (2006). A rice family 9 glycoside hydrolase isozyme with broad substrate specificity for hemicelluloses type II cell wall. Plant Cell Physiol. 47: 1541-1554. http://dx.doi.org/10.1093/pcp/pcl020 PMid:17056618 Zauberman GM and Schiffmann-Nadel M (1972). Pectinmethylesterase and polygalacturonase in avocado fruit at various stages of development. Plant Physiol. 49: 864-865. http://dx.doi.org/10.1104/pp.49.5.864 PMid:16658064    PMCid:366068 Zhu W, Lu MH, Gong ZH and Cheng RG (2011). Cloning and expression of a small heat shock protein gene CaHSP24 from pepper under abiotic stress. Afri. J. Biotechnol. 10: 4968-4976.