Publications

Found 48 results
Filters: Author is L. Liu  [Clear All Filters]
2016
W. M. Zhao, Shayimu, P., Liu, L., Fang, F., Huang, X. L., Zhao, W. M., Shayimu, P., Liu, L., Fang, F., and Huang, X. L., Association between IL-17A and IL-17F gene polymorphisms and risk of gastric cancer in a Chinese population, vol. 15, p. -, 2016.
W. M. Zhao, Shayimu, P., Liu, L., Fang, F., Huang, X. L., Zhao, W. M., Shayimu, P., Liu, L., Fang, F., and Huang, X. L., Association between IL-17A and IL-17F gene polymorphisms and risk of gastric cancer in a Chinese population, vol. 15, p. -, 2016.
L. Liu, Meng, T., Wang, Q. S., Jin, H. Z., Sun, Z. Q., Jin, B., Fang, F., Wang, H. J., Liu, L., Meng, T., Wang, Q. S., Jin, H. Z., Sun, Z. Q., Jin, B., Fang, F., Wang, H. J., Liu, L., Meng, T., Wang, Q. S., Jin, H. Z., Sun, Z. Q., Jin, B., Fang, F., and Wang, H. J., Association of Beclin-1 and microRNA-30a expression with the severity and treatment response of colorectal cancer, vol. 15, p. -, 2016.
L. Liu, Meng, T., Wang, Q. S., Jin, H. Z., Sun, Z. Q., Jin, B., Fang, F., Wang, H. J., Liu, L., Meng, T., Wang, Q. S., Jin, H. Z., Sun, Z. Q., Jin, B., Fang, F., Wang, H. J., Liu, L., Meng, T., Wang, Q. S., Jin, H. Z., Sun, Z. Q., Jin, B., Fang, F., and Wang, H. J., Association of Beclin-1 and microRNA-30a expression with the severity and treatment response of colorectal cancer, vol. 15, p. -, 2016.
L. Liu, Meng, T., Wang, Q. S., Jin, H. Z., Sun, Z. Q., Jin, B., Fang, F., Wang, H. J., Liu, L., Meng, T., Wang, Q. S., Jin, H. Z., Sun, Z. Q., Jin, B., Fang, F., Wang, H. J., Liu, L., Meng, T., Wang, Q. S., Jin, H. Z., Sun, Z. Q., Jin, B., Fang, F., and Wang, H. J., Association of Beclin-1 and microRNA-30a expression with the severity and treatment response of colorectal cancer, vol. 15, p. -, 2016.
L. Liu, Gao, T. X., Han, Z. Q., Li, C. H., Sun, D. R., Song, N., Liu, L., Gao, T. X., Han, Z. Q., Li, C. H., Sun, D. R., and Song, N., Development and characterization of microsatellite markers of the eastern keelback mullet (Liza affinis), vol. 15, p. -, 2016.
L. Liu, Gao, T. X., Han, Z. Q., Li, C. H., Sun, D. R., Song, N., Liu, L., Gao, T. X., Han, Z. Q., Li, C. H., Sun, D. R., and Song, N., Development and characterization of microsatellite markers of the eastern keelback mullet (Liza affinis), vol. 15, p. -, 2016.
J. Y. Wang, Li, Z. H., Ye, M., Feng, Q., Chen, Z. M., Ye, X. S., Wu, Z. G., Wang, B., Liu, L., Yao, J., Wang, J. Y., Li, Z. H., Ye, M., Feng, Q., Chen, Z. M., Ye, X. S., Wu, Z. G., Wang, B., Liu, L., and Yao, J., Effect of miR-29c and miR-129-5p on epithelial-mesenchymal transition in experimental biliary atresia mouse models, vol. 15, p. -, 2016.
J. Y. Wang, Li, Z. H., Ye, M., Feng, Q., Chen, Z. M., Ye, X. S., Wu, Z. G., Wang, B., Liu, L., Yao, J., Wang, J. Y., Li, Z. H., Ye, M., Feng, Q., Chen, Z. M., Ye, X. S., Wu, Z. G., Wang, B., Liu, L., and Yao, J., Effect of miR-29c and miR-129-5p on epithelial-mesenchymal transition in experimental biliary atresia mouse models, vol. 15, p. -, 2016.
X. Z. Yin, Zhao, D. M., Zhang, G. X., Liu, L., Yin, X. Z., Zhao, D. M., Zhang, G. X., and Liu, L., Effect of miRNA-203 on cervical cancer cells and its underlying mechanism, vol. 15, p. -, 2016.
X. Z. Yin, Zhao, D. M., Zhang, G. X., Liu, L., Yin, X. Z., Zhao, D. M., Zhang, G. X., and Liu, L., Effect of miRNA-203 on cervical cancer cells and its underlying mechanism, vol. 15, p. -, 2016.
L. Liu, Li, Y. L., Xu, S. D., Wang, K. Z., Wu, P., Chu, W. Y., Wang, X. Q., Liu, L., Li, Y. L., Xu, S. D., Wang, K. Z., Wu, P., Chu, W. Y., and Wang, X. Q., Molecular characterization of the myosatin gene and the effect of fasting on its expression in Chinese perch (Siniperca chuatsi), vol. 15, p. -, 2016.
L. Liu, Li, Y. L., Xu, S. D., Wang, K. Z., Wu, P., Chu, W. Y., Wang, X. Q., Liu, L., Li, Y. L., Xu, S. D., Wang, K. Z., Wu, P., Chu, W. Y., and Wang, X. Q., Molecular characterization of the myosatin gene and the effect of fasting on its expression in Chinese perch (Siniperca chuatsi), vol. 15, p. -, 2016.
2015
X. L. Bian, Wang, C. Z., Wang, Y., Li, Y. N., Zhang, L. Z., and Liu, L., Analysis of postoperative PSA changes after ultrasound-guided permanent [125I] seed implantation for the treatment of prostate cancer, vol. 14, pp. 7142-7150, 2015.
