Publications
Found 6 results
Filters: Author is W.Y. Yu [Clear All Filters]
“Molecular characterization and tissue-specific expression of invariant chain isoform in Muscovy Duck (Cairina moschata)”, vol. 13, pp. 8971-8981, 2014.
, , “Intracellular localization and association of MHC class I with porcine invariant chain”, vol. 12, pp. 693-701, 2013.
, Basha G, Omilusik K, Chavez-Steenbock A, Reinicke AT, et al. (2012). A CD74-dependent MHC class I endolysosomal cross-presentation pathway. Nat. Immunol. 13: 237-245.
http://dx.doi.org/10.1038/ni.2225
PMid:22306692
Cerundolo V, Elliott T, Elvin J, Bastin J, et al. (1992). Association of the human invariant chain with H-2 Db class I molecules. Eur. J. Immunol. 22: 2243-2248.
http://dx.doi.org/10.1002/eji.1830220910
PMid:1516617
Cresswell P (1992). Chemistry and functional role of the invariant chain. Curr. Opin. Immunol. 4: 87-92.
http://dx.doi.org/10.1016/0952-7915(92)90131-W
Donaldson JG and Williams DB (2009). Intracellular assembly and trafficking of MHC class I molecules. Traffic 10: 1745-1752.
http://dx.doi.org/10.1111/j.1600-0854.2009.00979.x
PMid:19761542 PMCid:2783374
Ghosh P, Amaya M, Mellins E and Wiley DC (1995). The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 378: 457-462.
http://dx.doi.org/10.1038/378457a0
PMid:7477400
Liang MN, Lee C, Xia Y and McConnell HM (1996). Molecular modeling and design of invariant chain peptides with altered dissociation kinetics from class II MHC. Biochemistry 35: 14734-14742.
http://dx.doi.org/10.1021/bi961725b
PMid:8942634
Lin X, Wang X, Capek HL, Simone LC, et al. (2009). Effect of invariant chain on major histocompatibility complex class I molecule expression and stability on human breast tumor cell lines. Cancer Immunol. Immunother. 58: 729-736.
http://dx.doi.org/10.1007/s00262-008-0595-1
PMid:18828016 PMCid:2703440
Neumann J and Koch N (2006). A novel domain on HLA-DRbeta chain regulates the chaperone role of the invariant chain. J. Cell Sci. 119: 4207-4214.
http://dx.doi.org/10.1242/jcs.03177
PMid:16984974
Odorizzi CG, Trowbridge IS, Xue L, Hopkins CR, et al. (1994). Sorting signals in the MHC class II invariant chain cytoplasmic tail and transmembrane region determine trafficking to an endocytic processing compartment. J. Cell Biol. 126: 317-330.
http://dx.doi.org/10.1083/jcb.126.2.317
PMid:8034737
Peters PJ, Neefjes JJ, Oorschot V, Ploegh HL, et al. (1991). Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments. Nature 349: 669-676.
http://dx.doi.org/10.1038/349669a0
PMid:1847504
Powis SJ (2006). CLIP-region mediated interaction of Invariant chain with MHC class I molecules. FEBS Lett. 580: 3112-3116.
http://dx.doi.org/10.1016/j.febslet.2006.04.060
PMid:16678175
Reber AJ, Turnquist HR, Thomas HJ, Lutz CT, et al. (2002). Expression of invariant chain can cause an allele-dependent increase in the surface expression of MHC class I molecules. Immunogenetics 54: 74-81.
http://dx.doi.org/10.1007/s00251-002-0446-8
PMid:12037599
Roche PA and Cresswell P (1990). Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding. Nature 345: 615-618.
http://dx.doi.org/10.1038/345615a0
PMid:2190094
Romagnoli P and Germain RN (1994). The CLIP region of invariant chain plays a critical role in regulating major histocompatibility complex class II folding, transport, and peptide occupancy. J. Exp. Med. 180: 1107-1113.
http://dx.doi.org/10.1084/jem.180.3.1107
PMid:8064228
Serwe M, Reuter G, Sponaas A, Koch S, et al. (1997). Both invariant chain isoforms Ii31 and Ii41 promote class II antigen presentation. Int. Immunol. 9: 983-991.
