Publications
Found 32 results
Filters: Author is C. Wang [Clear All Filters]
“Anti-nociceptive effects of Paecilomyces hepiali via multiple pathways in mouse models”, vol. 15, p. -, 2016.
, “Artesunate modulates expression of matrix metalloproteinases and their inhibitors as well as collagen-IV to attenuate pulmonary fibrosis in rats”, vol. 15, p. -, 2016.
, “Artesunate modulates expression of matrix metalloproteinases and their inhibitors as well as collagen-IV to attenuate pulmonary fibrosis in rats”, vol. 15, p. -, 2016.
, “Evaluation of novel assays for the detection of human papilloma virus in self-collected samples for cervical cancer screening”, vol. 15, p. -, 2016.
, “Evaluation of novel assays for the detection of human papilloma virus in self-collected samples for cervical cancer screening”, vol. 15, p. -, 2016.
, “Investigating the association between XRCC1 gene polymorphisms and susceptibility to gastric cancer”, vol. 15, p. -, 2016.
, “Investigating the association between XRCC1 gene polymorphisms and susceptibility to gastric cancer”, vol. 15, p. -, 2016.
, “Phylogenetic analysis of the Mongolian gerbil (Meriones unguiculatus) from China based on mitochondrial genome”, vol. 15, p. -, 2016.
, “Phylogenetic analysis of the Mongolian gerbil (Meriones unguiculatus) from China based on mitochondrial genome”, vol. 15, p. -, 2016.
, “Prominent contribution of Th1, Th17, and Tregs to the host response during M. neoaurum infection”, vol. 15, p. -, 2016.
, “Prominent contribution of Th1, Th17, and Tregs to the host response during M. neoaurum infection”, vol. 15, p. -, 2016.
, , , “Ara-C and anti-CD47 antibody combination therapy eliminates acute monocytic leukemia THP-1 cells in vivo and in vitro”, vol. 14, pp. 5630-5641, 2015.
, “Cut-and-paste-based cloning strategy for large gene site-directed mutagenesis”, vol. 14, pp. 5585-5591, 2015.
, “Development of novel DNA markers for genetic analysis of grey hamsters by cross-species amplification of microsatellites”, vol. 14, pp. 14339-14347, 2015.
, “Effects of propofol and etomidate pretreatment on glucocorticoid receptor expression following induction of sepsis in rats”, vol. 14, pp. 4740-4748, 2015.
, “Expression patterns of Doppel in differential ovine PRNP genotypes: quantification using real-time RT-PCR”, vol. 14, pp. 12152-12158, 2015.
, “ Identification of critical TF-miRNA-mRNA regulation loops for colorectal cancer metastasis”, vol. 14, pp. 5485-5495, 2015.
, “Selected representative microsatellite loci for genetic monitoring and population structure analysis of miniature swine”, vol. 14, pp. 3910-3920, 2015.
, , “Expression analysis of self-incompatibility-associated genes in non-heading Chinese cabbage”, vol. 13, pp. 5025-5035, 2014.
, “Full-length cDNA cloning and structural characterization of preproinsulin in Alligator sinensis”, vol. 13, pp. 8845-8855, 2014.
, “Hepatocyte growth factor upregulates nexilin gene expression in cardiomyocytes via JNK pathway”, vol. 13, pp. 4976-4982, 2014.
, “HMGB3 characterization in gastric cancer”, vol. 12, pp. 6032-6039, 2013.
, “Impacts of single nucleotide polymorphisms and haplotypes in the bovine Dapper1 gene on body weight”, vol. 12, pp. 1254-1268, 2013.
, , Barrett JC, Fry B, Maller J and Daly MJ (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263-265.
http://dx.doi.org/10.1093/bioinformatics/bth457
PMid:15297300
Cerpa W, Toledo EM, Varela-Nallar L and Inestrosa NC (2009). The role of Wnt signaling in neuroprotection. Drug News Perspect. 22: 579-591.
http://dx.doi.org/10.1358/dnp.2009.22.10.1443391
PMid:20140278
Cheyette BN, Waxman JS, Miller JR, Takemaru K, et al. (2002). Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Dev. Cell 2: 449-461.
http://dx.doi.org/10.1016/S1534-5807(02)00140-5
Dale RM, Sisson BE and Topczewski J (2009). The emerging role of Wnt/PCP signaling in organ formation. Zebrafish 6: 9-14.
http://dx.doi.org/10.1089/zeb.2008.0563
PMid:19250029 PMCid:2758485
Fisher DA, Kivimae S, Hoshino J, Suriben R, et al. (2006). Three Dact gene family members are expressed during embryonic development and in the adult brains of mice. Dev. Dyn. 235: 2620-2630.