Y. S. Wang, Liu, L., Xu, X. Y., Wang, J. L., Zhou, H., Li, T. L., and Liang, Z. A., Association of interleukin-1β -511C/T promoter polymorphism with COPD risk: a meta-analysis, vol. 14, pp. 4477-4484, 2015.
Y. Q. Yang, Wang, H., Liang, M. L., Yan, J. L., Liu, L., Li, C. Y., and Yang, J., Construction and expression of prokaryotic expression vectors fused with genes of Magnaporthe oryzae effector proteins and mCherry, vol. 14, pp. 10827-10836, 2015.
M. L. Liang, Yan, J. L., Yang, Y. Q., Liu, L., Li, C. Y., and Yang, J., Construction of overexpression vectors of Magnaporthe oryzae genes BAS1 and BAS4 fusion to mCherry and screening of overexpression strains, vol. 14, pp. 7068-7078, 2015.
C. S. Bao, Liu, L., Wang, B., Xia, X. - G., Gu, Y. J., Li, D. J., Zhan, S. L., Chen, G. L., and Yang, F. B., Craniocervical decompression with duraplasty and cerebellar tonsillectomy as treatment for Chiari malformation-I complicated with syringomyelia, vol. 14, pp. 952-960, 2015.
L. Liu, Wang, C. L., Peng, W. Y., Yang, J., Lan, M. Q., Zhang, B., Li, J. B., Zhu, Y. Y., and Li, C. Y., Direct DNA extraction method of an obligate parasitic fungus from infected plant tissue, vol. 14, pp. 18546-18551, 2015.
L. Liu, Xu, D. Y., Yang, S. S., and Li, X. D., Ebp1 protein expression in cervical cancer tissue and its significance, vol. 14, pp. 5496-5500, 2015.
J. Yang, Liang, M. L., Yan, J. L., Yang, Y. Q., Liu, L., Liu, C., Yang, L. J., and Li, C. Y., Expression of Magnaporthe oryzae genes encoding cysteine-rich proteins secreted during nitrogen starvation and interaction with its host, Oryza sativa, vol. 14, pp. 17099-17108, 2015.
C. Wang, Zhao, C. - L., Liu, L., Wu, R., and Zhang, X. - L., Expression patterns of Doppel in differential ovine PRNP genotypes: quantification using real-time RT-PCR, vol. 14, pp. 12152-12158, 2015.
N. Fan, Jonas, J. B., He, F., Yan, N. H., Wang, Y., Liu, L., Liu, D. L., Zhao, L., Pang, I. - H., and Liu, X. Y., A novel frameshift deletion in the COL1A1 gene identified in a Chinese family with osteogenesis imperfecta, vol. 14, pp. 15295-15300, 2015.
L. M. Lu, Ye, K. Y., Tang, Z. X., Liu, L., Chen, Y., Luo, J., and Huang, Y. B., Proteome analysis of tobacco leaves reveals dynamic changes in protein expression among different cultivation areas, vol. 14, pp. 15276-15284, 2015.
F. He, Liu, D. L., Chen, M. P., Liu, L., Lu, L., Ouyang, M., Yang, J., Gan, R., and Liu, X. Y., A rare PAX6 mutation in a Chinese family with congenital aniridia, vol. 14, pp. 13328-13336, 2015.
L. Liu, Li, X. D., Chen, H. Y., Cui, J. S., and Xu, D. Y., Significance of Ebp1 and p53 protein expression in cervical cancer, vol. 14, pp. 11860-11866, 2015.
L. Liu, Xiao, Y., Zou, B., and Zhao, L. L., Study of the significance of iron deficiency indexes and erythrocyte parameters in anemic pregnant women and their newborns, vol. 14, pp. 3501-3508, 2015.
W. Yan, Liu, L., Li, C. X., Huang, S. C., Ma, Z. L., Qin, W. Q., and Peng, Z. Q., Transcriptome sequencing and analysis of the coconut leaf beetle, Brontispa longissima, vol. 14, pp. 8359-8365, 2015.
W. Yan, Liu, L., Qin, W. Q., Li, C. X., and Peng, Z. Q., Transcriptomic identification of chemoreceptor genes in the red palm weevil Rhynchophorus ferrugineus, vol. 14, pp. 7469-7480, 2015.
2014
L. Liu, Xiao, Z., Xiao, Y., Wang, Z., Li, F., Li, M., and Peng, X., Combination of high-intensity focused ultrasound irradiation and hydroxyapatite nanoparticle injection to injure normal goat liver tissue in vivo without costal bone incision, vol. 13, pp. 8301-8308, 2014.
L. Liu, Yan, Y., Zhou, J., Huang, L. W., He, C. P., Ling, K., Zhou, H. C., Wen, Q. M., and Wang, X. M., Curative effect of combined lamivudine, adefovir dipivoxil, and stem cell transplantation on decompensated hepatitis B cirrhosis, vol. 13, pp. 9336-9342, 2014.
J. Y. Wang, Sun, S., Liu, L., and Yang, W. S., Induction of apoptosis in human cervical carcinoma Hela cells with active components of Menispermum dauricum, vol. 13, pp. 3545-3552, 2014.
J. Ren, Liu, L., Jin, X. L., Fu, S. L., and Ding, Z. C., Physiological and morphological responses induced by α-particle radiation on Arabidopsis thaliana embryos, vol. 13, pp. 9569-9577, 2014.
L. Liu, Lin, L., Li, C. H., Xu, S. N., Liu, Y., and Zhou, Y. B., Polymorphic microsatellite loci for the crimson snapper (Lutjanus erythropterus), vol. 13, pp. 5250-5253, 2014.
F. Li, Jia, H. T., Liu, L., Zhang, C. X., Liu, Z. J., and Zhang, Z. X., Quantitative trait loci mapping for kernel row number using chromosome segment substitution lines in maize, vol. 13, pp. 1707-1716, 2014.