http://dx.doi.org/10.1093/intimm/9.7.983
PMid:9237107
Shachar I, Elliott EA, Chasnoff B, Grewal IS, et al. (1995). Reconstitution of invariant chain function in transgenic mice in vivo by individual p31 and p41 isoforms. Immunity 3: 373-383.
http://dx.doi.org/10.1016/1074-7613(95)90121-3
Stam NJ, Vroom TM, Peters PJ, Pastoors EB, et al. (1990). HLA-A- and HLA-B-specific monoclonal antibodies reactive with free heavy chains in western blots, in formalin-fixed, paraffin-embedded tissue sections and in cryo-immuno-electron microscopy. Int. Immunol. 2: 113-125.
http://dx.doi.org/10.1093/intimm/2.2.113
PMid:2088481
Stone KR, Mickey DD, Wunderli H, Mickey GH, et al. (1978). Isolation of a human prostate carcinoma cell line (DU 145). Int. J. Cancer 21: 274-281.
http://dx.doi.org/10.1002/ijc.2910210305
PMid:631930
Sugita M and Brenner MB (1994). An unstable beta 2-microglobulin: major histocompatibility complex class I heavy chain intermediate dissociates from calnexin and then is stabilized by binding peptide. J. Exp. Med. 180: 2163-2171.
http://dx.doi.org/10.1084/jem.180.6.2163
PMid:7964491
Sugita M and Brenner MB (1995). Association of the invariant chain with major histocompatibility complex class I molecules directs trafficking to endocytic compartments. J. Biol. Chem. 270: 1443-1448.
http://dx.doi.org/10.1074/jbc.270.3.1443
PMid:7836413
Teyton L, O'Sullivan D, Dickson PW, Lotteau V, et al. (1990). Invariant chain distinguishes between the exogenous and endogenous antigen presentation pathways. Nature 348: 39-44.
http://dx.doi.org/10.1038/348039a0
PMid:2234057
Tulp A, Verwoerd D, Dobberstein B, Ploegh HL, et al. (1994). Isolation and characterization of the intracellular MHC class II compartment. Nature 369: 120-126.
http://dx.doi.org/10.1038/369120a0
Van Bleek GM and Nathenson SG (1990). Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature 348: 213-216.
http://dx.doi.org/10.1038/348213a0
PMid:1700303
Vigna JL, Smith KD and Lutz CT (1996). Invariant chain association with MHC class I: preference for HLA class I/β 2-microglobulin heterodimers, specificity, and influence of the MHC peptide-binding groove. J. Immunol. 157: 4503- 4510.
PMid:8906828
Zhai ZH, Wang XZ and Ding MX (2001). Cell Biology. Volume 192. Higher Education Press, Beijing, 164-202.
Zhong D, Yu W, Liu Y, Liu J, et al. (2004). Molecular cloning and expression of two chicken invariant chain isoforms produced by alternative splicing. Immunogenetics 56: 650-656.
http://dx.doi.org/10.1007/s00251-004-0726-6
PMid:15578263
“Molecular cloning and site-directed mutagenesis of leucine-based sorting motifs of the porcine invariant chain”, vol. 12, pp. 4489-4499, 2013.
, “Molecular characterization and tissue-specific expression of invariant chain in the muscovy duck (Cairina moschata)”, vol. 10, pp. 2867-2880, 2011.
, Adams S, Albericio F, Alsina J, Smith ER, et al. (1997). Biological activity and therapeutic potential of homologs of an Ii peptide which regulates antigenic peptide binding to cell surface MHC class II molecules. Arzneimittelforschung 47: 1069-1077.
PMid:9342425
Barrera CA, Almanza RJ, Ogra PL and Reyes VE (1998). The role of the invariant chain in mucosal immunity. Int. Arch. Allergy Immunol. 117: 85-93.
http://dx.doi.org/10.1159/000023994
PMid:9784651
Barrera CA, Beswick EJ, Sierra JC, Bland D, et al. (2005). Polarized expression of CD74 by gastric epithelial cells. J. Histochem. Cytochem. 53: 1481-1489.
http://dx.doi.org/10.1369/jhc.4A6552.2005
PMid:15923369
Bernatchez L and Landry C (2003). MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J. Evol. Biol. 16: 363-377.
http://dx.doi.org/10.1046/j.1420-9101.2003.00531.x
PMid:14635837
Bremnes B, Madsen T, Gedde-Dahl M and Bakke O (1994). An LI and ML motif in the cytoplasmic tail of the MHC-associated invariant chain mediate rapid internalization. J. Cell Sci. 107 (Pt 7): 2021-2032.
