Publications

Found 5 results
Filters: Author is J.F. Zhang  [Clear All Filters]
2012
J. F. Zhang, Yao, G. Y., and Wu, Y. H., Expression profiling based on coexpressed modules in obese prepubertal children, vol. 11, pp. 3077-3085, 2012.
Apweiler R, Attwood TK, Bairoch A, Bateman A, et al. (2001). The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 29: 37-40. http://dx.doi.org/10.1093/nar/29.1.37 PMid:11125043 PMCid:29841   Aygun AD, Gungor S, Ustundag B, Gurgoze MK, et al. (2005). Proinflammatory cytokines and leptin are increased in serum of prepubertal obese children. Mediators Inflamm. 2005: 180-183. http://dx.doi.org/10.1155/MI.2005.180 PMid:16106106 PMCid:1526468   Blouin K, Blanchette S, Richard C, Dupont P, et al. (2005). Expression and activity of steroid aldoketoreductases 1C in omental adipose tissue are positive correlates of adiposity in women. Am. J. Physiol. Endocrinol. Metab. 288: E398-E404. http://dx.doi.org/10.1152/ajpendo.00312.2004 PMid:15494612   Blouin K, Veilleux A, Luu-The V and Tchernof A (2009). Androgen metabolism in adipose tissue: recent advances. Mol. Cell. Endocrinol. 301: 97-103. http://dx.doi.org/10.1016/j.mce.2008.10.035 PMid:19022338   Blüher M, Michael MD, Peroni OD, Ueki K, et al. (2002). Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev. Cell 3: 25-38. http://dx.doi.org/10.1016/S1534-5807(02)00199-5   Briscini L, Tonello C, Dioni L, Carruba MO, et al. (1998). Bcl-2 and Bax are involved in the sympathetic protection of brown adipocytes from obesity-linked apoptosis. FEBS Lett. 431: 80-84. http://dx.doi.org/10.1016/S0014-5793(98)00730-3   Brown BW Jr, Lucero RJ and Foss AB (1962). A situation where the Pearson correlation coefficient leads to erroneous assessment of reliability. J. Clin. Psychol. 18: 95-97. http://dx.doi.org/10.1002/1097-4679(196201)18:1<95::AID-JCLP2270180131>3.0.CO;2-2   Bruning JC, Michael MD, Winnay JN, Hayashi T, et al. (1998). A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2: 559-569. http://dx.doi.org/10.1016/S1097-2765(00)80155-0   Butz DH (2010). Characterization of Novel Col5a3 Knockout and Tll1 Conditional Knockout Mice. Doctoral thesis, The University of Wisconsin, Madison.   Calcaterra V, Muratori T, Klersy C, Albertini R, et al. (2011). Early-onset metabolic syndrome in prepubertal obese children and the possible role of alanine aminotransferase as marker of metabolic syndrome. Ann. Nutr. Metab. 58: 307-314. http://dx.doi.org/10.1159/000331573 PMid:21912108   Claudio M, Benjamim F, Riccardo B, Massimiliano C, et al. (2010). Adipocytes IGFBP-2 expression in prepubertal obese children. Obesity (Silver Spring) 18: 2055-2057. http://dx.doi.org/10.1038/oby.2010.7 PMid:20134415   Davis DB, Lavine JA, Suhonen JI, Krautkramer KA, et al. (2010). FoxM1 is up-regulated by obesity and stimulates beta-cell proliferation. Mol. Endocrinol. 24: 1822-1834. http://dx.doi.org/10.1210/me.2010-0082 PMid:20660304 PMCid:2940473   Dennis G Jr, Sherman BT, Hosack DA, Yang J, et al. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4: 3. http://dx.doi.org/10.1186/gb-2003-4-5-p3   Diboun I, Wernisch L, Orengo CA and Koltzenburg M (2006). Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics 7: 252. http://dx.doi.org/10.1186/1471-2164-7-252 PMid:17029630 PMCid:1618401   Ficklin SP and Feltus FA (2011). Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice. Plant Physiol. 156: 1244-1256. http://dx.doi.org/10.1104/pp.111.173047 PMid:21606319 PMCid:3135956   Gil-Campos M, del Carmen Ramírez-Tortosa M, Larque E, Linde J, et al. (2008). Metabolic syndrome affects fatty acid composition of plasma lipids in obese prepubertal children. Lipids 43: 723-732. http://dx.doi.org/10.1007/s11745-008-3203-4 PMid:18592286   Gil-Campos M, Aguilera CM, Cañete R and Gil A (2009). Uric acid is associated with features of insulin resistance syndrome in obese children at prepubertal stage. Nutr. Hosp. 24: 607-613. PMid:19893872   Grundy SM (2004). Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab. 89: 2595-2600. http://dx.doi.org/10.1210/jc.2004-0372 PMid:15181029   Heald AH, Kaushal K, Siddals KW, Rudenski AS, et al. (2006). Insulin-like growth factor binding protein-2 (IGFBP-2) is a marker for the metabolic syndrome. Exp. Clin. Endocrinol. Diabetes 114: 371-376. http://dx.doi.org/10.1055/s-2006-924320 PMid:16915540   Itani SI, Zhou Q, Pories WJ, MacDonald KG, et al. (2000). Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity. Diabetes 49: 1353-1358. http://dx.doi.org/10.2337/diabetes.49.8.1353 PMid:10923637   Jamshidi Y, Snieder H, Wang X, Pavitt MJ, et al. (2006). Phosphatidylinositol 3-kinase p85alpha regulatory subunit gene PIK3R1 haplotype is associated with body fat and serum leptin in a female twin population. Diabetologia 49: 2659-2667. http://dx.doi.org/10.1007/s00125-006-0388-z PMid:17016694 PMCid:1626353   Johmura Y, Osada S, Nishizuka M and Imagawa M (2008). FAD24 acts in concert with histone acetyltransferase HBO1 to promote adipogenesis by controlling DNA replication. J. Biol. Chem. 283: 2265-2274. http://dx.doi.org/10.1074/jbc.M707880200 PMid:18029353   Kanehisa M, Araki M, Goto S, Hattori M, et al. (2008). KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36: D480-D484. http://dx.doi.org/10.1093/nar/gkm882 PMid:18077471 PMCid:2238879   Kinik ST, Ozbek N, Yucel M, Haberal A, et al. (2005). Correlations among serum leptin levels, complete blood count parameters and peripheral CD34(+) cell count in prepubertal obese children. Ann. Hematol. 84: 605-608. http://dx.doi.org/10.1007/s00277-005-1064-y PMid:15940513   Lagathu C, Christodoulides C, Tan CY, Virtue S, et al. (2010). Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity. Int. J. Obes. 34: 1695-1705. http://dx.doi.org/10.1038/ijo.2010.107 PMid:20514047   Langfelder P and Horvath S (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559. http://dx.doi.org/10.1186/1471-2105-9-559 PMid:19114008 PMCid:2631488   Le Marchand-Brustel Y, Gremeaux T, Ballotti R and Van Obberghen E (1985). Insulin receptor tyrosine kinase is defective in skeletal muscle of insulin-resistant obese mice. Nature 315: 676-679. http://dx.doi.org/10.1038/315676a0 PMid:3892304   Martos R, Valle M, Morales R, Cañete R, et al. (2006). Hyperhomocysteinemia correlates with insulin resistance and low-grade systemic inflammation in obese prepubertal children. Metabolism 55: 72-77. http://dx.doi.org/10.1016/j.metabol.2005.07.008 PMid:16324922   Masaki T, Chiba S, Noguchi H, Yasuda