D. J. Sun, Zhuang, A. X., Zeng, Q. H., Jiang, Y. L., Jiang, J. D., Feng, S. Q., Zhang, Y., Huang, H. M., Nie, H. X., and Liu, L., A study of microemboli monitoring of atherosclerotic thrombotic cerebral infarction and artery stenosis, vol. 13, pp. 6734-6745, 2014.
L. Liu, Li, C. H., Jin, T. F., and Xu, D. Y., Study on the ERCC1 gene polymorphism response to chemotherapy and prognosis of gastric cancer, vol. 13, pp. 8722-8728, 2014.
2013
J. Zhu, Zi, C., Wu, Z. C., Liu, L., Zheng, X. R., Su, X. M., Zhu, G. Q., Huang, X. G., Wu, S. L., and Bao, W. B., Age-dependent expression of the BPI gene in Sutai piglets, vol. 12, pp. 2120-2126, 2013.
L. Liu, Wei, Y. M., Zhou, X. W., Lin, J., Sun, X. F., and Tang, K. X., Agrobacterium tumefaciens-mediated genetic transformation of the Taxol-producing endophytic fungus Ozonium sp EFY21, vol. 12, pp. 2913-2922, 2013.
L. He, Yao, H., Fan, L. H., Liu, L., Qiu, S., Li, X., Gao, J. P., and Hao, C. Q., MicroRNA-181b expression in prostate cancer tissues and its influence on the biological behavior of the prostate cancer cell line PC-3, vol. 12, pp. 1012-1021, 2013.
Ambros V and Chen X (2007). The regulation of genes and genomes by small RNAs. Development 134: 1635-1641. http://dx.doi.org/10.1242/dev.002006 PMid:17409118   Berezikov E, Guryev V, van de Belt J, Wienholds E, et al. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120: 21-24. http://dx.doi.org/10.1016/j.cell.2004.12.031 PMid:15652478   Chen C, Ridzon DA, Broomer AJ, Zhou Z, et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33: e179. http://dx.doi.org/10.1093/nar/gni178 PMid:16314309 PMCid:1292995   Chen H, Chen Q, Fang M and Mi Y (2009). Regulatory effect on the proliferation of the leukemic cell HL-60 by miRNA- 181b through MLK2 science in China. Life Sci. 39: 1034-1040.   de Yébenes VG, Belver L, Pisano DG, Gonzalez S, et al. (2008). miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med. 205: 2199-2206. http://dx.doi.org/10.1084/jem.20080579 PMid:18762567 PMCid:2556787   Debernardi S, Skoulakis S, Molloy G, Chaplin T, et al. (2007). MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21: 912-916. PMid:17330104   Gibson W, Green A, Bullard RS, Eaddy AC, et al. (2007). Inhibition of PAX2 expression results in alternate cell death pathways in prostate cancer cells differing in p53 status. Cancer Lett. 248: 251-261. http://dx.doi.org/10.1016/j.canlet.2006.08.007 PMid:16996682   Jonler M and Pedersen KV (2007). Diagnosis, evaluation and follow-up of patients with prostatic cancer. Ugeskr. Laeger 169: 1889-1891. PMid:17553363   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Marcucci G, Radmacher MD, Maharry K, Mrózek K, et al. (2008). MicroRNA expression in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358: 1919-1928. http://dx.doi.org/10.1056/NEJMoa074256 PMid:18450603   Meltzer PS (2005). Cancer genomics: small RNAs with big impacts. Nature 435: 745-746. http://dx.doi.org/10.1038/435745a PMid:15944682   Nakajima G, Hayashi K, Xi Y, Kudo K, et al. (2006). Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics 3: 317-324. PMid:18172508 PMCid:2170889   Ozen M, Creighton CJ, Ozdemir M and Ittmann M (2008). Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27: 1788-1793. http://dx.doi.org/10.1038/sj.onc.1210809 PMid:17891175   Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, et al. (2006). Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 66: 11590-11593. http://dx.doi.org/10.1158/0008-5472.CAN-06-3613 PMid:17178851   Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, et al. (2007). MicroRNA expression profiling in prostate cancer. Cancer Res. 67: 6130-6135. http://dx.doi.org/10.1158/0008-5472.CAN-07-0533 PMid:17616669   Prueitt RL, Yi M, Hudson RS, Wallace TA, et al. (2008). Expression of microRNAs and protein-coding genes associated with perineural invasion in prostate cancer. Prostate 68: 1152-1164. http://dx.doi.org/10.1002/pros.20786 PMid:18459106 PMCid:2597330   Rajewsky N (2006). microRNA target predictions in animals. Nat. Genet. 38 Suppl: S8-13. http://dx.doi.org/10.1038/ng1798 PMid:16736023   Schaefer A, Jung M, Mollenkopf HJ, Wagner I, et al. (2010). Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int. J. Cancer 126: 1166-1176. PMid:19676045   Shi L, Cheng Z, Zhang J, Li R, et al. (2008). hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 1236: 185-193. http://dx.doi.org/10.1016/j.brainres.2008.07.085 PMid:18710654   Spahn M, Kneitz S, Scholz CJ, Stenger N, et al. (2010). Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int. J. Cancer 127: 394-403. PMid:19585579   Stark A, Brennecke J, Bushati N, Russell RB, et al. (2005). Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123: 1133-1146. http://dx.doi.org/10.1016/j.cell.2005.11.023 PMid:16337999   Volinia S, Calin GA, Liu CG, Ambs S, et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U. S. A. 103: 2257-2261. http://dx.doi.org/10.1073/pnas.0510565103 PMid:16461460 PMCid:1413718   Xu L and Wang GM (2007). The progress and current situation in the management of moderate and far advanced prostate cancer. Int. J. Urol. Nephrol. 27: 773.   Zhang B and Farwell MA (2008). microRNAs: a new emerging class of players for disease diagnostics and gene therapy. J. Cell Mol. Med. 12: 3-21. http://dx.doi.org/10.1111/j.1582-4934.2007.00196.x PMid:18088390
X. Xu, Liu, L., and Lu, Q. Y., Text-mining network analysis of the response to osmotic stimuli in the intervertebral disc, vol. 12, pp. 1574-1581, 2013.