http://dx.doi.org/10.1002/dvdy.20917
PMid:16881060
Fukuda T, Kokabu S, Ohte S, Sasanuma H, et al. (2010). Canonical Wnts and BMPs cooperatively induce osteoblastic differentiation through a GSK3beta-dependent and beta-catenin-independent mechanism. Differentiation 80: 46-52.
http://dx.doi.org/10.1016/j.diff.2010.05.002
PMid:20546990
Gao X, Wen J, Zhang L, Li X, et al. (2008). Dapper1 is a nucleocytoplasmic shuttling protein that negatively modulates Wnt signaling in the nucleus. J. Biol. Chem. 283: 35679-35688.
http://dx.doi.org/10.1074/jbc.M804088200
PMid:18936100
Gloy J, Hikasa H and Sokol SY (2002). Frodo interacts with Dishevelled to transduce Wnt signals. Nat. Cell Biol. 4: 351-357.
PMid:11941372
Katoh M and Katoh M (2003). Identification and characterization of human DAPPER1 and DAPPER2 genes in silico. Int. J. Oncol. 22: 907-913.
PMid:12632086
Kawai M, Mushiake S, Bessho K, Murakami M, et al. (2007). Wnt/Lrp/beta-catenin signaling suppresses adipogenesis by inhibiting mutual activation of PPARgamma and C/EBPalpha. Biochem. Biophys. Res. Commun. 363: 276-282.
http://dx.doi.org/10.1016/j.bbrc.2007.08.088
PMid:17888405
Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, et al. (2007). A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315: 525-528.
http://dx.doi.org/10.1126/science.1135308
PMid:17185560
Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics 8: 1075-1080.
http://dx.doi.org/10.2217/14622416.8.8.1075
PMid:17716239
Kweekel DM, Antonini NF, Nortier JW, Punt CJ, et al. (2009). Explorative study to identify novel candidate genes related to oxaliplatin efficacy and toxicity using a DNA repair array. Br. J. Cancer 101: 357-362.
http://dx.doi.org/10.1038/sj.bjc.6605134
PMid:19536092 PMCid:2720215
Lango H, Palmer CN, Morris AD, Zeggini E, et al. (2008). Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 57: 3129-3135.
http://dx.doi.org/10.2337/db08-0504
PMid:18591388 PMCid:2570411
Marty A, Amigues Y, Servin B, Renand G, et al. (2010). Genetic variability and linkage disequilibrium patterns in the bovine DNAJA1 gene. Mol. Biotechnol. 44: 190-197.
http://dx.doi.org/10.1007/s12033-009-9228-y
PMid:20012712
Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391.
PMid:2623762
Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390.
PMid:4822472 PMCid:1213072
Sham P, Bader JS, Craig I, O'Donovan M, et al. (2002). DNA Pooling: a tool for large-scale association studies. Nat. Rev. Genet. 3: 862-871.
http://dx.doi.org/10.1038/nrg930
PMid:12415316
Stephens M, Smith NJ and Donnelly P (2001). A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68: 978-989.
http://dx.doi.org/10.1086/319501
PMid:11254454 PMCid:1275651
Su Y, Zhang L, Gao X, Meng F, et al. (2007). The evolutionally conserved activity of Dapper2 in antagonizing TGF-beta signaling. FASEB J. 21: 682-690.
http://dx.doi.org/10.1096/fj.06-6246com
PMid:17197390
Tee JM, van Rooijen C, Boonen R and Zivkovic D (2009). Regulation of slow and fast muscle myofibrillogenesis by Wnt/ beta-catenin and myostatin signaling. PLoS One 4: e5880.
http://dx.doi.org/10.1371/journal.pone.0005880
PMid:19517013 PMCid:2690692
Wang J, Li ZJ, Lan XY, Hua LS, et al. (2010). Two novel SNPs in the coding region of the bovine PRDM16 gene and its associations with growth traits. Mol. Biol. Rep. 37: 571-577.
http://dx.doi.org/10.1007/s11033-009-9816-8
PMid:19760096
Waxman JS, Hocking AM, Stoick CL and Moon RT (2004). Zebrafish Dapper1 and Dapper2 play distinct roles in Wnt-mediated developmental processes. Development 131: 5909-5921.
http://dx.doi.org/10.1242/dev.01520
PMid:15539487
Xu N, Chen CY and Shyu AB (1997). Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol. Cell Biol. 17: 4611-4621.
PMid:9234718 PMCid:232314
Xu N, Loflin P, Chen CY and Shyu AB (1998). A broader role for AU-rich element-mediated mRNA turnover revealed by a new transcriptional pulse strategy. Nucleic Acids Res. 26: 558-565.
http://dx.doi.org/10.1093/nar/26.2.558
PMid:9421516 PMCid:147286
Xu Y, Liu J, Lan X, Zhang Y, et al. (2011). Consistent effects of single and combined SNP(s) within bovine paired box 7 gene (Pax7) on growth traits. J. Genet. 90: e53-e57.
