Publications

Found 20 results
Filters: Author is X.M. Liu  [Clear All Filters]
2016
Q. Y. Dong, Liu, X. M., Liang, C. G., Du, W. H., Wang, Y. L., Li, W. X., Gao, G. Q., Dong, Q. Y., Liu, X. M., Liang, C. G., Du, W. H., Wang, Y. L., Li, W. X., and Gao, G. Q., Association between -1082G/A, -819C/T, and -592C/A genetic polymorphisms in IL-10 and risk of type 2 diabetes mellitus in a Chinese population, vol. 15, p. -, 2016.
Q. Y. Dong, Liu, X. M., Liang, C. G., Du, W. H., Wang, Y. L., Li, W. X., Gao, G. Q., Dong, Q. Y., Liu, X. M., Liang, C. G., Du, W. H., Wang, Y. L., Li, W. X., and Gao, G. Q., Association between -1082G/A, -819C/T, and -592C/A genetic polymorphisms in IL-10 and risk of type 2 diabetes mellitus in a Chinese population, vol. 15, p. -, 2016.
L. J. Ding, Liu, Y. L., Ma, G., Jia, Y. Q., Wei, Y. S. H., Liu, X. M., Ding, L. J., Liu, Y. L., Ma, G., Jia, Y. Q., Wei, Y. S. H., and Liu, X. M., Correlation of acetabular chondrocyte apoptosis with caspase-3 and Bcl-2 expression in developmental dislocations of the hip, vol. 15, p. -, 2016.
L. J. Ding, Liu, Y. L., Ma, G., Jia, Y. Q., Wei, Y. S. H., Liu, X. M., Ding, L. J., Liu, Y. L., Ma, G., Jia, Y. Q., Wei, Y. S. H., and Liu, X. M., Correlation of acetabular chondrocyte apoptosis with caspase-3 and Bcl-2 expression in developmental dislocations of the hip, vol. 15, p. -, 2016.
N. Yao, Ai, L., Dong, Y. Y., Liu, X. M., Wang, D. Z., Wang, N., Li, X. W., Wang, F. W., Li, X. K., Li, H. Y., Jiang, C., Yao, N., Ai, L., Dong, Y. Y., Liu, X. M., Wang, D. Z., Wang, N., Li, X. W., Wang, F. W., Li, X. K., Li, H. Y., and Jiang, C., Expression of recombinant human anti-TNF-α scFv-Fc in Arabidopsis thaliana seeds, vol. 15, p. -, 2016.
N. Yao, Ai, L., Dong, Y. Y., Liu, X. M., Wang, D. Z., Wang, N., Li, X. W., Wang, F. W., Li, X. K., Li, H. Y., Jiang, C., Yao, N., Ai, L., Dong, Y. Y., Liu, X. M., Wang, D. Z., Wang, N., Li, X. W., Wang, F. W., Li, X. K., Li, H. Y., and Jiang, C., Expression of recombinant human anti-TNF-α scFv-Fc in Arabidopsis thaliana seeds, vol. 15, p. -, 2016.
Y. Halifu, Liang, J. Q., Zeng, X. W., Ding, Y., Zhang, X. Y., Jin, T. B., Yakeya, B., Abudu, D., Zhou, Y. M., Liu, X. M., Hu, F. X., Chai, L., Kang, X. J., Halifu, Y., Liang, J. Q., Zeng, X. W., Ding, Y., Zhang, X. Y., Jin, T. B., Yakeya, B., Abudu, D., Zhou, Y. M., Liu, X. M., Hu, F. X., Chai, L., and Kang, X. J., Wnt1 and SFRP1 as potential prognostic factors and therapeutic targets in cutaneous squamous cell carcinoma, vol. 15, p. -, 2016.
Y. Halifu, Liang, J. Q., Zeng, X. W., Ding, Y., Zhang, X. Y., Jin, T. B., Yakeya, B., Abudu, D., Zhou, Y. M., Liu, X. M., Hu, F. X., Chai, L., Kang, X. J., Halifu, Y., Liang, J. Q., Zeng, X. W., Ding, Y., Zhang, X. Y., Jin, T. B., Yakeya, B., Abudu, D., Zhou, Y. M., Liu, X. M., Hu, F. X., Chai, L., and Kang, X. J., Wnt1 and SFRP1 as potential prognostic factors and therapeutic targets in cutaneous squamous cell carcinoma, vol. 15, p. -, 2016.
2012
X. H. Shan, Li, Y. D., Liu, X. M., Wu, Y., Zhang, M. Z., Guo, W. L., Liu, B., and Yuan, Y. P., Comparative analyses of genetic/epigenetic diversities and structures in a wild barley species (Hordeum brevisubulatum) using MSAP, SSAP and AFLP, vol. 11, pp. 2749-2759, 2012.