2012
X. Liu, Guo, X. Y., Xu, X. Z., Wu, M., Zhang, X., Li, Q., Ma, P. P., Zhang, Y., Wang, C. Y., Geng, F. J., Qin, C. H., Liu, L., Shi, W. H., Wang, Y. C., and Yu, Y., Novel single nucleotide polymorphisms of the bovine methyltransferase 3b gene and their association with meat quality traits in beef cattle, vol. 11, pp. 2569-2577, 2012.
Amara K, Ziadi S, Hachana M, Soltani N, et al. (2010). DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci. 101: 1722-1730. http://dx.doi.org/10.1111/j.1349-7006.2010.01569.x PMid:20398054   Barres R and Zierath JR (2011). DNA methylation in metabolic disorders. Am. J. Clin. Nutr. 93: 897S-900. http://dx.doi.org/10.3945/ajcn.110.001933 PMid:21289222   de Vogel S, Wouters KA, Gottschalk RW, van Schooten FJ, et al. (2011). Dietary methyl donors, methyl metabolizing enzymes, and epigenetic regulators: diet-gene interactions and promoter CpG island hypermethylation in colorectal cancer. Cancer Causes Control 22: 1-12. http://dx.doi.org/10.1007/s10552-010-9659-6 PMid:20960050 PMCid:3002163   Fan YY, Zan LS, Wang HB and Yang YJ (2010). Study on the relationship between polymorphism of PLIN gene and carcass and meat quality traits in Qinchuan cattle. Chin. J. Anim. Vet. Sci. 41: 268-273.   Fraga MF, Ballestar E, Paz MF, Ropero S, et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. U. S. A. 102: 10604-10609. http://dx.doi.org/10.1073/pnas.0500398102 PMid:16009939 PMCid:1174919   Guo X, Liu X, Xu X, Wu M, et al. (2012). The expression levels of DNMT3a/3b and their relationship with meat quality in beef cattle. Mol. Biol. Rep. 39: 5473-5479. http://dx.doi.org/10.1007/s11033-011-1349-2 PMid:22193622   Haggarty P, Hoad G, Harris SE, Starr JM, et al. (2010). Human intelligence and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking. PLoS One 5: e11329. http://dx.doi.org/10.1371/journal.pone.0011329 PMid:20593030 PMCid:2892514   Halaschek-Wiener J, Amirabbasi-Beik M, Monfared N, Pieczyk M, et al. (2009). Genetic variation in healthy oldest-old. PLoS One 4: e6641. http://dx.doi.org/10.1371/journal.pone.0006641 PMid:19680556 PMCid:2722017   Hoey AJ, Reich MM, Davis G, Shorthose R, et al. (1995). Beta 2-adrenoceptor densities do not correlate with growth, carcass quality, or meat quality in cattle. J. Anim. Sci. 73: 3281-3286. PMid:8586585   Ji AG, Zhou ZK, Zhang LP, Yang RJ, et al. (2009). PON1 gene SNPs and association with growth and carcass traits in beef cattle. Acta Vet. Zootechnica Sin. 40: 122-128.   Kamei Y, Suganami T, Ehara T, Kanai S, et al. (2010). Increased expression of DNA methyltransferase 3a in obese adipose tissue: studies with transgenic mice. Obesity 18: 314-321. http://dx.doi.org/10.1038/oby.2009.246 PMid:19680236   Kurita S, Higuchi H, Saito Y, Nakamoto N, et al. (2010). DNMT1 and DNMT3b silencing sensitizes human hepatoma cells to TRAIL-mediated apoptosis via up-regulation of TRAIL-R2/DR5 and caspase-8. Cancer Sci. 101: 1431-1439. http://dx.doi.org/10.1111/j.1349-7006.2010.01565.x PMid:20398055   Li WF, Yang RJ, Gan QF, Zhang LP, et al. (2009). Polymorphism of PRKAG3 gene and Its association with carcass and meat quality traits in beef cattle. Acta Vet. Zootechnica Sin. 40: 1106-1111.   Liu Y, Li K, Liu WJ, Wang JF, et al. (2009). Study on the effect of down-regulation of DNMT1 on cell proliferation, metastasis ability of esophageal squamous cell carcinoma cell line EC9706 cells and its related mechanisms. China Oncol. 19: 826-830.   Maier S and Olek A (2002). Diabetes: a candidate disease for efficient DNA methylation profiling. J. Nutr. 132: 2440S-2443S. PMid:12163708   Okano M, Bell DW, Haber DA and Li E (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247-257. http://dx.doi.org/10.1016/S0092-8674(00)81656-6   Page BT, Casas E, Heaton MP, Cullen NG, et al. (2002). Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80: 3077-3085. PMid:12542147   Tidball JG and Spencer MJ (2002). Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J. Physiol. 545: 819-828. http://dx.doi.org/10.1113/jphysiol.2002.024935 PMid:12482888 PMCid:2290726   Turek-Plewa J and Jagodzinski PP (2005). The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol. Biol. Lett. 10: 631-647. PMid:16341272   Wang X, Zhu H, Snieder H, Su S, et al. (2010). Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med. 8: 87. http://dx.doi.org/10.1186/1741-7015-8-87 PMid:21176133 PMCid:3016263   Yu Y, Zhang H, Tian F, Zhang W, et al. (2008). An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines. PLoS One 3: e2672. http://dx.doi.org/10.1371/journal.pone.0002672 PMid:18648519 PMCid:2481300
C. - L. Zhao, Wu, R., Liu, L., Li, F. - D., Zhang, X. - L., Wang, C., Wang, F., Diao, X. - L., Guan, H. - W., Wang, X., and Zhou, L., Ovine prion protein genotype frequencies in northwestern China, vol. 11, pp. 1671-1681, 2012.