PMid:7983165
Bremnes B, Rode M, Gedde-Dahl M, Nordeng TW, et al. (2000). The MHC class II-associated chicken invariant chain shares functional properties with its mammalian homologs. Exp. Cell Res. 259: 360-369.
http://dx.doi.org/10.1006/excr.2000.4985
PMid:10964503
Bryant P and Ploegh H (2004). Class II MHC peptide loading by the professionals. Curr. Opin. Immunol. 16: 96-102.
http://dx.doi.org/10.1016/j.coi.2003.11.011
PMid:14734116
Busch R, Rinderknecht CH, Roh S, Lee AW, et al. (2005). Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunol. Rev. 207: 242-260.
http://dx.doi.org/10.1111/j.0105-2896.2005.00306.x
PMid:16181341
Claesson L and Peterson PA (1983). Association of human gamma chain with class II transplantation antigens during intracellular transport. Biochemistry 22: 3206-3213.
http://dx.doi.org/10.1021/bi00282a026
PMid:6576808
Cortes A, Fonfria J, Vicente A, Varas A, et al. (1995). T-dependent areas in the chicken bursa of Fabricius: an immunohistological study. Anat. Rec. 242: 91-95.
http://dx.doi.org/10.1002/ar.1092420112
PMid:7604986
Cresswell P (1996). Invariant chain structure and MHC class II function. Cell 84: 505-507.
http://dx.doi.org/10.1016/S0092-8674(00)81025-9
Denzin LK and Cresswell P (1995). HLA-DM induces CLIP dissociation from MHC class II alpha beta dimers and facilitates peptide loading. Cell 82: 155-165.
http://dx.doi.org/10.1016/0092-8674(95)90061-6
Ghosh P, Amaya M, Mellins E and Wiley DC (1995). The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 378: 457-462.
http://dx.doi.org/10.1038/378457a0
PMid:7477400
Hershberg RM and Mayer LF (2000). Antigen processing and presentation by intestinal epithelial cells - polarity and complexity. Immunol. Today 21: 123-128.
http://dx.doi.org/10.1016/S0167-5699(99)01575-3
Holmes JP, Benavides LC, Gates JD, Carmichael MG, et al. (2008). Results of the first phase I clinical trial of the novel II-key hybrid preventive HER-2/neu peptide (AE37) vaccine. J. Clin. Oncol. 26: 3426-3433.
http://dx.doi.org/10.1200/JCO.2007.15.7842
PMid:18612158
Hung CF, Tsai YC, He L and Wu TC (2007). DNA vaccines encoding Ii-PADRE generates potent PADRE-specific CD4+ T-cell immune responses and enhances vaccine potency. Mol. Ther. 15: 1211-1219.
PMid:17356542 PMCid:3171992
Koch N and Harris AW (1984). Differential expression of the invariant chain in mouse tumor cells: relationship to B lymphoid development. J. Immunol. 132: 12-15.
PMid:6418793
Lennon-Dumenil AM, Roberts RA, Valentijn K, Driessen C, et al. (2001). The p41 isoform of invariant chain is a chaperone for cathepsin L. EMBO J. 20: 4055-4064.
http://dx.doi.org/10.1093/emboj/20.15.4055
PMid:11483509 PMCid:149174
Lipp J and Dobberstein B (1986). The membrane-spanning segment of invariant chain (I gamma) contains a potentially cleavable signal sequence. Cell 46: 1103-1112.
http://dx.doi.org/10.1016/0092-8674(86)90710-5
Maharshak N, Cohen S, Lantner F, Hart G, et al. (2010). CD74 is a survival receptor on colon epithelial cells. World J. Gastroenterol. 16: 3258-3266.
http://dx.doi.org/10.3748/wjg.v16.i26.3258
PMid:20614481 PMCid:2900717
Mallegol J, van Niel G and Heyman M (2005). Phenotypic and functional characterization of intestinal epithelial exosomes. Blood Cells Mol. Dis. 35: 11-16.