PMid:21873775
Zhang L, Gao X, Wen J, Ning Y, et al. (2006). Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J. Biol. Chem. 281: 8607-8612.
http://dx.doi.org/10.1074/jbc.M600274200
PMid:16446366
Zhao H, Nettleton D and Dekkers JCM (2007). Evaluation of linkage disequilibrium measures between multi-allelic markers as predictors of linkage disequilibrium between single nucleotide polymorphisms. Genet. Res. 89: 1-6.
http://dx.doi.org/10.1017/S0016672307008634
PMid:17517154
“A new strategy employed for identification of sweet orange cultivars with RAPD markers”, vol. 11. pp. 2071-2080, 2012.
,
Baysal Ö, Siragusa M, Gumrukcu E, Zengin S, et al. (2010). Molecular characterization of Fusarium oxysporum f. melongenae by ISSR and RAPD markers on eggplant. Biochem. Genet. 48: 524-537.
http://dx.doi.org/10.1007/s10528-010-9336-1
PMid:20390339
Bhau BS, Medhi K, Das AP, Saikia SP, et al. (2009). Analysis of genetic diversity of Persea bombycina "Som" using RAPD-based molecular markers. Biochem. Genet. 47: 486-497.
http://dx.doi.org/10.1007/s10528-009-9242-6
PMid:19424786
Boronnikova SV, Kokaeva ZG, Gostimskii SA, Dribnokhodova OP, et al. (2007). Analysis of DNA polymorphism in a relict Uralian species, yellow foxglove (Digitalis grandiflora Mill.), using RAPD and ISSR markers. Genetika 43: 653-659.
PMid:17633559
Cheng ZP and Huang HW (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193.
http://dx.doi.org/10.1016/j.scienta.2008.10.008
Chiu T, Pang J, Chen M and Tsen H (2010). Improvement of strain discrimination by combination of RAPD with PFGE for the analysis of the swine isolates of Salmonella enterica serovar Choleraesuis. Word J. Microbiol. Biotechnol. 27: 465-469.
http://dx.doi.org/10.1007/s11274-010-0467-7
D'Onofrio C, Lorenzis G, Giordani T and Natali L (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Hortic. 827: 45-52.
Demirsoy L, Demir T, Demirsoy H and Kacar YA (2008). Identification of some sweet cherry cultivars grown in Amasya by RAPD markers. Acta Hortic. 795: 147-152.
Elidemir AY and Uzun I (2009). Assessment of genetic diversity of some important grape cultivars, rootstocks, and wild grapes in Turkey using RAPD markers. Acta Hortic. 827: 275-278.
Ercisli E, Agar G, Yildrim N and Esitken A (2009). Identification of apricot cultivars in Turkey (Prunus armeniaca L.) using RAPD markers. Rom. Biotech. Lett. 14: 4582-4588.
Fang JG, Song CN and Qian JL (2010). Variation of cytosine methylation in 57 sweet orange cultivars. Acta Physiol. Plant. 32: 1023-1030.
http://dx.doi.org/10.1007/s11738-010-0491-0
Hasnaoui N, Messaoud M, Jemni C and Mokhtar T (2010). Molecular polymorphisms in Tunisian pomegranate (Punica granatum L.) as revealed by RAPD fingerprints. Diversity 2: 107-114.
http://dx.doi.org/10.3390/d2010107
Javanshah A, Tajabadipour A and Mirzaei S (2007). Identification of a new phenotype (Siah Barg) of pistachio (Pistacia vera L.) with shiny-blackish green leaves using RAPD assay. Int. J. Agric. Biol. 9: 307-310.
Melgarejo P, Martcnez JJ, Fca HL and Martcnez R (2009). Cultivar identification using 18S-28S rDNA intergenic spacer- RFLP in pomegranate (Punica granatum L.). Sci. Hortic. 120: 500-503.
http://dx.doi.org/10.1016/j.scienta.2008.12.013
Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321- 4325.
http://dx.doi.org/10.1093/nar/8.19.4321
PMid:7433111 PMCid:324241
Papp N, Szilvassy B, Abranko L and Szabo T (2010). Main quality attributes and antioxidants in Hungarian sour cherries: identification of genotypes with enhanced functional properties. Int. J. Food Sci. Tech. 45: 395-402.
http://dx.doi.org/10.1111/j.1365-2621.2009.02168.x
Saker MM, Adawy SS, Mohamed AA and El-Itriby HA (2006). Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol. Plantarum 50: 198-204.
http://dx.doi.org/10.1007/s10535-006-0007-3
Silvestrini M, Maluf MP, Silvarolla MB and Guerreiro-Filho O (2008). Genetic diversity of a coffea germplasm collection assessed by RAPD markers. Genet. Resour. Crop. Evol. 55: 901-910.
http://dx.doi.org/10.1007/s10722-007-9295-5
Wang Z, Zhang Z, Li H and Gao X (2007). Identification of Strawberry cultivars by RAPD and SCAR markers. Acta Hortic. Sin. 34: 591-596.
Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.
http://dx.doi.org/10.1093/nar/18.22.6531
PMid:1979162 PMCid:332606
“Ovine prion protein genotype frequencies in northwestern China”, vol. 11, pp. 1671-1681, 2012.
, Andreoletti O, Morel N, Lacroux C, Rouillon V, et al. (2006). Bovine spongiform encephalopathy agent in spleen from an ARR/ARR orally exposed sheep. J. Gen. Virol. 87: 1043-1046.
http://dx.doi.org/10.1099/vir.0.81318-0
PMid:16528056
Babar ME, Abdullah M, Nadeem A and Haq AU (2009). Prion protein gene polymorphisms in four goat breeds of Pakistan. Mol. Biol. Rep. 36: 141-144.
http://dx.doi.org/10.1007/s11033-007-9162-7
PMid:17934795
Baylis M, Goldmann W, Houston F, Cairns D, et al. (2002). Scrapie epidemic in a fully PrP-genotyped sheep flock. J. Gen. Virol. 83: 2907-2914.
PMid:12388827
Belt PB, Muileman IH, Schreuder BE, Bos-de Ruijter J, et al. (1995). Identification of five allelic variants of the sheep PrP gene and their association with natural scrapie. J. Gen. Virol. 76: 509-517.
http://dx.doi.org/10.1099/0022-1317-76-3-509
PMid:7897344
Buitkamp J and Semmer J (2004). A robust, low- to medium-throughput prnp genotyping system in sheep. BMC Infect. Dis. 4: 30.
http://dx.doi.org/10.1186/1471-2334-4-30
PMid:15345029 PMCid:517712
De Vries F, Borchers N, Hamann H, Drogemuller C, et al. (2004). Associations between the prion protein genotype and performance traits of meat breeds of sheep. Vet. Rec. 155: 140-143.
http://dx.doi.org/10.1136/vr.155.5.140
PMid:15338706
Goldmann W, Houston F, Stewart P, Perucchini M, et al. (2006). Ovine prion protein variant A136 R154 L168 Q171 increases resistance to experimental challenge with bovine spongiform encephalopathy agent. J. Gen. Virol. 87: 3741-3745.
http://dx.doi.org/10.1099/vir.0.82083-0
PMid:17098993
Hagenaars TJ, Donnelly CA and Ferguson NM (2006). Epidemiological analysis of data for scrapie in Great Britain. Epidemiol. Infect. 134: 359-367.
http://dx.doi.org/10.1017/S0950268805004966
PMid:16490141 PMCid:2870388
Humeny A, Schiebel K, Seeber S and Becker CM (2002). Identification of polymorphisms within the bovine prion protein gene (Prnp) by DNA sequencing and genotyping by MALDI-TOF-MS. Neurogenetics 4: 59-60.
http://dx.doi.org/10.1007/s10048-001-0126-0
PMid:12030333
Hunter N (1997). Molecular Biology and Genetics of Scrapie in Sheep. In: The Genetics of Sheep. (Piper L and Ruvinsky A, eds.). CAB International, Wallingford, 225-240.
PMid:9223132
Hunter N, Foster JD, Benson G and Hope J (1991). Restriction fragment length polymorphisms of the scrapie-associated fibril protein (PrP) gene and their association with susceptibility to natural scrapie in British sheep. J. Gen. Virol. 72: 1287-1292.
http://dx.doi.org/10.1099/0022-1317-72-6-1287
PMid:1675248
Hunter N, Goldmann W, Benson G, Foster JD, et al. (1993). Swaledale sheep affected by natural scrapie differ significantly in PrP genotype frequencies from healthy sheep and those selected for reduced incidence of scrapie. J. Gen. Virol. 74: 1025-1031.
http://dx.doi.org/10.1099/0022-1317-74-6-1025
PMid:8099602
Hunter N, Moore L, Hosie BD, Dingwall WS, et al. (1997). Association between natural scrapie and PrP genotype in a flock of Suffolk sheep in Scotland. Vet. Rec. 140: 59-63.
http://dx.doi.org/10.1136/vr.140.3.59
PMid:9023905
Ishiguro N, Shinagawa M, Onoe S, Yamanouchi K, et al. (1998). Rapid analysis of allelic variants of the sheep PrP gene by oligonucleotide probes. Microbiol. Immunol. 42: 579-582.
