Publications

Found 2 results
Filters: Author is R.L. Brandão  [Clear All Filters]
2012
H. A. V. Souza, Muller, L. A. C., Brandão, R. L., and Lovato, M. B., Isolation of high quality and polysaccharide-free DNA from leaves of Dimorphandra mollis (Leguminosae), a tree from the Brazilian Cerrado, vol. 11, pp. 756-764, 2012.
Barnwell P, Blanchard AN, Bryant JA and Smirnoff N (1998). Isolation of DNA from the highly mucilaginous succulent plant Sedum telephium. Plant Mol. Biol. Rep. 16: 133-138. http://dx.doi.org/10.1023/A:1007473302551 Do N and Adams RP (1991). A simple technique for removing plant polysaccharide contaminants from DNA. Biotechniques 10: 162-166. PMid:2059438 Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytoch. Bull. 19: 11-15. Fang G, Hammar S and Grumet R (1992). A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 13: 52-56. PMid:1503775 Féres CA, Madalosso RC, Rocha OA, Leite JP, et al. (2006). Acute and chronic toxicological studies of Dimorphandra mollis in experimental animals. J. Ethnopharmacol. 108: 450-456. http://dx.doi.org/10.1016/j.jep.2006.06.002 PMid:16872769 Gomes LJ and Gomes MAO (2000). O extrativismo e biodiversidade: o caso da fava d’anta. Cienc. Hoje 27: 66-69. Jobes DV, Hurley DL and Thien LB (1995). Plant DNA isolation: a method to efficiently remove polyphenolics, polysaccharides, and RNA. Taxon 44: 349-386. http://dx.doi.org/10.2307/1223408 Khanuja SPS, Shasany AK, Darokar MP and Kumar S (1999). Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol. Biol. Rep. 17: 1-7. http://dx.doi.org/10.1023/A:1007528101452 Li JT, Yang J, Chen DC, Zhang XL, et al. (2007). An optimized mini-preparation method to obtain high-quality genomic DNA from mature leaves of sunflower. Genet. Mol. Res. 6: 1064-1071. PMid:18273799 Mogg RJ and Bond JM (2003). A cheap, reliable and rapid method of extracting high-quality DNA from plants. Mol. Ecol. Notes 3: 666-668. http://dx.doi.org/10.1046/j.1471-8286.2003.00548.x Moreira PA and Oliveira DA (2011). Leaf age affects the quality of DNA extracted from Dimorphandra mollis (Fabaceae), a tropical tree species from the Cerrado region of Brazil. Genet. Mol. Res. 10: 353-358. http://dx.doi.org/10.4238/vol10-1gmr1030 PMid:21365551 Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, et al. (2000). Biodiversity hotspots for conservation priorities. Nature 403: 853-858. http://dx.doi.org/10.1038/35002501 PMid:10706275 Novaes RM, Rodrigues JG and Lovato MB (2009). An efficient protocol for tissue sampling and DNA isolation from the stem bark of Leguminosae trees. Genet. Mol. Res. 8: 86-96. http://dx.doi.org/10.4238/vol8-1gmr542 PMid:19283676 Panegassi VR, Serra GE and Buckeridge MS (2000). Seeds of faveiro (Dimorphandra mollis) as a potential source of galactomannan for the food industry. Ciênc. Tecnol. Aliment. 20: 406-415. Porebski S, Bailey LG and Baum BR (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15: 8-15. http://dx.doi.org/10.1007/BF02772108 Russell A, Samuel R, Rupp B and Barfuss MHJ (2010). Phylogenetics and cytology of a pantropical orchid genus Polystachya (Polystachyinae, Vandeae, Orchidaceae): Evidence from plastid DNA sequence data. Taxon 59: 389- 404. Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York. Scott KD and Playford J (1996). DNA extraction technique for PCR in rain forest plant species. Biotechniques 20: 974- 978. PMid:8780866 Silva MN (2010). Extraction of genomic DNA from leaf tissues of mature native species of the Cerrado. Rev. Árvore 34: 973-978. http://dx.doi.org/10.1590/S0100-67622010000600002 Souza HAV and Lovato MB (2010). Genetic diversity of the critically endangered tree Dimorphandra wilsonii and the widespread in the Brazilian Cerrado Dimorphandra mollis: implications for conservation. Biochem. Syst. Ecol. 38: 49-56. http://dx.doi.org/10.1016/j.bse.2009.12.038 Sytsma K, Givnish TJ, Simt JF and Hahn WJ (1993). Collection and Storage of Land Plant Samples for Macromolecular Comparisons. In: Methods in Enzymology - Molecular Evolution: Producing the Biochemical Data (Zimmer EA, White TJ, Cann RL and Wilson AC, eds.). Academic Press, San Diego, 23-38. http://dx.doi.org/10.1016/0076-6879(93)24003-D Tel-Zur N, Abbo S, Myslabodski D and Mizrahi Y (1999). Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). Plant Mol. Biol. Rep. 17: 249-254. http://dx.doi.org/10.1023/A:1007656315275
2011
G. M. Yazbeck, Brandão, R. L., Cunha, H. M., and Paglia, A. P., Detection of two morphologically cryptic species from the cursor complex (Akodon spp; Rodentia, Cricetidae) through the use of RAPD markers, vol. 10, pp. 2881-2892, 2011.