http://dx.doi.org/10.1016/j.bcmd.2005.04.001
PMid:15893486
Marchalonis JJ, Kaveri S, Lacroix-Desmazes S and Kazatchkine MD (2002). Natural recognition repertoire and the evolutionary emergence of the combinatorial immune system. FASEB J. 16: 842-848.
http://dx.doi.org/10.1096/fj.01-0953hyp
PMid:12039866
Meyer-Lucht Y, Otten C, Püttker T, Pardini R, et al. (2010). Variety matters: adaptive genetic diversity and parasite load in two mouse opossums from the Brazilian Atlantic forest. Conserv. Genet. 11: 2001-2013.
http://dx.doi.org/10.1007/s10592-010-0093-9
Nagaraj S, Neumann J, Winzen B, Frank S, et al. (2008). Pancreas carcinoma antigen fused to invariant chain elicits T-cell response and tumor growth inhibition. Pancreas 37: 321-327.
http://dx.doi.org/10.1097/MPA.0b013e318166722e7
PMid:18815556
Nagata T, Higashi T, Aoshi T, Suzuki M, et al. (2001). Immunization with plasmid DNA encoding MHC class II binding peptide/CLIP-replaced invariant chain (Ii) induces specific helper T cells in vivo: the assessment of Ii p31 and p41 isoforms as vehicles for immunization. Vaccine 20: 105-114.
http://dx.doi.org/10.1016/S0264-410X(01)00310-3
Nagata T, Aoshi T, Suzuki M, Uchijima M, et al. (2002). Induction of protective immunity to Listeria monocytogenes by immunization with plasmid DNA expressing a helper T-cell epitope that replaces the class II-associated invariant chain peptide of the invariant chain. Infect. Immun. 70: 2676-2680.
http://dx.doi.org/10.1128/IAI.70.5.2676-2680.2002
PMid:11953411 PMCid:127905
O’Sullivan DM, Noonan D and Quaranta V (1987). Four Ia invariant chain forms derive from a single gene by alternate splicing and alternate initiation of transcription/translation. J. Exp. Med. 166: 444-460.
http://dx.doi.org/10.1084/jem.166.2.444
PMid:3036998
Pieters J (1997). MHC class II restricted antigen presentation. Curr. Opin. Immunol. 9: 89-96.
http://dx.doi.org/10.1016/S0952-7915(97)80164-1
Qi BM and Chen XY (2006). Distribution and histology of fabricius’ bursa-associated lymphoid tissues (FBALT) in muscovy duck. Fujian J. Agric. Sci. 21: 127-130.
Silva DS, Reis MI, Nascimento DS, do Vale A, et al. (2007). Sea bass (Dicentrarchus labrax) invariant chain and class II major histocompatibility complex: sequencing and structural analysis using 3D homology modelling. Mol. Immunol. 44: 3758-3776.
http://dx.doi.org/10.1016/j.molimm.2007.03.025
PMid:17512596
Strubin M, Mach B and Long EO (1984). The complete sequence of the mRNA for the HLA-DR-associated invariant chain reveals a polypeptide with an unusual transmembrane polarity. EMBO J. 3: 869-872.
PMid:6586420 PMCid:557440
Surridge AK, van der Loo W, Abrantes J, Carneiro M, et al. (2008). Diversity and evolutionary history of the MHC DQA gene in leporids. Immunogenetics 60: 515-525.
http://dx.doi.org/10.1007/s00251-008-0309-z
PMid:18584169
Tamori Y, Tan X, Nakagawa K, Takai E, et al. (2005). Clinical significance of MHC class II-associated invariant chain expression in human gastric carcinoma. Oncol. Rep. 14: 873-877.
PMid:16142345
van Bergen J, Camps M, Offringa R, Melief CJ, et al. (2000). Superior tumor protection induced by a cellular vaccine carrying a tumor-specific T helper epitope by genetic exchange of the class II-associated invariant chain peptide. Cancer Res. 60: 6427-6433.