PMid:9776400
Lan Z, Wang ZL, Liu Y and Zhang X (2006). Prion protein gene (PRNP) polymorphisms in Xinjiang local sheep breeds in China. Arch. Virol. 151: 2095-2101.
http://dx.doi.org/10.1007/s00705-006-0758-3
PMid:16622593
Langeveld JP, Jacobs JG, Erkens JH, Bossers A, et al. (2006). Rapid and discriminatory diagnosis of scrapie and BSE in retro-pharyngeal lymph nodes of sheep. BMC Vet. Res. 2: 19.
http://dx.doi.org/10.1186/1746-6148-2-19
PMid:16764717 PMCid:1544330
Lee MA, Manley TR, Glass BC, Anderson RM, et al. (2007). Distribution of prion protein genotypes in breeds of sheep in New Zealand. N. Z. Vet. J. 55: 222-227.
http://dx.doi.org/10.1080/00480169.2007.36772
PMid:17928898
Lezmi S, Ronzon F, Bencsik A, Bedin A, et al. (2006). PrP(d) accumulation in organs of ARQ/ARQ sheep experimentally infected with BSE by peripheral routes. Acta Biochim. Pol. 53: 399-405.
PMid:16770445
Li YM and Tian B (2002). Chinese little-fat-tail sheep prion protein gene belongs to PrPARH genotype. Sheng Wu Hua Xue. Yu Sheng Wu Wu Li Xue Bao 34: 62-66.
Lipsky S, Brandt H, Luhken G and Erhardt G (2008). Analysis of prion protein genotypes in relation to reproduction traits in local and cosmopolitan German sheep breeds. Anim. Reprod. Sci. 103: 69-77.
http://dx.doi.org/10.1016/j.anireprosci.2006.12.005
PMid:17204379
Marcos-Carcavilla A, Moreno C, Serrano M, Laurent P, et al. (2010). Polymorphisms in the HSP90AA1 5' flanking region are associated with scrapie incubation period in sheep. Cell Stress Chaperones 15: 343-349.
http://dx.doi.org/10.1007/s12192-009-0149-2
PMid:19838832 PMCid:3082647
Melchior MB, Windig JJ, Hagenaars TJ, Bossers A, et al. (2010). Eradication of scrapie with selective breeding: are we nearly there? BMC Vet. Res. 6: 24.
http://dx.doi.org/10.1186/1746-6148-6-24
PMid:20441587 PMCid:2873516
Sanguinetti CJ, Dias NE and Simpson AJ (1994). Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17: 914-921.
PMid:7840973
Sawalha RM, Brotherstone S, Man WY, Conington J, et al. (2007). Associations of polymorphisms of the ovine prion protein gene with growth, carcass, and computerized tomography traits in Scottish Blackface lambs. J. Anim. Sci. 85: 632-640.
http://dx.doi.org/10.2527/jas.2006-372
PMid:17040947
Sweeney T, Hanrahan JP and O'Doherty E (2007). Is there a relationship between prion protein genotype and ovulation rate and litter size in sheep? Anim. Reprod. Sci. 101: 153-157.
http://dx.doi.org/10.1016/j.anireprosci.2006.12.004
PMid:17204381
Tongue SC, Pfeiffer DU, Warner R, Elliott H, et al. (2006). Estimation of the relative risk of developing clinical scrapie: the role of prion protein (PrP) genotype and selection bias. Vet. Rec. 158: 43-50.
http://dx.doi.org/10.1136/vr.158.2.43
PMid:16415231
Tranulis MA, Osland A, Bratberg B and Ulvund MJ (1999). Prion protein gene polymorphisms in sheep with natural scrapie and healthy controls in Norway. J. Gen. Virol. 80: 1073-1077.
PMid:10211978
Vaccari G, Conte M, Morelli L, Di Guardo G, et al. (2004). Primer extension assay for prion protein genotype determination in sheep. Mol. Cell Probes 18: 33-37.
http://dx.doi.org/10.1016/j.mcp.2003.06.001
PMid:15036367
Vitezica ZG, Moreno CR, Lantier F, Lantier I, et al. (2007). Quantitative trait loci linked to PRNP gene controlling health and production traits in INRA 401 sheep. Genet. Sel. Evol. 39: 421-430.
http://dx.doi.org/10.1186/1297-9686-39-4-421
PMid:17612481 PMCid:2682820
Vollmert C, Windl O, Xiang W, Rosenberger A, et al. (2006). Significant association of a M129V independent polymorphism in the 5' UTR of the PRNP gene with sporadic Creutzfeldt-Jakob disease in a large German case-control study. J. Med. Genet. 43: e53.
http://dx.doi.org/10.1136/jmg.2006.040931
PMid:17047093 PMCid:2563174
Zhang L, Li N, Fan B, Fang M, et al. (2004). PRNP polymorphisms in Chinese ovine, caprine and bovine breeds. Anim. Genet. 35: 457-461.
http://dx.doi.org/10.1111/j.1365-2052.2004.01204.x
PMid:15566469
Zhou H, Hickford JG and Fang Q (2005). Technical note: determination of alleles of the ovine PRNP gene using PCR-single-strand conformational polymorphism analysis. J. Anim. Sci. 83: 745-749.