Andreoletti O, Morel N, Lacroux C, Rouillon V, et al. (2006). Bovine spongiform encephalopathy agent in spleen from an ARR/ARR orally exposed sheep. J. Gen. Virol. 87: 1043-1046. http://dx.doi.org/10.1099/vir.0.81318-0 PMid:16528056 Babar ME, Abdullah M, Nadeem A and Haq AU (2009). Prion protein gene polymorphisms in four goat breeds of Pakistan. Mol. Biol. Rep. 36: 141-144. http://dx.doi.org/10.1007/s11033-007-9162-7 PMid:17934795 Baylis M, Goldmann W, Houston F, Cairns D, et al. (2002). Scrapie epidemic in a fully PrP-genotyped sheep flock. J. Gen. Virol. 83: 2907-2914. PMid:12388827 Belt PB, Muileman IH, Schreuder BE, Bos-de Ruijter J, et al. (1995). Identification of five allelic variants of the sheep PrP gene and their association with natural scrapie. J. Gen. Virol. 76: 509-517. http://dx.doi.org/10.1099/0022-1317-76-3-509 PMid:7897344 Buitkamp J and Semmer J (2004). A robust, low- to medium-throughput prnp genotyping system in sheep. BMC Infect. Dis. 4: 30. http://dx.doi.org/10.1186/1471-2334-4-30 PMid:15345029 PMCid:517712 De Vries F, Borchers N, Hamann H, Drogemuller C, et al. (2004). Associations between the prion protein genotype and performance traits of meat breeds of sheep. Vet. Rec. 155: 140-143. http://dx.doi.org/10.1136/vr.155.5.140 PMid:15338706 Goldmann W, Houston F, Stewart P, Perucchini M, et al. (2006). Ovine prion protein variant A136 R154 L168 Q171 increases resistance to experimental challenge with bovine spongiform encephalopathy agent. J. Gen. Virol. 87: 3741-3745. http://dx.doi.org/10.1099/vir.0.82083-0 PMid:17098993 Hagenaars TJ, Donnelly CA and Ferguson NM (2006). Epidemiological analysis of data for scrapie in Great Britain. Epidemiol. Infect. 134: 359-367. http://dx.doi.org/10.1017/S0950268805004966 PMid:16490141 PMCid:2870388 Humeny A, Schiebel K, Seeber S and Becker CM (2002). Identification of polymorphisms within the bovine prion protein gene (Prnp) by DNA sequencing and genotyping by MALDI-TOF-MS. Neurogenetics 4: 59-60. http://dx.doi.org/10.1007/s10048-001-0126-0 PMid:12030333 Hunter N (1997). Molecular Biology and Genetics of Scrapie in Sheep. In: The Genetics of Sheep. (Piper L and Ruvinsky A, eds.). CAB International, Wallingford, 225-240. PMid:9223132 Hunter N, Foster JD, Benson G and Hope J (1991). Restriction fragment length polymorphisms of the scrapie-associated fibril protein (PrP) gene and their association with susceptibility to natural scrapie in British sheep. J. Gen. Virol. 72: 1287-1292. http://dx.doi.org/10.1099/0022-1317-72-6-1287 PMid:1675248 Hunter N, Goldmann W, Benson G, Foster JD, et al. (1993). Swaledale sheep affected by natural scrapie differ significantly in PrP genotype frequencies from healthy sheep and those selected for reduced incidence of scrapie. J. Gen. Virol. 74: 1025-1031. http://dx.doi.org/10.1099/0022-1317-74-6-1025 PMid:8099602 Hunter N, Moore L, Hosie BD, Dingwall WS, et al. (1997). Association between natural scrapie and PrP genotype in a flock of Suffolk sheep in Scotland. Vet. Rec. 140: 59-63. http://dx.doi.org/10.1136/vr.140.3.59 PMid:9023905 Ishiguro N, Shinagawa M, Onoe S, Yamanouchi K, et al. (1998). Rapid analysis of allelic variants of the sheep PrP gene by oligonucleotide probes. Microbiol. Immunol. 42: 579-582. PMid:9776400 Lan Z, Wang ZL, Liu Y and Zhang X (2006). Prion protein gene (PRNP) polymorphisms in Xinjiang local sheep breeds in China. Arch. Virol. 151: 2095-2101. http://dx.doi.org/10.1007/s00705-006-0758-3 PMid:16622593 Langeveld JP, Jacobs JG, Erkens JH, Bossers A, et al. (2006). Rapid and discriminatory diagnosis of scrapie and BSE in retro-pharyngeal lymph nodes of sheep. BMC Vet. Res. 2: 19. http://dx.doi.org/10.1186/1746-6148-2-19 PMid:16764717 PMCid:1544330 Lee MA, Manley TR, Glass BC, Anderson RM, et al. (2007). Distribution of prion protein genotypes in breeds of sheep in New Zealand. N. Z. Vet. J. 55: 222-227. http://dx.doi.org/10.1080/00480169.2007.36772 PMid:17928898 Lezmi S, Ronzon F, Bencsik A, Bedin A, et al. (2006). PrP(d) accumulation in organs of ARQ/ARQ sheep experimentally infected with BSE by peripheral routes. Acta Biochim. Pol. 53: 399-405. PMid:16770445 Li YM and Tian B (2002). Chinese little-fat-tail sheep prion protein gene belongs to PrPARH genotype. Sheng Wu Hua Xue. Yu Sheng Wu Wu Li Xue Bao 34: 62-66. Lipsky S, Brandt H, Luhken G and Erhardt G (2008). Analysis of prion protein genotypes in relation to reproduction traits in local and cosmopolitan German sheep breeds. Anim. Reprod. Sci. 103: 69-77. http://dx.doi.org/10.1016/j.anireprosci.2006.12.005 PMid:17204379 Marcos-Carcavilla A, Moreno C, Serrano M, Laurent P, et al. (2010). Polymorphisms in the HSP90AA1 5' flanking region are associated with scrapie incubation period in sheep. Cell Stress Chaperones 15: 343-349. http://dx.doi.org/10.1007/s12192-009-0149-2 PMid:19838832 PMCid:3082647 Melchior MB, Windig JJ, Hagenaars TJ, Bossers A, et al. (2010). Eradication of scrapie with selective breeding: are we nearly there? BMC Vet. Res. 6: 24. http://dx.doi.org/10.1186/1746-6148-6-24 PMid:20441587 PMCid:2873516 Sanguinetti CJ, Dias NE and Simpson AJ (1994). Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17: 914-921. PMid:7840973 Sawalha RM, Brotherstone S, Man WY, Conington J, et al. (2007). Associations of polymorphisms of the ovine prion protein gene with growth, carcass, and computerized tomography traits in Scottish Blackface lambs. J. Anim. Sci. 85: 632-640. http://dx.doi.org/10.2527/jas.2006-372 PMid:17040947 Sweeney T, Hanrahan JP and O'Doherty E (2007). Is there a relationship between prion protein genotype and ovulation rate and litter size in sheep? Anim. Reprod. Sci. 101: 153-157. http://dx.doi.org/10.1016/j.anireprosci.2006.12.004 PMid:17204381 Tongue SC, Pfeiffer DU, Warner R, Elliott H, et al. (2006). Estimation of the relative risk of developing clinical scrapie: the role of prion protein (PrP) genotype and selection bias. Vet. Rec. 158: 43-50. http://dx.doi.org/10.1136/vr.158.2.43 PMid:16415231 Tranulis MA, Osland A, Bratberg B and Ulvund MJ (1999). Prion protein gene polymorphisms in sheep with natural scrapie and healthy controls in Norway. J. Gen. Virol. 80: 1073-1077. PMid:10211978 Vaccari G, Conte M, Morelli L, Di Guardo G, et al. (2004). Primer extension assay for prion protein genotype determination in sheep. Mol. Cell Probes 18: 33-37. http://dx.doi.org/10.1016/j.mcp.2003.06.001 PMid:15036367 Vitezica ZG, Moreno CR, Lantier F, Lantier I, et al. (2007). Quantitative trait loci linked to PRNP gene controlling health and production traits in INRA 401 sheep. Genet. Sel. Evol. 39: 421-430. http://dx.doi.org/10.1186/1297-9686-39-4-421 PMid:17612481 PMCid:2682820 Vollmert C, Windl O, Xiang W, Rosenberger A, et al. (2006). Significant association of a M129V independent polymorphism in the 5' UTR of the PRNP gene with sporadic Creutzfeldt-Jakob disease in a large German case-control study. J. Med. Genet. 43: e53. http://dx.doi.org/10.1136/jmg.2006.040931 PMid:17047093 PMCid:2563174 Zhang L, Li N, Fan B, Fang M, et al. (2004). PRNP polymorphisms in Chinese ovine, caprine and bovine breeds. Anim. Genet. 35: 457-461. http://dx.doi.org/10.1111/j.1365-2052.2004.01204.x PMid:15566469 Zhou H, Hickford JG and Fang Q (2005). Technical note: determination of alleles of the ovine PRNP gene using PCR-single-strand conformational polymorphism analysis. J. Anim. Sci. 83: 745-749. PMid:15753327 Zsolnai A, Anton I, Kuhn C and Fesus L (2003). Detection of single-nucleotide polymorphisms coding for three ovine prion protein variants by primer extension assay and capillary electrophoresis. Electrophoresis 24: 634-638. http://dx.doi.org/10.1002/elps.200390074 PMid:12601731
S. L. Fu, Tang, Z. X., Liu, L., Lu, L. M., and Huang, Y. B., Variation of genomic DNA methylation in the nitrate reductase gene of sibling tobacco (Nicotiana tabacum) cultivars, vol. 11, pp. 1169-1177, 2012.
Akimoto K, Katakami H, Kim HJ, Ogawa E, et al. (2007). Epigenetic inheritance in rice plants. Ann. Bot. 100: 205-217. http://dx.doi.org/10.1093/aob/mcm110 PMid:17576658 PMCid:2735323   Assaad FF, Tucker KL and Signer ER (1993). Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol. Biol. 22: 1067-1085. http://dx.doi.org/10.1007/BF00028978 PMid:8400126   Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev. 16: 6-21. http://dx.doi.org/10.1101/gad.947102 PMid:11782440   Bjornsson HT, Fallin MD and Feinberg AP (2004). An integrated epigenetic and genetic approach to common human disease. Trends Genet. 20: 350-358. http://dx.doi.org/10.1016/j.tig.2004.06.009 PMid:15262407   Campbell WH (1999). Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 277-303. http://dx.doi.org/10.1146/annurev.arplant.50.1.277 PMid:15012211   Chan SWL, Henderson IR and Jacobsen SE (2005). Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 6: 351-360. http://dx.doi.org/10.1038/nrg1601 PMid:15861207   Choi HK, Kleinhofs A and An GH (1989). Nucleotide sequence of rice nitrate reductase genes. Plant Mol. Biol. 13: 731- 733. http://dx.doi.org/10.1007/BF00016030 PMid:2491689   Falcão RV, Oliveira MC and Colepicolo P (2010). Molecular characterization of nitrate reductase gene and its expression in the marine red alga Gracilaria tenuistipitata (Rhodophyta). J. Appl. Phycol. 22: 613-622. http://dx.doi.org/10.1007/s10811-010-9501-2   Fedorova L and Fedorov A (2003). Introns in gene evolution. Genetica 118: 123-131. http://dx.doi.org/10.1023/A:1024145407467 PMid:12868603   Fojtova M, Houdt HV, Depicker A and Kovarik A (2003). Epigenetic switch from posttranscriptional to transcriptional silencing is correlated with promoter hypermethylation. Plant Physiol. 133: 1240-1250. http://dx.doi.org/10.1104/pp.103.023796 PMid:14551338 PMCid:281619   Fu YH and Marzluf GA (1987). Molecular cloning and analysis of the regulation of Nit-3, the structural gene for nitrate reductase in Neurospora crassa. Proc. Natl. Acad. Sci. U. S. A. 84: 8243-8247. http://dx.doi.org/10.1073/pnas.84.23.8243 PMid:2891138 PMCid:299518   Kaiser WM and Huber SC (1994). Post-translational regulation of nitrate reductase in higher plants. Plant Physiol. 