T, et al. (2004). Obesity in insulin receptor substrate-2-deficient mice: disrupted control of arcuate nucleus neuropeptides. Obes. Res. 12: 878-885. http://dx.doi.org/10.1038/oby.2004.106 PMid:15166310   Olza J, Gil-Campos M, Leis R, Aguilera CM, et al. (2010). Biomarkers of inflammation in prepubertal obese Spanish children. Proc. Nutr. Soc. 69: E233. http://dx.doi.org/10.1017/S0029665110000224   Olza J, Gil-Campos M, Leis R, Bueno G, et al. (2011). Presence of the metabolic syndrome in obese children at prepubertal age. Ann. Nutr. Metab. 58: 343-350. http://dx.doi.org/10.1159/000331996 PMid:21996789   Sesti G, Federici M, Hribal ML, Lauro D, et al. (2001). Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J. 15: 2099-2111. http://dx.doi.org/10.1096/fj.01-0009rev PMid:11641236   Süheyl EF, Hasanoglu A, Tumer L, Ozbay F, et al. (2005). Endothelial activation and inflammation in prepubertal obese Turkish children. Metabolism 54: 1384-1389. http://dx.doi.org/10.1016/j.metabol.2005.05.003 PMid:16154440   Ustundag B, Gungor S, Aygun AD, Turgut M, et al. (2007). Oxidative status and serum leptin levels in obese prepubertal children. Cell Biochem. Funct. 25: 479-483. http://dx.doi.org/10.1002/cbf.1334 PMid:16874844   Valle JM, Estepa RM, Camacho RM, Estrada RC, et al. (2007). Endothelial dysfunction is related to insulin resistance and inflammatory biomarker levels in obese prepubertal children. Eur. J. Endocrinol. 156: 497-502. http://dx.doi.org/10.1530/EJE-06-0662 PMid:17389466   Wake DJ, Strand M, Rask E, Westerbacka J, et al. (2007). Intra-adipose sex steroid metabolism and body fat distribution in idiopathic human obesity. Clin. Endocrinol. 66: 440-446. http://dx.doi.org/10.1111/j.1365-2265.2007.02755.x PMid:17302881   Wheatcroft SB, Kearney MT, Shah AM, Ezzat VA, et al. (2007). IGF-binding protein-2 protects against the development of obesity and insulin resistance. Diabetes 56: 285-294. http://dx.doi.org/10.2337/db06-0436 PMid:17259371
2011
E. N. Yang, Yang, Z. J., Zhang, J. F., Zou, Y. C., and Ren, Z. L., Molecular cytogenetic characterization of a new leaf rolling triticale, vol. 10, pp. 2953-2961, 2011.
Amiour N, Dardevet M, Khelifi D, Bouguennec A, et al. (2002a). Allelic variation of HMW and LMW glutenin subunits, HMW secalin subunits and 75K gamma-secalins of hexaploid triticale. Euphytica 123: 179-186. http://dx.doi.org/10.1023/A:1014992525992 Amiour N, Bouguennec A, Marcoz C, Sourdille P, et al. (2002b). Diversity of seven glutenin and secalin loci within triticale cultivars grown in Europe. Euphytica 123: 295-305. http://dx.doi.org/10.1023/A:1015092613786 Barary M (2005). An Investigation of Drought Tolerance Mechanisms in Triticale (X Triticosecale Wittmack) With Particular Reference to Osmotic Adjustment. PhD thesis, University of New England, Armidale. Chen G, Sagi M, Weining S, Krugman T, et al. (2004). Wild barley eibi1 mutation identifies a gene essential for leaf water conservation. Planta 219: 684-693. http://dx.doi.org/10.1007/s00425-004-1277-7 Chen G, Komatsuda T, Pourkheirandish M, Sameri M, et al. (2009). Mapping of the eibi1 gene responsible for the drought hypersensitive cuticle in wild barley (Hordeum spontaneum). Breed. Sci. 59: 21-26. http://dx.doi.org/10.1270/jsbbs.59.21 Dou QW, Tanaka H, Nakata N and Tsujimoto H (2006). Molecular cytogenetic analyses of hexaploid lines spontaneously appearing in octoploid Triticale. Theor. Appl. Genet. 