Ashikawa I (2001). Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars. Plant Mol. Biol. 45: 31-39. http://dx.doi.org/10.1023/A:1006457321781 PMid:11247604   Cervera MT, Ruiz-Garcia L and Martinez-Zapater JM (2002). Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol. Genet. Genomics 268: 543-552. http://dx.doi.org/10.1007/s00438-002-0772-4 PMid:12471452   Choi CS and Sano H (2007). Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol. Genet. Genomics 277: 589-600. http://dx.doi.org/10.1007/s00438-007-0209-1 PMid:17273870   Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282 PMCid:1205020   Herrera CM and Bazaga P (2010). Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 187: 867-876. http://dx.doi.org/10.1111/j.1469-8137.2010.03298.x PMid:20497347   Kalisz S and Purugganan MD (2004). Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol. Evol. 19: 309-314. http://dx.doi.org/10.1016/j.tree.2004.03.034 PMid:16701276   Keyte AL, Percifield R, Liu B and Wendel JF (2006). Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). J. Hered. 97: 444-450. http://dx.doi.org/10.1093/jhered/esl023 PMid:16987937   Li YD, Chu ZZ, Liu XG, Jing HC, et al. (2010). A cost-effective high-resolution melting approach using the EvaGreen dye for DNA polymorphism detection and genotyping in plants. J. Integr. Plant Biol. 52: 1036-1042. http://dx.doi.org/10.1111/j.1744-7909.2010.01001.x PMid:21106003   Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, et al. (2010). Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5: e10326. http://dx.doi.org/10.1371/journal.pone.0010326 PMid:20436669 PMCid:2859934   Lukens LN and Zhan S (2007). The plant genome's methylation status and response to stress: implications for plant improvement. Curr. Opin. Plant Biol. 10: 317-322. http://dx.doi.org/10.1016/j.pbi.2007.04.012 PMid:17468039   Mantel N (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220. PMid:6018555   Miller MP (1997). Tools for Population Genetic Analyses (TFPGA) v. 1.3: A Windows Program for the Analysis of Allozyme and Molecular Genetic Data. Department of Biological Sciences, Northern Arizona University, Phoenix.   Nei M (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70: 3321-3323. http://dx.doi.org/10.1073/pnas.70.12.3321 PMid:4519626 PMCid:427228   Papa R and Gepts P (2003). Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor. Appl. Genet. 106: 239-250. PMid:12582849   Rapp RA and Wendel JF (2005). Epigenetics and plant evolution. New Phytol. 168: 81-91. http://dx.doi.org/10.1111/j.1469-8137.2005.01491.x PMid:16159323   Richards EJ (2011). Natural epigenetic variation in plant species: a view from the field. Curr. Opin. Plant Biol. 14: 204-209. http://dx.doi.org/10.1016/j.pbi.2011.03.009 PMid:21478048   Salmon A, Ainouche ML and Wendel JF (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol. Ecol. 14: 1163-1175. http://dx.doi.org/10.1111/j.1365-294X.2005.02488.x PMid:15773943   Schneider S, Schneider S and Excoffier L (2000). Arlequin Version 2000, A Software for Population Genetics Data Analysis. University of Geneva, Geneva.   Shen S, Wang Z, Shan X, Wang H, et al. (2006). Alterations in DNA methylation and genome structure in two rice mutant lines induced by high pressure. Sci. China C. Life Sci. 49: 97-104. http://dx.doi.org/10.1007/s11427-006-0097-3 PMid:16704112   Tan MP (2010). Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol. Biochem. 48: 21-26. http://dx.doi.org/10.1016/j.plaphy.2009.10.005 PMid:19889550   Tang S and Knapp SJ (2003). Microsatellites uncover extraordinary diversity in native American land races and wild populations of cultivated sunflower. Theor. Appl. Genet. 106: 990-1003. PMid:12671746   Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, et al. (2007). Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 5: e174. http://dx.doi.org/10.1371/journal.pbio.0050174 PMid:17579518 PMCid:1892575   Vos P, Hogers R, Bleeker M, Reijans M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463 PMCid:307397   Waugh R, McLean K, Flavell AJ, Pearce SR, et al. (1997). Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253: 687-694. http://dx.doi.org/10.1007/s004380050372 PMid:9079879   Wright SI, Bi IV, Schroeder SG, Yamasaki M, et al. (2005). The effects of artificial selection on the maize genome. Science 308: 1310-1314. http://dx.doi.org/10.1126/science.1107891 PMid:15919994   Yeh FC, Yang RC, Boyle TBJ and Ye ZH (1997). POPGENE, the User-Friendly Shareware for Population Genetic Analysis. Version 1.21. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton.   Yi C, Zhang S, Liu X and Bui HT (2010). Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol. 10: 259. http://dx.doi.org/10.1186/1471-2229-10-259 PMid:21092236 PMCid:3017842
J. R. Xu, Yang, Y., Liu, X. M., Sun, J. Y., and Wang, Y. J., Polymorphisms of the TIM-1 gene are associated with rheumatoid arthritis in the Chinese Hui minority ethnic population, vol. 11, pp. 61-69, 2012.