106: 817-821. PMid:12232369 PMCid:159604   Kaiser WM, Weiner H and Huber SC (1999). Nitrate reductase in higher plants: A case study for transduction of environmental stimuli into control of catalytic activity. Physiol. Plantarum 105: 384-389. http://dx.doi.org/10.1034/j.1399-3054.1999.105225.x   Koukalova B, Fojtova M, Lim KY, Fulnecek J, et al. (2005). Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations. Plant Physiol. 139: 275-286. http://dx.doi.org/10.1104/pp.105.061788 PMid:16113227 PMCid:1203377   Li YP, Wang YK, Ma WG and Tan CL (2001). Breeding and selecting of a new flue-cured tobacco variety Yunyan87 and its characteristics. Chin. Tob. Sci. 4: 42-43 (In Chinese with English abstract).   Liaud MF, Brinkmann H and Cerff R (1992). The β-tubulin gene family of pea: primary structures, genomic organization and intron-dependent evolution of genes. Plant Mol. Biol. 18: 639-651. http://dx.doi.org/10.1007/BF00020007 PMid:1558942   Madlung A, Masuelli RW, Watson B, Reynolds SH, et al. (2002). Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol. 129: 733-746. http://dx.doi.org/10.1104/pp.003095 PMid:12068115 PMCid:161697   Madlung A, Tyagi AP, Watson B, Jiang HM, et al. (2005). Genomic changes in synthetic Arabidopsis polyploids. Plant J. 41: 221-230. http://dx.doi.org/10.1111/j.1365-313X.2004.02297.x PMid:15634199   Matzke MA and Matzke AJM (1998). Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses. Cell Mol. Life Sci. 54: 94-103. http://dx.doi.org/10.1007/s000180050128 PMid:9487390   Oh YJ, Chung H, Yu JG and Park YD (2009). Newly developed MSAP analysis reveals the different polymorphism patterns in transgenic tobacco plants with the dsRNA MET1 gene. Plant Biotechnol. Rep. 3: 139-145. http://dx.doi.org/10.1007/s11816-009-0083-x   Okamoto PM, Fu YH and Marzluf GA (1991). Nit-3, the structural gene of nitrate reductase in Neurospora crassa: nucleotide sequence and regulation of mRNA synthesis and turnover. Mol. Gen. Genet. 227: 213-223. http://dx.doi.org/10.1007/BF00259673 PMid:1829499   Paszkowski J and Whitham SA (2001). Gene silencing and DNA methylation processes. Curr. Opin. Plant Biol. 4: 123- 129. http://dx.doi.org/10.1016/S1369-5266(00)00147-3   Poulsen P, Kyvik KO, Vaag A and Beck-Nielsen H (1999). Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance - a population-based twin study. Diabetologia 42: 139-145. http://dx.doi.org/10.1007/s001250051131 PMid:10064092   Shaked H, Kashkush K, Ozkan H, Feldman M, et al. (2001). Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13: 1749-1759. PMid:11487690 PMCid:139131   Singh SM, Murphy B and O'Reilly R (2002). Epigenetic contributors to the discordance of monozygotic twins. Clin. Genet. 62: 97-103. http://dx.doi.org/10.1034/j.1399-0004.2002.620201.x PMid:12220446   Tan CL, Li YP, Wang YK, Ma WG, et al. (1997). Breeding and selecing a new variety of flue cured tobacco Yunyan 85 and its characteristics. Chin. Tob. Sci. 1: 7-10 (In Chinese with English abstract).   Tang ZX, Fu SL, Ren ZL, Zhou JP, et al. (2008). Variations of tandem repeat, regulatory element, and promoter regions revealed by wheat-rye amphiploids. Genome 51: 399-408. http://dx.doi.org/10.1139/G08-027 PMid:18521118   Vaucheret H, Vincentz M, Kronenberger J, Caboche M, et al. (1989). Molecular cloning and characterisation of the two homologous genes coding for nitrate reductase in tobacco. Mol. Gen. Genet. 216: 10-15. http://dx.doi.org/10.1007/BF00332224 PMid:2733690   Weinhold B (2006). Epigenetics: the science of change. Environ. Health Perspect. 114: A160-A167. http://dx.doi.org/10.1289/ehp.114-a160 PMid:16507447 PMCid:1392256   Wilkinson JQ and Crawford NM (1991). Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. Plant Cell 3: 461-471. PMid:1840922 PMCid:160014   Wu SC, Lu Q, Kriz AL and Harper JE (1995). Identification of cDNA clones corresponding to two inducible nitrate reductase genes in soybean: analysis in wild-type and nr1 mutant. Plant Mol. Biol. 29: 491-506. http://dx.doi.org/10.1007/BF00020980 PMid:8534848   Xiao WY, Custard KD, Brown RC, Lemmon BE, et al. (2006). DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18: 805-814. http://dx.doi.org/10.1105/tpc.105.038836 PMid:16531498 PMCid:1425851   Yang CY, Huang YB, Tang ZX, Lu LM, et al. (2011). Analysis of DNA methylation variation in sibling tobacco (Nicotiana tabacum) cultivars. Afr. J. Biotechnol. 10: 874-881.   Zhang Y, Liu ZH, Liu C, Yang ZJ, et al. (2008). Analysis of DNA methylation variation in wheat genetic background after alien chromatin introduction based on methylation-sensitive amplification polymorphism. Chin. Sci. Bull. 53: 58-69. http://dx.doi.org/10.1007/s11434-008-0049-3   Zhou JZ and Kleinhofs A (1996). Molecular evolution of nitrate reductase genes. J. Mol. Evol. 42: 432-442. http://dx.doi.org/10.1007/BF02498637 PMid:8642612
2011
W. Zeng, Liu, L., Tong, Y., Liu, H. M., Dai, L., and Mao, M., A66G and C524T polymorphisms of the methionine synthase reductase gene are associated with congenital heart defects in the Chinese Han population, vol. 10, pp. 2597-2605, 2011.