PMid:15753327
Zsolnai A, Anton I, Kuhn C and Fesus L (2003). Detection of single-nucleotide polymorphisms coding for three ovine prion protein variants by primer extension assay and capillary electrophoresis. Electrophoresis 24: 634-638.
http://dx.doi.org/10.1002/elps.200390074
PMid:12601731
“Sequence variants in the bovine PRDM16 gene associated with body weight in Chinese cattle breeds”, vol. 11, pp. 746-755, 2012.
, Chen H and Leibenguth F (1995). Studies on multilocus fingerprints, RAPD markers, and mitochondrial DNA of a gynogenetic fish (Carassius auratus gibelio). Biochem. Genet. 33: 297-306.
http://dx.doi.org/10.1007/BF02399929
PMid:8748455
Chen DX, Jin QJ, Fang XT, Zhang CL, et al. (2010). Analysis of the polymorphisms in the caprine PRDM16, SHH and SF-1 genes and their association with production traits in goats. Small Ruminant Res. 93: 193-197.
http://dx.doi.org/10.1016/j.smallrumres.2010.04.022
Cousin B, Cinti S, Morroni M, Raimbault S, et al. (1992). Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 10: 931-942.
Farmer SR (2008). Molecular determinants of brown adipocyte formation and function. Genes Dev. 22: 1269-1275.
http://dx.doi.org/10.1101/gad.1681308
Jenuwein T (2001). Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol. 11: 266-273.
http://dx.doi.org/10.1016/S0962-8924(01)02001-3
Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, et al. (2008). Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 22: 1397-1409.
http://dx.doi.org/10.1101/gad.1666108
Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, et al. (2007). A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315: 525-528.
http://dx.doi.org/10.1126/science.1135308
PMid:17185560
Kinameri E, Inoue T, Aruga J, Imayoshi I, et al. (2008). Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. PLoS One 3: e3859.
http://dx.doi.org/10.1371/journal.pone.0003859
PMid:19050759 PMCid:2585159
Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics 8: 1075-1080.
http://dx.doi.org/10.2217/14622416.8.8.1075
PMid:17716239
Lai X, Lan X, Chen H, Wang X, et al. (2009). A novel SNP of the Hesx1 gene in bovine and its associations with average daily gain. Mol. Biol. Rep. 36: 1677-1681.
http://dx.doi.org/10.1007/s11033-008-9368-3
PMid:18853282
Lan XY, Pan CY, Chen H and Zhang CL (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12.
http://dx.doi.org/10.1016/j.smallrumres.2006.10.009
Nedergaard J, Bengtsson T and Cannon B (2007). Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293: E444-E452.
http://dx.doi.org/10.1152/ajpendo.00691.2006
PMid:17473055
Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390.
PMid:4822472 PMCid:1213072
Oh I, Shimizu H, Satoh T, Okada S, et al. (2006). Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443: 709-712.
http://dx.doi.org/10.1038/nature05162
PMid:17036007
Ren G, Chen H, Zhang LZ, Lan XY, et al. (2010). A coding SNP of LHX4 gene is associated with body weight and body length in bovine. Mol. Biol. Rep. 37: 417-422.
http://dx.doi.org/10.1007/s11033-009-9486-6
PMid:19283511
Rhee EJ, Oh KW, Lee WY, Kim SY, et al. (2006). Effects of two common polymorphisms of peroxisome proliferator-activated receptor-gamma gene on metabolic syndrome. Arch. Med. Res. 37: 86-94.
http://dx.doi.org/10.1016/j.arcmed.2005.04.008
PMid:16314192
Rosado EL, Bressan J, Martins MF, Cecon PR, et al. (2007). Polymorphism in the PPARgamma2 and beta2-adrenergic genes and diet lipid effects on body composition, energy expenditure and eating behavior of obese women. Appetite 49: 635-643.
http://dx.doi.org/10.1016/j.appet.2007.04.003
PMid:17658197
Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV and Gottesman MM (2007). Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer. Cancer Res. 67: 9609-9612.
http://dx.doi.org/10.1158/0008-5472.CAN-07-2377
PMid:17942888
Seale P, Kajimura S, Yang W, Chin S, et al. (2007). Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6: 38-54.
http://dx.doi.org/10.1016/j.cmet.2007.06.001
PMid:17618855 PMCid:2564846
Seale P, Bjork B, Yang W, Kajimura S, et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature 454: 961-967.
http://dx.doi.org/10.1038/nature07182
PMid:18719582 PMCid:2583329
Walczak R, Tontonoz P and Edward AD (2003). PPAR[gamma] Signaling in Adipose Tissue Development. In: Handbook of Cell Signaling, Academic Press, Burlington, 39-46.