Abbas AK, Murphy KM and Sher A (1996). Functional diversity of helper T lymphocytes. Nature 383: 787-793. http://dx.doi.org/10.1038/383787a0 PMid:8893001 Arnett FC, Edworthy SM, Bloch DA, McShane DJ, et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31: 315-324. http://dx.doi.org/10.1002/art.1780310302 Chae SC, Song JH, Heo JC, Lee YC, et al. (2003). Molecular variations in the promoter and coding regions of human Tim-1 gene and their association in Koreans with asthma. Hum. Immunol. 64: 1177-1182. http://dx.doi.org/10.1016/j.humimm.2003.09.011 PMid:14630400 Chae SC, Park YR, Shim SC, Yoon KS, et al. (2004a). The polymorphisms of Th1 cell surface gene Tim-3 are associated in a Korean population with rheumatoid arthritis. Immunol. Lett. 95: 91-95. http://dx.doi.org/10.1016/j.imlet.2004.06.008 PMid:15325803 Chae SC, Song JH, Shim SC, Yoon KS, et al. (2004b). The exon 4 variations of Tim-1 gene are associated with rheumatoid arthritis in a Korean population. Biochem. Biophys. Res. Commun. 315: 971-975. http://dx.doi.org/10.1016/j.bbrc.2004.01.154 PMid:14985107 Chae SC, Park YR, Song JH, Shim SC, et al. (2005). The polymorphisms of Tim-1 promoter region are associated with rheumatoid arthritis in a Korean population. Immunogenetics 56: 696-701. http://dx.doi.org/10.1007/s00251-004-0743-5 PMid:15565336 Clegg DO and Ward JR (1987). Diagnostic criteria in rheumatoid arthritis. Scand. J. Rheumatol. Suppl. 65: 3-11. http://dx.doi.org/10.3109/03009748709102172 PMid:3317806 Feigelstock D, Thompson P, Mattoo P, Zhang Y, et al. (1998). The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor. J. Virol. 72: 6621-6628. PMid:9658108    PMCid:109848 Gao PS, Mathias RA, Plunkett B, Togias A, et al. (2005). Genetic variants of the T-cell immunoglobulin mucin 1 but not the T-cell immunoglobulin mucin 3 gene are associated with asthma in an African American population. J. Allergy Clin. Immunol. 115: 982-988. http://dx.doi.org/10.1016/j.jaci.2005.01.035 PMid:15867855 Gregersen PK (2001). Genetics and rheumatic diseases: rheumatoid arthritis and ankylosing spondylitis. The genetics of rheumatoid arthritis. Bull. Rheum. Dis. 50: 1-2. Gregersen PK (2003). Teasing apart the complex genetics of human autoimmunity: lessons from rheumatoid arthritis. Clin. Immunol. 107: 1-9. http://dx.doi.org/10.1016/S1521-6616(02)00045-1 Hofstra CL, Van Ark, I, Hofman G, Kool M, et al. (1998). Prevention of Th2-like cell responses by coadministration of IL- 12 and IL-18 is associated with inhibition of antigen-induced airway hyperresponsiveness, eosinophilia, and serum IgE levels. J. Immunol. 161: 5054-5060. PMid:9794443 Ichimura T, Bonventre JV, Bailly V, Wei H, et al. (1998). Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem. 273: 4135-4142. http://dx.doi.org/10.1074/jbc.273.7.4135 PMid:9461608 Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, et al. (2008). Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest. 118: 1657-1668. http://dx.doi.org/10.1172/JCI34487 PMid:18414680    PMCid:2293335 Kuchroo VK, Umetsu DT, DeKruyff RH and Freeman GJ (2003). The TIM gene family: emerging roles in immunity and disease. Nat. Rev. Immunol. 