Publications

Found 2 results
Filters: Author is W.W. Ren  [Clear All Filters]
2011
Y. L. Tang, Ren, W. W., Zhang, L., and Tang, K. X., Molecular cloning and characterization of a tocopherol cyclase gene from Lactuca sativa (Asteraceae), vol. 10, pp. 693-702, 2011.
Abbasi AR, Hajirezaei M, Hofius D, SonnewaldU, et al.(2007).Specific roles of alpha-andgamma-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol. 143: 1720-1738. doi:10.1104/pp.106.094771 PMid:17293434    PMCid:1851823 Azzi A, Gysin R, Kempna P, Munteanu A, et al. (2004). Vitamin E mediates cell signaling and regulation of gene expression. Ann. N. Y. Acad. Sci. 1031: 86-95. doi:10.1196/annals.1331.009 PMid:15753136 Collin VC, Eymery F, Genty B, Rey P, et al. (2008). Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell. Environ. 31: 244-257. PMid:17996014 DellaPenna D and Pogson BJ (2006). Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57: 711-738. doi:10.1146/annurev.arplant.56.032604.144301 PMid:16669779 Geourjon C andDeleage G (1995).SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11: 681-684. PMid:8808585 Guo J, Liu X, Chen S, Jin Z, et al. (2006). Overexpression of VTE1 from Arabidopsis resulting in high vitamin E accumulation and salt stress tolerance increase in tobacco plant. J. Appl. Environ. Biol. 12: 468-471. Havaux M, Eymery F, Porfirova S, Rey P, et al.(2005).Vitamin E protects against photoinhibition andphotooxidative stress in Arabidopsis thaliana. Plant Cell. 17: 3451-3469. doi:10.1105/tpc.105.037036 PMid:16258032    PMCid:1315381 Kanwischer M, Porfirova S, Bergmuller E andDormann P (2005).Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol. 137: 713-723. doi:10.1104/pp.104.054908 PMid:15665245    PMCid:1065371 Kumar R, Raclaru M, Schusseler T, Gruber J, et al. (2005). Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett. 579: 1357-1364. doi:10.1016/j.febslet.2005.01.030 PMid:15733841 Liu X, Hua X, Guo J, Qi D, et al. (2008). Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol. Lett. 30: 1275-1280. doi:10.1007/s10529-008-9672-y PMid:18317702 Munne-Bosch S, Schwarz K and Alegre L (1999). Enhanced formation of alpha-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiol. 121: 1047-1052. doi:10.1104/pp.121.3.1047 PMid:10557254    PMCid:59469 Porfirova S, Bergmuller E, Tropf S, Lemke R, et al.(2002).Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis.Proc. Natl. Acad. Sci. U. S. A. 99: 12495-12500. doi:10.1073/pnas.182330899 PMid:12213958    PMCid:129473 Provencher LM, Miao L, Sinha N and Lucas WJ (2001). Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell. 13: 1127-1141. PMid:11340186    PMCid:135566 Sattler SE, Cahoon EB, Coughlan SJ and DellaPenna D (2003). Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol. 132: 2184-2195. doi:10.1104/pp.103.024257 PMid:12913173    PMCid:181302 Vidi PA, Kanwischer M, Baginsky S, Austin JR, et al. (2006). Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J. Biol. Chem. 281: 11225-11234. doi:10.1074/jbc.M511939200 PMid:16414959 Yamaguchi-Shinozaki K and Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 6: 251-264. PMid:8148648    PMCid:160431
Y. L. Tang, Ren, W. W., Zhang, L., and Tang, K. X., Molecular cloning and characterization of gene coding for γ-tocopherol methyltransferase from lettuce (Lactuca sativa), vol. 10. pp. 3204-3212, 2011.
Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, et al. (2007). Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol. 143: 1720-1738. http://dx.doi.org/10.1104/pp.106.094771 PMid:17293434    PMCid:1851823 Cho EA, Lee CA, Kim YS, Baek SH, et al. (2005). Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Mol. Cells 19: 16-22. PMid:15750335 Collin VC, Eymery F, Genty B, Rey P, et al. (2008). Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ. 31: 244-257. PMid:17996014 Geourjon C and Deléage G (1995). Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11: 681-684. PMid:8808585 Guo J, Liu X, Chen S and Jin Z (2006). Overexpression of VTE1 from Arabidopsis resulting in high vitamin E accumulation and salt stress tolerance increase in tobacco plant. J. Appl. Environ. Biol. 12: 468-471. Hare PD, Cress WA and Van Staden J (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21: 535-553. http://dx.doi.org/10.1046/j.1365-3040.1998.00309.x Havaux M, Eymery F, Porfirova S, Rey P, et al. (2005). Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17: 3451-3469. http://dx.doi.org/10.1105/tpc.105.037036 PMid:16258032    PMCid:1315381 Igamberdiev AU and Hill RD (2004). Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J. Exp. Bot. 55: 2473-2482. http://dx.doi.org/10.1093/jxb/erh272 PMid:15448180 Kiffin R, Bandyopadhyay U and Cuervo AM (2006). Oxidative stress and autophagy. Antioxid. Redox. Signal. 8: 152-162. http://dx.doi.org/10.1089/ars.2006.8.152 Kim YJ, Seo HY, Park TI and Baek SH (2005). Enhanced biosynthesis of α-tocopherol in transgenic soybean by introducing γ-TMT gene. J. Plant Biotechnol. 7: 203-209. Lee BK, Kim SL, Kim KH and Yu SH (2008). Seed specific expression of perilla γ-tocopherol methyltransferase gene increases α-tocopherol content in transgenic perilla (Perilla frutescens). Plant Cell Tissue Organ. Cult. 92: 47-54. http://dx.doi.org/10.1007/s11240-007-9301-9 Munne-Bosch S, Schwarz K and Alegre L (1999). Enhanced formation of alpha-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiol. 121: 1047-1052. http://dx.doi.org/10.1104/pp.121.3.1047 PMid:10557254    PMCid:59469 Noctor G (2006). Metabolic signaling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ. 29: 409-425. http://dx.doi.org/10.1111/j.1365-3040.2005.01476.x PMid:17080595 Seong ES, Ghimire BK, Goh EJ and Lim JD (2009). Overexpression of the γ-TMT gene in Codonopsis lanceolata. Biol. Plant 53: 631-636. http://dx.doi.org/10.1007/s10535-009-0115-y Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, et al. (2003). Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15: 3007-3019. http://dx.doi.org/10.1105/tpc.015875 PMid:14630966    PMCid:282849 Yamaguchi-Shinozaki K and Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251-264. PMid:8148648    PMCid:160431 Yusuf MA and Sarin NB (2007). Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgenic Res. 16: 109-113. http://dx.doi.org/10.1007/s11248-006-9028-0 PMid:17103027 Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, et al. (2010). Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim. Biophys. Acta 1797: 1428-1438. http://dx.doi.org/10.1016/j.bbabio.2010.02.002 PMid:20144585