Wang YH, Bower NI, Reverter A, Tan SH, et al. (2009). Gene expression patterns during intramuscular fat development in cattle. J. Anim. Sci. 87: 119-130.
http://dx.doi.org/10.2527/jas.2008-1082
PMid:18820161
Warner DR, Horn KH, Mudd L, Webb CL, et al. (2007). PRDM16/MEL1: a novel Smad binding protein expressed in murine embryonic orofacial tissue. Biochim. Biophys. Acta 1773: 814-820.
http://dx.doi.org/10.1016/j.bbamcr.2007.03.016
PMid:17467076
Yang LL, Hua Q, Liu RK and Yang Z (2009). Association between two common polymorphisms of PPARgamma gene and metabolic syndrome families in a Chinese population. Arch. Med. Res. 40: 89-96.
http://dx.doi.org/10.1016/j.arcmed.2008.11.005
PMid:19237017
Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287.
http://dx.doi.org/10.1016/j.ab.2007.03.023
PMid:17449006
“AGPAT6 polymorphism and its association with milk traits of dairy goats”, vol. 10, pp. 2747-2756, 2011.
, Agarwal AK, Barnes RI and Garg A (2006). Functional characterization of human 1-acylglycerol-3-phosphate acyltransferase isoform 8: cloning, tissue distribution, gene structure, and enzymatic activity. Arch. Biochem. Biophys. 449: 64-76.
http://dx.doi.org/10.1016/j.abb.2006.03.014
PMid:16620771
Agarwal AK, Sukumaran S, Bartz R, Barnes RI, et al. (2007). Functional characterization of human 1-acylglycerol- 3-phosphate-O-acyltransferase isoform 9: cloning, tissue distribution, gene structure, and enzymatic activity. J. Endocrinol. 193: 445-457.
http://dx.doi.org/10.1677/JOE-07-0027
PMid:17535882
Aguado B and Campbell RD (1998). Characterization of a human lysophosphatidic acid acyltransferase that is encoded by a gene located in the class III region of the human major histocompatibility complex. J. Biol. Chem. 273: 4096-4105.
http://dx.doi.org/10.1074/jbc.273.7.4096
PMid:9461603
Beigneux AP, Vergnes L, Qiao X, Quatela S, et al. (2006). Agpat6 - a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium. J. Lipid Res. 47: 734-744.
http://dx.doi.org/10.1194/jlr.M500556-JLR200
PMid:16449762 PMCid:3196597
Bionaz M and Loor JJ (2008). ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 138: 1019-1024.
PMid:18492828
Chen YQ, Kuo MS, Li S, Bui HH, et al. (2008). AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase. J. Biol. Chem. 283: 10048-10057.
http://dx.doi.org/10.1074/jbc.M708151200
PMid:18238778 PMCid:2442282
Coleman RA and Lee DP (2004). Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43: 134-176.
http://dx.doi.org/10.1016/S0163-7827(03)00051-1
Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, et al. (2007). A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315: 525-528.
http://dx.doi.org/10.1126/science.1135308
PMid:17185560
Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics. 8: 1075-1080.
http://dx.doi.org/10.2217/14622416.8.8.1075
PMid:17716239
Lan XY, Pan CY, Chen H and Zhang CL (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Rumin. Res. 73: 8-12.
http://dx.doi.org/10.1016/j.smallrumres.2006.10.009
Nagle CA, Vergnes L, Dejong H, Wang S, et al. (2008). Identification of a novel sn-glycerol-3-phosphate acyltransferase isoform, GPAT4, as the enzyme deficient in Agpat6-/- mice. J. Lipid Res. 49: 823-831.
http://dx.doi.org/10.1194/jlr.M700592-JLR200
PMid:18192653 PMCid:2819352
Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390.
PMid:4822472 PMCid:1213072
Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.