3: 454-462. http://dx.doi.org/10.1038/nri1111 PMid:12776205 Lee HS, Korman BD, Le Julie M, Kastner DL, et al. (2009). Genetic risk factors for rheumatoid arthritis differ in Caucasian and Korean populations. Arthritis Rheum. 60: 364-371. http://dx.doi.org/10.1002/art.24245 Li JS, Liu QJ, Wang P, Li HC, et al. (2006). Absence of association between two insertion/deletion coding genetic polymorphisms of TIM-1 gene and asthma in Chinese Han population. Int. J. Immunogenet. 33: 417-422. http://dx.doi.org/10.1111/j.1744-313X.2006.00634.x PMid:17117951 Liu Q, Shang L, Li J, Wang P, et al. (2007). A functional polymorphism in the TIM-1 gene is associated with asthma in a Chinese Han population. Int. Arch. Allergy Immunol. 144: 197-202. http://dx.doi.org/10.1159/000103992 PMid:17570927 McIntire JJ, Umetsu SE, Akbari O, Potter M, et al. (2001). Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat. Immunol. 2: 1109-1116. http://dx.doi.org/10.1038/ni739 PMid:11725301 Meiler F, Zimmermann M, Blaser K, Akdis CA, et al. (2006). T-cell subsets in the pathogenesis of human asthma. Curr. Allergy Asthma Rep. 6: 91-96. http://dx.doi.org/10.1007/s11882-006-0045-0 PMid:16566857 Mou Z, Shi J, Tan Y, Xu R, et al. (2010). Association between TIM-1 gene polymorphisms and allergic rhinitis in a Han Chinese population. J. Investig. Allergol. Clin. Immunol. 20: 3-8. PMid:20232767 Munoz-Valle JF, Valle Y, Padilla-Gutierrez JR, Parra-Rojas I, et al. (2010). The +49A>G CTLA-4 polymorphism is associated with rheumatoid arthritis in Mexican population. Clin. Chim. Acta 411: 725-728. http://dx.doi.org/10.1016/j.cca.2010.02.001 PMid:20138855 Noguchi E, Nakayama J, Kamioka M, Ichikawa K, et al. (2003). Insertion/deletion coding polymorphisms in hHAVcr-1 are not associated with atopic asthma in the Japanese population. Genes Immun. 4: 170-173. http://dx.doi.org/10.1038/sj.gene.6363935 PMid:12618867 Nordang GB, Viken MK, Hollis-Moffatt JE, Merriman TR, et al. (2009). Association analysis of the interleukin 17A gene in Caucasian rheumatoid arthritis patients from Norway and New Zealand. Rheumatology 48: 367-370. http://dx.doi.org/10.1093/rheumatology/ken512 PMid:19208686 Raychaudhuri S (2010). Recent advances in the genetics of rheumatoid arthritis. Curr. Opin. Rheumatol. 22: 109-118. http://dx.doi.org/10.1097/BOR.0b013e328336474d PMid:20075733    PMCid:3121048 Schulze-Koops H and Kalden JR (2001). The balance of Th1/Th2 cytokines in rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 15: 677-691. http://dx.doi.org/10.1053/berh.2001.0187 Wu Q, Hu L, Cai P, Li Y, et al. (2009a). Association analysis of TIM-1 -232G > A and 5383_5397 insertion/deletion polymorphisms with childhood asthma and total serum immunoglobulin E levels in middle China. J. Investig. Allergol. Clin. Immunol. 19: 146-153. PMid:19476019 Wu QW, Cai PC, Wang L, Li YR, et al. (2009b). Family-based association study of Tim-1 and Tim-3 gene polymorphisms with childhood asthma in Chinese trios. Int. Arch Allergy Immunol. 150: 252-260. http://dx.doi.org/10.1159/000222677 PMid:19494522
M. B. Zhou, Liu, X. M., and Tang, D. Q., PpPIF-1: first isolated full-length PIF-like element from the bamboo Phyllostachys pubescens, vol. 11, pp. 810-820, 2012.