Al-Barrak M, Loxdale HD, Brookes CP, Dawah HA, et al. (2004). Molecular evidence using enzyme and RAPD markers for sympatric evolution in British species of Tetramesa (Hymenoptera: Eurytomidae). Biol. J. Linn. Soc. Lond. 83: 509-525. http://dx.doi.org/10.1111/j.1095-8312.2004.00408.x Antolin MF, Van Horne B, Berger MD Jr, Holloway AK, et al. (2001). Effective population size and the genetic structure of a piute ground squirrel (Spermophilus mollis) population. Can. J. Zool. 79: 26-34. Baker AJ, Daugherty CH, Colbourne R and McLennan JL (1995). Flightless brown kiwis of New Zealand possess extremely subdivided population structure and cryptic species like small mammals. Proc. Natl. Acad. Sci U. S. A. 92: 8254-8258. http://dx.doi.org/10.1073/pnas.92.18.8254 Bickford D, Lohman DJ, Sodhi NS, Ng PK, et al. (2007). Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22: 148-155. http://dx.doi.org/10.1016/j.tree.2006.11.004 Colombi VH, Lopes SR and Fagundes V (2010). Testing the Rio Doce as a riverine barrier in shaping the Atlantic rainforest population divergence in the rodent Akodon cursor. Genet. Mol. Biol. 33: 785-789. http://dx.doi.org/10.1590/S1415-47572010000400029 PMid:21637592    PMCid:3036154 Cooper ML (2000). Random amplified polymorphic DNA analysis of southern brown bandicoot (Isoodon obesulus) populations in Western Australia reveals genetic differentiation related to environmental variables. Mol. Ecol. 9: 469-479. http://dx.doi.org/10.1046/j.1365-294x.2000.00883.x PMid:10736049 Ditchfield AD (2000). The comparative phylogeography of neotropical mammals: patterns of intraspecific mitochondrial DNA variation among bats contrasted to nonvolant small mammals. Mol. Ecol. 9: 1307-1318. http://dx.doi.org/10.1046/j.1365-294x.2000.01013.x PMid:10972770 Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282    PMCid:1205020 Fagundes V and Nogueira CDA (2007). The use of PCR-RFLP as an identification tool for three closely related species of rodents of the genus Akodon (Sigmodontinae, Akodontini). Genet. Mol. Biol. 30: 698-701. http://dx.doi.org/10.1590/S1415-47572007000400031 Fagundes V, Scalzi-Martin JM, Sims K, Hozier J, et al. (1997). ZOO-FISH of a microdissection DNA library and G-banding patterns reveal the homeology between the Brazilian rodents Akodon cursor and A. montensis. Cytogenet. Cell Genet. 78: 224-228. http://dx.doi.org/10.1159/000134662 Figueiredo MSL and Fernandez FAS (2004). Contrasting effects of fire on populations of two small rodent species in fragments of Atlantic Forest in Brazil. J. Trop. Ecol. 20: 225-228. http://dx.doi.org/10.1017/S0266467403001093 Geise L, Canavez FC and Seuanez HN (1998). Comparative karyology in Akodon (Rodentia, Sigmodontinae) from Southeastern Brazil. J. Hered. 89: 158-163. http://dx.doi.org/10.1093/jhered/89.2.158 PMid:9583954 Geise L, Smith MF and Patton JL (2001). Diversification in the genus Akodon (Rodentia: Sigmodontinae) in southeastern South America: mitochondrial DNA sequence analysis. J. Mammal. 82: 92-101. http://dx.doi.org/10.1644/1545-1542(2001)082<0092:DITGAR>2.0.CO;2 Geise L, Weksler M and Bonvicino CR (2004). Presence or absence of gall bladder in some Akodontini rodents (Muridae, Sigmodontinae). Mamm. Biol. 69: 210-214. http://dx.doi.org/10.1078/1616-5047-00136 Geise L, De Moraes DA and Da Silva HS (2005). Morphometric differentiation and distributional notes of three species of Akodon (Muridae, Sigmodontinae, Akondontini) in the Atlantic coastal area of Brazil. Arq. Mus. Nac. 63: 63-74. Hebert PD, Penton EH, Burns JM, Janzen DH, et al. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci U. S. A. 101: 14812-14817. http://dx.doi.org/10.1073/pnas.0406166101 PMid:15465915    PMCid:522015 Hoekstra HE and Edwards SV (2000). Multiple origins of XY female mice (genus Akodon): phylogenetic and chromosomal evidence. Proc. Biol. Sci. 267: 1825-1831. http://dx.doi.org/10.1098/rspb.2000.1217 PMid:11052532    PMCid:1690748 Jackson AP and Charleston MA (2004). A cophylogenetic perspective of rna-virus evolution. Mol. Biol. Evol. 21: 45-57. http://dx.doi.org/10.1093/molbev/msg232 PMid:12949128 Jones G and van Parijs SM (1993). Bimodal echolocation in pipistrelle bats: are cryptic species present? Proc. Biol. Sci. 251: 119-125. http://dx.doi.org/10.1098/rspb.1993.0017 PMid:8096079 Korva M, Duh D, Saksida A, Trilar T, et al. (2009). The hantaviral load in tissues of naturally infected rodents. Microbes Infect. 