PMid:11103809
Voutsas IF, Gritzapis AD, Mahaira LG, Salagianni M, et al. (2007). Induction of potent CD4+ T cell-mediated antitumor responses by a helper HER-2/neu peptide linked to the Ii-Key moiety of the invariant chain. Int. J. Cancer 121: 2031-2041.
http://dx.doi.org/10.1002/ijc.22936
PMid:17634957
Xu FZ, Ye H, Wang JJ and Yu WY (2008). The effect of site-directed mutagenesis of the ambient amino acids of leucine-based sorting motifs on the localization of chicken invariant chain. Poult. Sci. 87: 1980-1986.
http://dx.doi.org/10.3382/ps.2008-00111
PMid:18809859
Zhang JH, Deng SZ, Chen NH, Quyang JH, et al. (2000). Biological effects of the T-cell area of chicken bursa. Acta Agric. Univ. Jiangxiensis 22: 110-112.
Zhong DL, Yu WY, Liu YH, Liu J, et al. (2004). Molecular cloning and expression of two chicken invariant chain isoforms produced by alternative splicing. Immunogenetics 56: 650-656.
http://dx.doi.org/10.1007/s00251-004-0726-6
PMid:15578263
Zhong DL, Yu WY, Bao M, Xu ZB, et al. (2006). Molecular cloning and rnRNA expression of duck invariant chain. Vet. Immunol. Immunop. 110: 293-302.
http://dx.doi.org/10.1016/j.vetimm.2005.10.004
PMid:16313970
“Molecular cloning and sequence analysis of follicle-stimulating hormone beta polypeptide precursor cDNA from the bovine pituitary gland”, vol. 10, pp. 1504-1513, 2011.
, Aizawa Y and Ishii S (2003). Cloning of complimentary deoxyribonucleic acid encoding follicle-stimulating hormone and luteinizing hormone beta subunit precursor molecules in Reeves’s turtle (Geoclemys reevesii) and Japanese grass lizard (Takydromus tachydromoides). Gen. Comp. Endocrinol. 132: 465-473.
doi:10.1016/S0016-6480(03)00103-5
Barreau C, Paillard L and Osborne HB (2005). AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33: 7138-7150.
doi:10.1093/nar/gki1012
PMid:16391004 PMCid:1325018
Chien JT, Shen ST, Lin YS and Yu JY (2005). Molecular cloning of the cDNA encoding follicle-stimulating hormone beta subunit of the Chinese soft-shell turtle Pelodiscus sinensis, and its gene expression. Gen. Comp. Endocrinol. 141: 190-200.
doi:10.1016/j.ygcen.2004.12.017
PMid:15748721
Dai L, Zhao Z, Zhao R, Xiao S, et al. (2009). Effects of novel single nucleotide polymorphisms of the FSH beta-subunit gene on semen quality and fertility in bulls. Anim. Reprod. Sci. 114: 14-22.
doi:10.1016/j.anireprosci.2008.08.021
PMid:18829190
de Kretser DM, Buzzard JJ, Okuma Y, O’Connor AE, et al. (2004). The role of activin, follistatin and inhibin in testicular physiology. Mol. Cell Endocrinol. 225: 57-64.
doi:10.1016/j.mce.2004.07.008
PMid:15451568
Dias JA, Cohen BD, Lindau-Shepard B, Nechamen CA, et al. (2002). Molecular, structural, and cellular biology of follitropin and follitropin receptor. Vitam. Horm. 64: 249-322.
doi:10.1016/S0083-6729(02)64008-7
Druet T, Fritz S, Sellem E, Basso B, et al. (2009). Estimation of genetic parameters and genome scan for 15 semen characteristics traits of Holstein bulls. J. Anim. Breed. Genet. 126: 269-277.
doi:10.1111/j.1439-0388.2008.00788.x
PMid:19630877
Geyer CB, Inselman AL, Sunman JA, Bornstein S, et al. (2009). A missense mutation in the Capza3 gene and disruption of F-actin organization in spermatids of repro32 infertile male mice. Dev. Biol. 330: 142-152.
doi:10.1016/j.ydbio.2009.03.020
PMid:19341723 PMCid:2688473
Gharib SD, Wierman ME, Shupnik MA and Chin WW (1990). Molecular biology of the pituitary gonadotrophins. Endocr. Rev. 11: 177-199.
doi:10.1210/edrv-11-1-177
PMid:2108012
Jameson JL, Becker CB, Lindell CM and Habener JF (1988). Human follicle-stimulating hormone β-subunit gene encodes multiple messenger ribonucleic acids. Mol. Endocrinol. 2: 806-815.