Brookfield JF (1991). Models of repression of transposition in P-M hybrid dysgenesis by P cytotype and by zygotically encoded repressor proteins. Genetics 128: 471-486. PMid:1649073    PMCid:1204483 Capy P, Bazin C, Higuet D and Langin T (1998). Dynamics and Evolution of Transposable Elements. Springer-Verlag, Austin. http://dx.doi.org/10.1007/978-94-011-4898-6 Casola C, Lawing AM, Betran E and Feschotte C (2007). PIF-like transposons are common in Drosophila and have been repeatedly domesticated to generate new host genes. Mol. Biol. Evol. 24: 1872-1888. http://dx.doi.org/10.1093/molbev/msm116 PMid:17556756 Doyle JJ and Doyle JL (1987). A rapid isolation procedure for small quantities of fresh leaf materials. Phytochem. Bull. 19: 11-15. Feschotte C, Jiang N and Wessler SR (2002a). Plant TEs: where genetics meets genomics. Nat. Rev. Genet. 3: 329-341. http://dx.doi.org/10.1038/nrg793 PMid:11988759 Feschotte C, Zhang X and Wessler SR (2002b). Miniature Inverted-Repeat Transposable Elements (MITEs) and their Relationship with Established DNA Transposons. In: Mobile DNA II (Craig NL, Craigie R, Gellert M and Lambowitz AM, eds.). Society for Microbiology Press, Washington, 1147-1158. Finnegan DJ (1992). Transposable Elements. In: The Genome of Drosophila melanogaster (Lindsley DL and Zimm G, eds.). Academic Press, New York, 1096-1107. Hartl DL, Lohe AR and Lozovskaya ER (1997a). Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu. Rev. Genet. 31: 337-358. http://dx.doi.org/10.1146/annurev.genet.31.1.337 PMid:9442899 Hartl DL, Lozovskaya ER, Nurminsky DI and Lohe AR (1997b). What restricts the activity of mariner-like TEs? Trends Genet. 13: 197-201. http://dx.doi.org/10.1016/S0168-9525(97)01087-1 Holligan D, Zhang XY, Jiang N and Pritham EJ (2006). The transposable element landscape of the model legume Lotus japonicus. Genetics 174: 2215-2228. http://dx.doi.org/10.1534/genetics.106.062752 PMid:17028332    PMCid:1698628 Jiang N, Bao Z, Zhang X, Hirochika H, et al. (2003). An active DNA transposon family in rice. Nature 421: 163-167. http://dx.doi.org/10.1038/nature01214 PMid:12520302 Kapitonov VV and Jurka J (1999). Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica 107: 27-37. http://dx.doi.org/10.1023/A:1004030922447 PMid:10952195 Le QH, Wright S, Yu ZH and Bureau T (2000). Transposon diversity in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 97: 7376-7381. http://dx.doi.org/10.1073/pnas.97.13.7376 Le QH, Turcotte K and Bureau T (2001). Tc8, a Tourist-like transposon in Caenorhabditis elegans. Genetics 158: 1081- 1088. PMid:11454757    PMCid:1461737 Montgomery EA, Charlesworth B and Langley CH (1987). A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res. 49: 31-41. http://dx.doi.org/10.1017/S0016672300026707 Pritham EJ (2009). Transposable elements and factors influencing their success in eukaryotes. Heredity J. 100: 648-655. http://dx.doi.org/10.1093/jhered/esp065 PMid:19666747    PMCid:2877548 Roux KH (1995). Optimization and troubleshooting in PCR. PCR Methods Appl. 4: S185-S194. PMid:7580907 Sambrook J, Fritsch EF and Maniatis T (1987). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, et al. (1995). An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 23: 1087-1088. http://dx.doi.org/10.1093/nar/23.6.1087 PMid:7731798    PMCid:306810 Swofford DL (2002). PAUP: Phylogenetic Analysis Using Parsimony (*and other Methods). Version 4.0b 10. Sinauer Associates, Sunderland. Tang DQ (2009). Genomic sequencing and its application for biological and evolutional research in bamboo. Bamboo J. 26: 1-10. Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 PMid:7984417    PMCid:308517 Walker EL, Eggleston WB, Demopulos D, Kermicle J, et al. (1997). Insertions of a novel class of transposable elements with a strong target site preference at their locus of maize. Genetics 146: 681-693. PMid:9178016    PMCid:1208007 Zhang X, Feschotte C, Zhang Q, Jiang N, et al. (2001). P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc. Natl. Acad. Sci. U. S. A. 98: 12572-12577. http://dx.doi.org/10.1073/pnas.211442198 PMid:11675493    PMCid:60095 Zhang X, Jiang N, Feschotte C and Wessler SR (2004). PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. Genetics 166: 971-986. http://dx.doi.org/10.1534/genetics.166.2.971 PMid:15020481    PMCid:1470744 Zhou MB, Lu JJ, Zhong H and Tang DQ (2010). Distribution and diversity of PIF-like transposable elements in the Bambusoideae subfamily. Plant Sci. 179: 257-266. http://dx.doi.org/10.1016/j.plantsci.2010.05.012
2011
M. Li, Ma, C. J., Liu, X. M., Zhao, D., Xu, Q. C., and Wang, Y. J., Molecular cloning of HSP70 in Mycoplasma ovipneumoniae and comparison with that of other mycoplasmas, vol. 10, pp. 834-848, 2011.