114: 41-47. http://dx.doi.org/10.1007/s00122-006-0408-x PMid:17016687 Gill BS, Friebe B and Endo TR (1991). Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34: 830-839. http://dx.doi.org/10.1139/g91-128 Kadioglu A and Terzi RA (2007). Dehydration avoidance mechanism: leaf rolling. Bot. Rev. 73: 290-302. http://dx.doi.org/10.1663/0006-8101(2007)73[290:ADAMLR]2.0.CO;2 Kumar A and Sharma SC (2007). Genetics of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum L.). Cereal Res. Commun. 35: 43-52. http://dx.doi.org/10.1556/CRC.35.2007.1.6 Lukaszewski AJ and Gustafson JP (1987). Cytogenetics of triticale. In: Plant Breeding Reviews (Janick J, ed.). Vol. 5. AVI Publishing, Nova York, 41-93. McCaig TN and Romagosa I (1991). Water status measurements of excised wheat leaves: position and age effects. Crop Sci. 31: 1583-1588. http://dx.doi.org/10.2135/cropsci1991.0011183X003100060041x Mukai Y, Friebe B, Hatchett JH, Yamamoto M, et al. (1993). Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102: 88-95. http://dx.doi.org/10.1007/BF00356025 Price AH, Townend J, Jones MP, Audebert A, et al. (2002). Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol. Biol. 48: 683-695. http://dx.doi.org/10.1023/A:1014805625790 PMid:11999843 Rampino P, Pataleo S, Gerardi C, Mita G, et al. (2006). Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ. 29: 2143-2152. http://dx.doi.org/10.1111/j.1365-3040.2006.01588.x PMid:17081248 Rebetzke GJ, Morrison AD, Richards RA and Bonnett DG (2001). Genotypic Variation for Leaf Rolling in Wheat. Proceedings of the 10th Assembly Wheat Breeding Society of Australia, Mildura. Richards RA, Rebetzke GJ, Watt M, Condon AG, et al. (2010). Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct. Plant Biol. 37: 85-97. http://dx.doi.org/10.1071/FP09219 Sirault XRR (2007). Leaf rolling in wheat. PhD thesis, ANU, Canberra. Teulat B, Zoumarou-Wallis N, Rotter B, Ben SM, et al. (2003). QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor. Appl. Genet. 108: 181-188. http://dx.doi.org/10.1007/s00122-003-1417-7 PMid:13679983 Turner NC (1981). Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58: 339-366. http://dx.doi.org/10.1007/BF02180062 Wilson AS (1876). Wheat and rye hybrids. Edinburgh Bat. Sac. Trans. 12: 286-288. http://dx.doi.org/10.1080/03746607309469536 Yang ZJ, Li GR, Jiang HR and Ren ZL (2001). Expression of nucleolus, endosperm storage proteins and disease resistance in an amphiploid between Aegilops tauschii and Secale silvestre. Euphytica 119: 317-321. http://dx.doi.org/10.1023/A:1017591519520 Zhou JP, Yang ZJ, Li GR, Liu C, et al. (2008). Discrimination of repetitive sequences polymorphism in Secale cereale by genomic in situ hybridization-banding. J. Integr. Plant Biol. 50: 452-456. http://dx.doi.org/10.1111/j.1744-7909.2008.00644.x PMid:18713379 Zhou Y, Fang YX, Zhu JY, Li SQ, et al. (2010). Genetic analysis and gene fine mapping of a rolling leaf mutant (rl11(t)) in rice (Oryza sativa L.). Chin. Sci. Bull. 55: 1763-1769. http://dx.doi.org/10.1007/s11434-010-3137-0