doi:10.1210/mend-2-9-806
PMid:3139991
Jarrousse AS, Petit F, Kreutzer-Schmid C, Gaedigk R, et al. (1999). Possible involvement of proteasomes (prosomes) in AUUUA-mediated mRNA decay. J. Biol. Chem. 274: 5925-5930.
doi:10.1074/jbc.274.9.5925
PMid:10026217
Kikuchi M, Kobayashi M, Ito T, Kato Y, et al. (1998). Cloning of complementary deoxyribonucleic acid for the follicle-stimulating hormone-beta subunit in the Japanese quail. Gen. Comp. Endocrinol. 111: 376-385.
doi:10.1006/gcen.1998.7123
PMid:9707483
Komoike Y and Ishii S (2003). Cloning of cDNAs encoding the three pituitary glycoprotein hormone beta subunit precursor molecules in the Japanese toad, Bufo japonicus. Gen. Comp. Endocrinol. 132: 333-347.
doi:10.1016/S0016-6480(03)00095-9
Koura M, Handa H, Noguchi Y, Takano K, et al. (2004). Sequence analysis of cDNA encoding follicle-stimulating hormone and luteinizing hormone beta-subunits in the Mongolian gerbil (Meriones unguiculatus). Gen. Comp. Endocrinol. 136: 406-410.
doi:10.1016/j.ygcen.2004.01.012
PMid:15081841
Kumar S, Nei M, Dudley J and Tamura K (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9: 299-306.
doi:10.1093/bib/bbn017
PMid:18417537 PMCid:2562624
Kumar TR (2005). What have we learned about gonadotropin function from gonadotropin subunit and receptor knockout mice? Reproduction 130: 293-302.
doi:10.1530/rep.1.00660
PMid:16123236
Larkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.
doi:10.1093/bioinformatics/btm404
PMid:17846036
Lawrence SB, Vanmontfort DM, Tisdall DJ, McNatty KP, et al. (1997). The follicle-stimulating hormone beta-subunit gene of the common brushtail possum (Trichosurus vulpecula): analysis of cDNA sequence and expression. Reprod. Fertil. Dev. 9: 795-801.
doi:10.1071/R98009
Li MD, Rohrer GA, Wise TH and Ford JJ (2000). Identification and characterization of a new allele for the beta subunit of follicle-stimulating hormone in Chinese pig breeds. Anim. Genet. 31: 28-30.
doi:10.1046/j.1365-2052.2000.00581.x
PMid:10690358
Liao MJ, Zhu MY, Zhang ZH, Zhang AJ, et al. (2003). Cloning and sequence analysis of FSH and LH in the giant panda (Ailuropoda melanoleuca). Anim. Reprod. Sci. 77: 107-116.
doi:10.1016/S0378-4320(02)00275-0
Lin CL, Jennen DG, Ponsuksili S, Tholen E, et al. (2006). Haplotype analysis of beta-actin gene for its association with sperm quality and boar fertility. J. Anim. Breed. Genet. 123: 384-388.
doi:10.1111/j.1439-0388.2006.00622.x
PMid:17177693
Manjithaya RR and Dighe RR (2004). The 3’ untranslated region of bovine follicle-stimulating hormone beta messenger RNA downregulates reporter expression: involvement of AU-rich elements and transfactors. Biol. Reprod. 71: 1158-1166.
doi:10.1095/biolreprod.104.030130
PMid:15189830
Maurer RA (1987). Molecular cloning and nucleotide sequence analysis of complementary deoxyribonucleic acid for the beta-subunit of rat follicle stimulating hormone. Mol. Endocrinol. 1: 717-723.
doi:10.1210/mend-1-10-717
PMid:3155259
Maurer RA and Beck A (1986). Isolation and nucleotide sequence analysis of a cloned cDNA encoding the beta-subunit of bovine follicle-stimulating hormone. DNA 5: 363-369.
doi:10.1089/dna.1986.5.363
PMid:3096676
Mountford PS, Bello PA, Brandon MR and Adams TE (1989). Cloning and DNA sequence analysis of the cDNA for the precursor of ovine follicle stimulating hormone beta-subunit. Nucleic Acids Res. 17: 6391.
doi:10.1093/nar/17.15.6391
PMid:2505233 PMCid:318292
Noguchi Y, Takano K, Koura M, Uchio-Yamada K, et al. (2006). Sequence analysis of cDNA encoding rabbit follicle-stimulating hormone beta-subunit precursor protein. Gen. Comp. Endocrinol. 147: 231-235.