Amemiya K, Meyers JL, Deshazer D, Riggins RN, et al. (2007). Detection of the host immune response to Burkholderia mallei heat-shock proteins GroEL and DnaK in a glanders patient and infected mice. Diagn. Microbiol. Infect. Dis. 59: 137-147. doi:10.1016/j.diagmicrobio.2007.04.017 PMid:17908615 Barré A, de Daruvar A and Blanchard A (2004). MolliGen, a database dedicated to the comparative genomics of Mollicutes. Nucleic Acids Res. 32: D307-D310. doi:10.1093/nar/gkh114 PMid:14681420    PMCid:308848 Biberfeld G (1985). Infection Sequelae and Autoimmune Reactions in Mycoplasma pneumoniae Infection. Academic Press, Inc., Orlando, 293-311. Candiano G, Bruschi M, Musante L, Santucci L, et al. (2004). Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25: 1327-1333. doi:10.1002/elps.200305844 PMid:15174055 Chou SY, Chung TL, Chen RJ, Ro LH, et al. (1997). Molecular cloning and analysis of a HSP (heat shock protein)-like 42 kDa antigen gene of Mycoplasma hyopneumoniae. Biochem. Mol. Biol. Int. 41: 821-831. PMid:9111943 Craig EA (1985). The heat shock response. CRC Crit. Rev. Biochem. 18: 239-280. doi:10.3109/10409238509085135 Craig EA, Gambill BD and Nelson RJ (1993). Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev. 57: 402-414. PMid:8336673    PMCid:372916 Dassanayake RP, Shanthalingam S, Herndon CN, Subramaniam R, et al. (2010). Mycoplasma ovipneumoniae can predispose bighorn sheep to fatal Mannheimia haemolytica pneumonia. Vet. Microbiol. 145: 354-359. doi:10.1016/j.vetmic.2010.04.011 PMid:20466492 Falah M and Gupta RS (1994). Cloning of the hsp70 (dnaK) genes from Rhizobium meliloti and Pseudomonas cepacia: phylogenetic analyses of mitochondrial origin based on a highly conserved protein sequence. J. Bacteriol. 176: 7748-7753. PMid:7528198    PMCid:197237 Falah M and Gupta RS (1997). Phylogenetic analysis of mycoplasmas based on Hsp70 sequences: cloning of the dnaK (hsp70) gene region of Mycoplasma capricolum. Int. J. Syst. Bacteriol. 47: 38-45. doi:10.1099/00207713-47-1-38 PMid:8995799 Floto RA, MacAry PA, Boname JM, Mien TS, et al. (2006). Dendritic cell stimulation by mycobacterial Hsp70 is mediated through CCR5. Science 314: 454-458. doi:10.1126/science.1133515 PMid:17053144 Foggie A, Jones GE and Buxton D (1976). The experimental infection of specific pathogen free lambs with Mycoplasma ovipneumoniae. Res. Vet. Sci. 21: 28-35. PMid:133436 Fraser CM, Gocayne JD, White O, Adams MD, et al. (1995). The minimal gene complement of Mycoplasma genitalium. Science 270: 397-403. doi:10.1126/science.270.5235.397 PMid:7569993 Himmelreich R, Hilbert H, Plagens H, Pirkl E, et al. (1996). Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24: 4420-4449. doi:10.1093/nar/24.22.4420 PMid:8948633    PMCid:146264 Ionas G, Clarke JK and Marshall RB (1991). The isolation of multiple strains of Mycoplasma ovipneumoniae from individual pneumonic sheep lungs. Vet. Microbiol. 29: 349-360. doi:10.1016/0378-1135(91)90142-3 Jones GE, Foggie A, Mould DL and Livitt S (1976). The comparison and characterisation of glycolytic mycoplasmas isolated from the respiratory tract of sheep. J. Med. Microbiol. 9: 39-52. doi:10.1099/00222615-9-1-39 PMid:1263247 Kakeya H, Udono H, Maesaki S, Sasaki E, et al. (1999). Heat shock protein 70 (hsp70) as a major target of the antibody response in patients with pulmonary cryptococcosis. Clin. Exp. Immunol. 115: 485-490. doi:10.1046/j.1365-2249.1999.00821.x PMid:10193422    PMCid:1905239 Kiang JG and Tsokos GC (1998). Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol. Ther. 80: 183-201. doi:10.1016/S0163-7258(98)00028-X Kumar S, Tamura K and Nei M (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163. doi:10.1093/bib/5.2.150 PMid:15260895 Li X, Yang X, Li L, Liu H, et al. (2006). A truncated C-terminal fragment of Mycobacterium tuberculosis HSP70 gene enhanced potency of HBV DNA vaccine. Vaccine 24: 3321-3331. doi:10.1016/j.vaccine.2006.01.012 PMid:16472546 Lin YC, Miles RJ, Nicholas RA, Kelly DP, et al. (2008). Isolation and immunological detection of Mycoplasma ovipneumoniae in sheep with atypical pneumonia, and lack of a role for Mycoplasma arginini. Res. Vet. Sci. 84: 367-373. doi:10.1016/j.rvsc.2007.06.004 PMid:17662318 Minion FC, Lefkowitz EJ, Madsen ML, Cleary BJ, et al. (2004). The genome sequence of Mycoplasma hyopneumoniae strain 232, the agent of swine mycoplasmosis. J. Bacteriol. 