11: 344-351. http://dx.doi.org/10.1016/j.micinf.2008.12.016 PMid:19397875 Landry PA and Lapointe FJ (1999). The genetic heterogeneity of deer mouse populations (Peromyscus maniculatus) in an insular landscape. Res. Popul. Ecol. 41: 263-268. Lemos ERS, D’Andrea PS, Bonvicino CR, Famadas KM, et al. (2004). Evidence of Hantavirus infection in wild rodents captured in a rural area of the state of São Paulo, Brazil. Pesq. Vet. Bras. 24: 71-73. Liascovich RC and Reig OA (1989). Low chromosomal number in Akodon cursor montensis Thomas, and karyologic confirmation of Akodon serrensis Thomas in Misiones, Argentina. J. Mammal. 70: 391-395. http://dx.doi.org/10.2307/1381525 Lynch M and Milligan BG (1994). Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 91-99. http://dx.doi.org/10.1111/j.1365-294X.1994.tb00109.x PMid:8019690 Merilä J, Kruuk LEB and Sheldon BC (2001). Cryptic evolution in a wild bird population. Nature 412: 76-79. http://dx.doi.org/10.1038/35083580 PMid:11452309 Molbo D, Machado CA, Sevenster JG, Keller L, et al. (2003). Cryptic species of fig-pollinating wasps: implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation. Proc. Natl. Acad. Sci U. S. A. 100: 5867-5872. http://dx.doi.org/10.1073/pnas.0930903100 PMid:12714682    PMCid:156293 Nei M (1972). Genetic distance between populations. Am. Nat. 106: 283-292. http://dx.doi.org/10.1086/282771 Nogueira CDA and Fagundes V (2008). Akodon cursor Winge, 1887 (Rodentia: Sigmodontinae): one or two species? New evidences based on molecular data. Zootaxa 1768: 41-51. Patton JL and Sherwood SW (1983). Chromosome evolution and speciation in Rodents. Annu. Rev. Eco. Syst. 14: 139-158. http://dx.doi.org/10.1146/annurev.es.14.110183.001035 Pires AS, Lira PK, Fernandez FAS, Schittini GM, et al. (2002). Frequency of movements of small mammals among Atlantic Coastal Forest fragment in Brazil. Biol. Conserv. 108: 229-237. http://dx.doi.org/10.1016/S0006-3207(02)00109-X Premanandh J, Priya B, Prabaharan D and Uma L (2009). Genetic heterogeneity of the marine cyanobacterium Leptolyngbya valderiana (Pseudanabaenaceae) evidenced by RAPD molecular markers and 16S rDNA sequence data. J. Plankton Res. 31: 1141-1150. http://dx.doi.org/10.1093/plankt/fbp055 Scatena MP and Morielle-Versute E (2008). Suitability of DNA extracted from archival specimens of fruit-eating bats of the genus Artibeus (Chiroptera, Phyllostomidae) for polymerase chain reaction and sequencing analysis. Genet. Mol. Biol. 31: 160-165. http://dx.doi.org/10.1590/S1415-47572008000100027 Sousa RLM, Moreli ML, Borges AA, Campos GM, et al. (2008). Natural host relationships and genetic diversity of rodent-associated hantaviruses in southeastern Brazil. Intervirology 51: 299-310. http://dx.doi.org/10.1159/000171818 PMid:19001829 Steppan S, Adkins R and Anderson J (2004). Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst. Biol. 53: 533-553. http://dx.doi.org/10.1080/10635150490468701 PMid:15371245 Thomas O (1913). New forms of Akodon and Phyllotis, and a new genus for “Akodon” teguina. Ann. Mag. Nat. Hist. 8: 404-409. http://dx.doi.org/10.1080/00222931308692628 Weir BS and Cockerham CC (1984). Estimating F-statistics for the analysis of population structure. Evolution 38: 1358- 1370. http://dx.doi.org/10.2307/2408641 Whitton J, Dlugosch KM and Sears CJ (2008). Molecular and morphological evidence for and against gene flow in sympatric apomicts of the North American Crepis agamic complex (Asteraceae). Botany 86: 877-885. http://dx.doi.org/10.1139/B08-071 Winge H (1887). Jordfundne og nulevende gnavere (Rodentia) fra Lagoa Santa, Minas Gerais, Brasilien. E. Museo Lundii. I Art 3: 1-178. Yonenaga Y, Kasahara S, Almeida EJ and Peracchi AL (1975). Chromosomal banding patterns in Akodon arviculoides (2n=14),Akodon sp.(2n=24 and 25), and two male hybrids with 19 chromosomes. Cytogenet. Cell Genet. 15: 388- 399. http://dx.doi.org/10.1159/000130538