Sham P, Bader JS, Craig I, O’Donovan M, et al. (2002). DNA Pooling: a tool for large-scale association studies. Nat. Rev. Genet. 3: 862-871.
http://dx.doi.org/10.1038/nrg930
PMid:12415316
Sukumaran S, Barnes RI, Garg A and Agarwal AK (2009). Functional characterization of the human 1-acylglycerol- 3-phosphate-O-acyltransferase isoform 10/glycerol-3-phosphate acyltransferase isoform 3. J. Mol. Endocrinol. 42: 469-478.
http://dx.doi.org/10.1677/JME-09-0010
PMid:19318427
Takeuchi K and Reue K (2009). Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am. J. Physiol. Endocrinol. Metab. 296: E1195-E1209.
http://dx.doi.org/10.1152/ajpendo.90958.2008
PMid:19336658 PMCid:2692402
Vergnes L, Beigneux AP, Davis R, Watkins SM, et al. (2006). Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity. J. Lipid Res. 47: 745-754.
http://dx.doi.org/10.1194/jlr.M500553-JLR200
PMid:16436371 PMCid:2901549
Ye GM, Chen C, Huang S, Han DD, et al. (2005). Cloning and characterization a novel human 1-acyl-sn-glycerol-3- phosphate acyltransferase gene AGPAT7. DNA Seq. 16: 386-390.
http://dx.doi.org/10.1080/10425170500213712
PMid:16243729
“Identification of complex vertebral malformation carriers in Holstein cattle in south China”, vol. 10, pp. 2443-2448, 2011.
, Agerholm JS, Bendixen C, Andersen O and Arnbjerg J (2001). Complex vertebral malformation in Holstein calves. J. Vet. Diagn. Invest. 13: 283-289.
http://dx.doi.org/10.1177/104063870101300401
PMid:11478598
Batiz LF, Roales-Bujan R, Rodriguez-Perez LM, Matas IM, et al. (2009). A simple PCR-based genotyping method for M105I mutation of alpha-SNAP enhances the study of early pathological changes in hyh phenotype. Mol. Cell. Probes 23: 281-290.
http://dx.doi.org/10.1016/j.mcp.2009.07.002
PMid:19615440
Bendixen CC, Svendsen S, Jensen H, Panitz F, et al. (2002). Genetic Test for the Identification of Carriers of Complex Vertebral Malformation in Cattle. World Intelectual Property Organization Publication No. PCT/WO 02/40709 A2 United States Patent: 7094544.
Berglund B, Persson A and Stalhammar H (2004). Effects of complex vertebral malformation on fertility in Swedish Holstein cattle. Acta Vet. Scand. 45: 161-165.
http://dx.doi.org/10.1186/1751-0147-45-161
PMid:15663076 PMCid:1820991
Chu Q, Sun D, Yu Y, Zhang Y, et al. (2008). Identification of complex vertebral malformation carriers in Chinese Holstein. J. Vet. Diagn. Invest. 20: 228-230.
http://dx.doi.org/10.1177/104063870802000215
PMid:18319439
Ghanem ME, Akita M, Suzuki T, Kasuga A, et al. (2008). Complex vertebral malformation in Holstein cows in Japan and its inheritance to crossbred F1 generation. Anim. Reprod. Sci. 103: 348-354.
http://dx.doi.org/10.1016/j.anireprosci.2007.05.006
PMid:17574783
Hosseini SY, Sabahi F, Amini-Bavil-Olyaee S, Alavian SM, et al. (2006). A novel accurate ACRS-PCR method with a digestion internal control for identification of wild type and YMDD mutants of hepatitis B virus strains. J. Virol. Methods 137: 298-303.
http://dx.doi.org/10.1016/j.jviromet.2006.07.008
PMid:16962669
Kanae Y, Endoh D, Nagahata H and Hayashi M (2005). A method for detecting complex vertebral malformation in Holstein calves using polymerase chain reaction-primer introduced restriction analysis. J. Vet. Diagn. Invest. 17: 258-262.
http://dx.doi.org/10.1177/104063870501700309
PMid:15945384
Kearney JF, Amer PR and Villanueva B (2005). Cumulative discounted expressions of sire genotypes for the complex vertebral malformation and beta-casein loci in commercial dairy herds. J. Dairy Sci. 88: 4426-4433.
http://dx.doi.org/10.3168/jds.S0022-0302(05)73129-5
Rusc A and Kaminski S (2007). Prevalence of complex vertebral malformation carriers among Polish Holstein-Friesian bulls. J. Appl. Genet. 48: 247-252.
http://dx.doi.org/10.1007/BF03195219
PMid:17666777
Shayan P, Eslami A and Borji H (2007). Innovative restriction site created PCR-RFLP for detection of benzimidazole resistance in Teladorsagia circumcincta. Parasitol. Res. 100: 1063-1068.
http://dx.doi.org/10.1007/s00436-006-0357-y
PMid:17136564
Thomsen B, Horn P, Panitz F, Bendixen E, et al. (2006). A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation. Genome Res. 16: 97-105.
http://dx.doi.org/10.1101/gr.3690506
PMid:16344554 PMCid:1356133