186: 7123-7133. doi:10.1128/JB.186.21.7123-7133.2004 PMid:15489423    PMCid:523201 Ramagli L (1999). 2-D Proteome Analysis. In: Methods in Molecular Biology (Link A, ed.). Humana Press, Totowa, 99-103. Rasoli M, Omar AR, Aini I, Jalilian B, et al. (2010). Fusion of HSP70 gene of Mycobacterium tuberculosis to hemagglutinin (H5) gene of avian influenza virus in DNA vaccine enhances its potency. Acta Virol. 54: 33-39. doi:10.4149/av_2010_01_33 PMid:20201612 Razin S, Yogev D and Naot Y (1998). Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62: 1094-1156. PMid:9841667    PMCid:98941 Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. PMid:3447015 Scherm B, Gerlach GF and Runge M (2002). Analysis of heat shock protein 60 encoding genes of mycoplasmas and investigations concerning their role in immunity and infection. Vet. Microbiol. 89: 141-150. doi:10.1016/S0378-1135(02)00158-X Staint George TD and Carmichael LE (1975). Isolation of Mycoplasma ovipneumoniae from sheep with chronic pneumonia. Vet. Rec. 97: 205-206. doi:10.1136/vr.97.11.205 PMid:1162872 Suzue K and Young RA (1996). Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. J. Immunol. 156: 873-879. PMid:8543845 Torigoe T, Tamura Y and Sato N (2009). Heat shock proteins and immunity: application of hyperthermia for immunomodulation. Int. J. Hyperther. 25: 610-616. doi:10.3109/02656730903315831 PMid:20021222
M. B. Zhou, Liu, X. M., and Tang, D. Q., Transposable elements in Phyllostachys pubescens (Poaceae) genome survey sequences and the full-length cDNA sequences, and their association with simple-sequence repeats, vol. 10, pp. 3026-3037, 2011.
Akagi H, Yokozeki Y, Inagaki A, Mori K, et al. (2001). Micron, a microsatellite-targeting transposable element in the rice genome. Mol. Genet. Genomics 266: 471-480. http://dx.doi.org/10.1007/s004380100563 PMid:11713677 Barker NP, Clark LG, Davis JI, Duvall MR, et al. (2001). Phylogeny and subfamilial classification of the grasses (Poaceae). Ann. Missouri Bot. Garden 88: 373-457. http://dx.doi.org/10.2307/3298585 Bennetzen JL (2002). Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115: 29-36. http://dx.doi.org/10.1023/A:1016015913350 PMid:12188046 Clark LG (1996). Diversity, Biogeography and Evolution of Chusquea. In: International Symposium on Bamboos (Chapman GP, ed.). Academic Press Ltd., London, 33-44. Dransfield S and Widjaja EA (1995). Plant Resources of South-East Asia No. 7 Bamboos. Backhuys Publishers, Leiden. Feschotte C (2008). TEs and the evolution of regulatory networks. Nat. Rev. Genet. 9: 397-405. http://dx.doi.org/10.1038/nrg2337 PMid:18368054    PMCid:2596197 Feschotte C, Jiang N and Wessler SR (2002). Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3: 329-341. http://dx.doi.org/10.1038/nrg793 PMid:11988759 Fu J (2001). Chinese Moso Bamboo: Its importance. Bamboo 22: 5-7. Geilis J, Everaert I and De Loose M (1997). Genetic Variability and Relationships in Phyllostachys Using Random Amplified Polymorphic DNA. In: The Bamboos (Chapman GP, ed.). Linnean Society Symposium, Academic Press, London, 107-124. Gui Y, Wang S, Quan L, Zhou C, et al. (2007). Genome size and sequence composition of moso bamboo: a comparative study. Sci. China C Life Sci. 50: 700-705. http://dx.doi.org/10.1007/s11427-007-0081-6 PMid:17879070 Guo ZH and Li DZ (2002). Advances in the systematics and biogeography of the Bambusoideae (Gramineae) with remarks on some remaining problems. Acta Bot. Yunnanica 24: 431-438. Huang X and Madan A (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 PMid:10508846    PMCid:310812 Jiao Y and Deng XW (2007). A genome-wide transcriptional activity survey of rice transposable element-related genes. Genome Biol. 8: R28. http://dx.doi.org/10.1186/gb-2007-8-2-r28 PMid:17326825    PMCid:1852403 Jordan IK, Rogozin IB, Glazko GV and Koonin EV (2003). Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 19: 68-72. http://dx.doi.org/10.1016/S0168-9525(02)00006-9 Kellogg EA (2001). Evolutionary history of the grasses. Plant Physiol. 