doi:10.1016/j.ygcen.2006.01.001
PMid:16476428
Pesole G, Mignone F, Gissi C, Grillo G, et al. (2001). Structural and functional features of eukaryotic mRNA untranslated regions. Gene 276: 73-81.
doi:10.1016/S0378-1119(01)00674-6
Pierce JG and Parsons TF (1981). Glycoprotein hormones: structure and function. Annu. Rev. Biochem. 50: 465-495.
doi:10.1146/annurev.bi.50.070181.002341
PMid:6267989
Rabani M, Kertesz M and Segal E (2008). Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes. Proc. Natl. Acad. Sci. U. S. A. 105: 14885-14890.
doi:10.1073/pnas.0803169105
PMid:18815376 PMCid:2567462
Ren DR, Ren J, Xing YY, Guo YM, et al. (2009). A genome scan for quantitative trait loci affecting male reproductive traits in a White Duroc x Chinese Erhualian resource population. J. Anim. Sci. 87: 17-23.
doi:10.2527/jas.2008-0923
PMid:18599669
Saneyoshi T, Min KS, Jing MX, Nambo Y, et al. (2001). Equine follicle-stimulating hormone: molecular cloning of beta subunit and biological role of the asparagine-linked oligosaccharide at asparagine56 of alpha subunit. Biol. Reprod. 65: 1686-1690.
doi:10.1095/biolreprod65.6.1686
PMid:11717129
Scammell JG, Funkhouser JD, Moyer FS, Gibson SV, et al. (2008). Molecular cloning of pituitary glycoprotein alpha-subunit and follicle stimulating hormone and chorionic gonadotropin beta-subunits from New World squirrel monkey and owl monkey. Gen. Comp. Endocrinol. 155: 534-541.
doi:10.1016/j.ygcen.2007.08.004
PMid:17897645 PMCid:2277479
Schmidt A, Gromoll J, Weinbauer GF, Galla HJ, et al. (1999). Cloning and expression of cynomolgus monkey (Macaca fascicularis) gonadotropins luteinizing hormone and follicle-stimulating hormone and identification of two polymorphic sites in the luteinizing hormone beta subunit. Mol. Cell Endocrinol. 156: 73-83.
doi:10.1016/S0303-7207(99)00140-9
Shen ST and Yu JY (2002). Cloning and gene expression of a cDNA for the chicken follicle-stimulating hormone (FSH)- beta-subunit. Gen. Comp. Endocrinol. 125: 375-386.
doi:10.1006/gcen.2001.7763
PMid:11884082
Shen ST, Cheng YS, Shen TY and Yu JY (2006). Molecular cloning of follicle-stimulating hormone (FSH)-beta subunit cDNA from duck pituitary. Gen. Comp. Endocrinol. 148: 388-394.
doi:10.1016/j.ygcen.2006.03.013
PMid:16674957
Strausberg RL, Feingold EA, Grouse LH, Derge JG, et al. (2002). Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. U. S. A. 99: 16899-16903.
doi:10.1073/pnas.242603899
PMid:12477932 PMCid:139241
Takano K, Koura M, Noguchi Y, Yamamoto Y, et al. (2004). Sequence analysis of cDNA encoding follicle-stimulating hormone and luteinizing hormone beta-subunits in the Mastomys (Praomys coucha). Gen. Comp. Endocrinol. 138: 281-286.
doi:10.1016/j.ygcen.2004.06.009
PMid:15364211
Wimmers K, Lin CL, Tholen E, Jennen DG, et al. (2005). Polymorphisms in candidate genes as markers for sperm quality and boar fertility. Anim. Genet. 36: 152-155.
doi:10.1111/j.1365-2052.2005.01267.x
PMid:15771727
Xing Y, Ren J, Ren D, Guo Y, et al. (2009). A whole genome scanning for quantitative trait loci on traits related to sperm quality and ejaculation in pigs. Anim. Reprod. Sci. 114: 210-218.
doi:10.1016/j.anireprosci.2008.08.008
PMid:18789839
Zhang T, Kruys V, Huez G and Gueydan C (2002). AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Biochem. Soc. Trans. 30: 952-958.
doi:10.1042/BST0300952