125: 1198-1205. http://dx.doi.org/10.1104/pp.125.3.1198 PMid:11244101    PMCid:1539375 Klinkenborg V (2001). Bamboo for Gardens. Times Book Rev, New York. Lander ES, Linton LM, Birren B, Nusbaum C, et al. (2001). Initial sequencing and analysis of the human genome. Nature 409: 860-921. http://dx.doi.org/10.1038/35057062 PMid:11237011 Lockton S and Gaut BS (2009). The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana. J. Mol. Evol. 68: 80-89. http://dx.doi.org/10.1007/s00239-008-9190-5 PMid:19125217 Marino-Ramirez L, Lewis KC, Landsman D and Jordan IK (2005). Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet. Genome Res. 110: 333-341. http://dx.doi.org/10.1159/000084965 Matsuoka Y and Tsunewaki K (1999). Evolutionary dynamics of Ty1-copia group retrotransposons in grass shown by reverse transcriptase domain analysis. Mol. Biol. Evol. 16: 208-217. PMid:10028288 Naito K, Zhang F, Tsukiyama T, Saito H, et al. (2009). Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461: 1130-1134. http://dx.doi.org/10.1038/nature08479 PMid:19847266 Peng Z, Lu T, Li L, Liu X, et al. (2010). Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biol. 10: 116. http://dx.doi.org/10.1186/1471-2229-10-116 PMid:20565830    PMCid:3017805 Pritham EJ (2009). TEs and factors influencing their success in eukaryotes. J. Heredity 100: 648-655. http://dx.doi.org/10.1093/jhered/esp065 PMid:19666747    PMCid:2877548 Ramsay L, Macaulay M, Cardle L, Morgante M, et al. (1999). Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J. 17: 415-425. http://dx.doi.org/10.1046/j.1365-313X.1999.00392.x PMid:10205898 Richard GF, Kerrest A and Dujon B (2008). Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Micr. Mol. Bio. Rev. 72: 686-727. http://dx.doi.org/10.1128/MMBR.00011-08 PMid:19052325    PMCid:2593564 SanMiguel P and Bennetzen JL (1998). Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82: 37-44. http://dx.doi.org/10.1006/anbo.1998.0746 Scherer S (2008). A Short Guide to the Human Genome. Cold Spring Harbor University Press, Cold Spring, New York. Schnable PS, Ware D, Fulton RS, Stein JC, et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112-1115. http://dx.doi.org/10.1126/science.1178534 PMid:19965430 Sinzelle L, Izsvak Z and Ivics Z (2009). Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell Mol. Life Sci. 66: 1073-1093. http://dx.doi.org/10.1007/s00018-009-8376-3 PMid:19132291 Skibbe DS, Fernandes JF, Medzihradszky KF, Burlingame AL, et al. (2009). Mutator transposon activity reprograms the transcriptomes and proteomes of developing maize anthers. Plant J. 59: 622-633. http://dx.doi.org/10.1111/j.1365-313X.2009.03901.x PMid:19453454 Soderstrom TR and Ellis RP (1987). The Position of Bamboo Genera and Allies in a System of Grass Classification. In: Grass Systematics and Evolution (Soderstrom TR, Hilu KW, Campbell CS and Barkworth ME, eds.). Smithsonian Institution Press, New York, 225-238. Swofford DL (2002). PAUP: Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0b 10. Sinauer Associates, Sunderland. Tang DQ (2009). Genomic sequencing and its application for biological and evolutional research in bamboo. Bamboo J. 26: 1-10. Temnykh S, DeClerck G, Lukashova A, Lipovich L, et al. (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11: 1441-1452. http://dx.doi.org/10.1101/gr.184001 PMid:11483586    PMCid:311097 Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 PMid:7984417    PMCid:308517 Turcotte K, Srinivasan S and Bureau T (2001). Survey of transposable elements from rice genomic sequences. Plant J. 25: 169-179. http://dx.doi.org/10.1046/j.1365-313x.2001.00945.x PMid:11169193 Zhong H, Zhou M, Xu C and Tang DQ (2010). Diversity and evolution of Pong-like elements in Bambusoideae subfamily. Biochem. Syst. Ecol. 38: 750-758. http://dx.doi.org/10.1016/j.bse.2010.06.010 Zhou MB, Lu JJ, Zhong H, Liu XM, et al. (2010a). Distribution and diversity of PIF-like transposable elements in the Bambusoideae subfamily. Plant Sci. 179: 257-266. http://dx.doi.org/10.1016/j.plantsci.2010.05.012 Zhou MB, Lu JJ, Zhong H, Tang KX, et al. (2010b). Distribution and polymorphism of mariner-like elements in the Bambusoideae subfamily. Plant Syst. Evol. 289: 1-11. http://dx.doi.org/10.1007/s00606-010-0323-0 Zhou MB, Zhong H, Zhang QH, Tang KX, et al. (2010c). Diversity and evolution of Ty1-copia retroelements in representative tribes of Bambusoideae subfamily. Genetica 138: 861-868. http://dx.doi.org/10.1007/s10709-010-9469-5 PMid:20577895