Berry RJ, Li Z, Erickson JD, Li S, et al. (1999). Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N. Engl. J. Med. 341: 1485-1490. http://dx.doi.org/10.1056/NEJM199911113412001 PMid:10559448 Botto LD and Correa A (2003). Decreasing the burden of congenital heart anomalies: an epidemiologic evaluation of risk factors and survival. Prog. Pediatr. Cardiol. 18: 111-121. http://dx.doi.org/10.1016/S1058-9813(03)00084-5 Botto LD, Khoury MJ, Mulinare J and Erickson JD (1996). Periconceptional multivitamin use and the occurrence of conotruncal heart defects: results from a population-based, case-control study. Pediatrics 98: 911-917. PMid:8909485 Botto LD, Mulinare J and Erickson JD (2000). Occurrence of congenital heart defects in relation to maternal mulitivitamin use. Am. J. Epidemiol. 151: 878-884. PMid:10791560 Botto LD, Mulinare J and Erickson JD (2003). Do multivitamin or folic acid supplements reduce the risk for congenital heart defects? Evidence and gaps. Am. J. Med. Genet. A 121A: 95-101. http://dx.doi.org/10.1002/ajmg.a.20132 PMid:12910485 Botto LD, Olney RS and Erickson JD (2004). Vitamin supplements and the risk for congenital anomalies other than neural tube defects. Am. J. Med. Genet. C. Semin. Med. Genet. 125C: 12-21. http://dx.doi.org/10.1002/ajmg.c.30004 PMid:14755429 Brookes AJ (1999). The essence of SNPs. Gene 234: 177-186. http://dx.doi.org/10.1016/S0378-1119(99)00219-X Czeizel AE (1998). Periconceptional folic acid containing multivitamin supplementation. Eur. J. Obstet. Gynecol. Reprod. Biol. 78: 151-161. http://dx.doi.org/10.1016/S0301-2115(98)00061-X Czeizel AE and Dudás I (1992). Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 327: 1832-1835. http://dx.doi.org/10.1056/NEJM199212243272602 PMid:1307234 Czeizel AE, Dobo M and Vargha P (2004). Hungarian cohort-controlled trial of periconceptional multivitamin supplementation shows a reduction in certain congenital abnormalities. Birth Defects Res. A Clin. Mol. Teratol. 70: 853-861. http://dx.doi.org/10.1002/bdra.20086 PMid:15523663 Deng L, Elmore CL, Lawrance AK, Matthews RG, et al. (2008). Methionine synthase reductase deficiency results in adverse reproductive outcomes and congenital heart defects in mice. Mol. Genet. Metab. 94: 336-342. http://dx.doi.org/10.1016/j.ymgme.2008.03.004 PMid:18413293    PMCid:3110750 Elmore CL, Wu X, Leclerc D, Watson ED, et al. (2007). Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase. Mol. Genet. Metab. 91: 85-97. http://dx.doi.org/10.1016/j.ymgme.2007.02.001 PMid:17369066    PMCid:1973089 Fredriksen A, Meyer K, Ueland PM, Vollset SE, et al. (2007). Large-scale population-based metabolic phenotyping of thirteen genetic polymorphisms related to one-carbon metabolism. Hum. Mutat. 28: 856-865. http://dx.doi.org/10.1002/humu.20522 PMid:17436311 Gellekink H, den Heijer M, Heil SG and Blom HJ (2005). Genetic determinants of plasma total homocysteine. Semin. Vasc. Med. 5: 98-109. http://dx.doi.org/10.1055/s-2005-872396 PMid:16047263 Hoffman JI and Kaplan S (2002). The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39: 1890-1900. http://dx.doi.org/10.1016/S0735-1097(02)01886-7 Huhta JC, Linask K and Bailey L (2006). Recent advances in the prevention of congenital heart disease. Curr. Opin. Pediatr. 18: 484-489. http://dx.doi.org/10.1097/01.mop.0000245347.45336.d7 PMid:16969161 Itikala PR, Watkins ML, Mulinare J, Moore CA, et al. (2001). Maternal multivitamin use and orofacial clefts in offspring. Teratology 63: 79-86. http://dx.doi.org/10.1002/1096-9926(200102)63:2<79::AID-TERA1013>3.0.CO;2-3 Kapusta L, Haagmans ML, Steegers EA, Cuypers MH, et al. (1999). Congenital heart defects and maternal derangement of homocysteine metabolism. J. Pediatr. 135: 773-774. http://dx.doi.org/10.1016/S0022-3476(99)70102-2 Lai E (2001). Application of SNP technologies in medicine: lessons learned and future challenges. Genome Res. 11: 927- 929. http://dx.doi.org/10.1101/gr.192301 PMid:11381021 Leclerc D, Odievre M, Wu Q, Wilson A, et al. (1999). Molecular cloning, expression and physical mapping of the human methionine synthase reductase gene. Gene 240: 75-88. http://dx.doi.org/10.1016/S0378-1119(99)00431-X Olteanu H and Banerjee R (2001). Human methionine synthase reductase, a soluble P-450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation. J. Biol. Chem. 276: 35558-35563. http://dx.doi.org/10.1074/jbc.M103707200 PMid:11466310 Rosenquist TH, Ratashak SA and Selhub J (1996). Homocysteine induces congenital defects of the heart and neural tube: effect of folic acid. Proc. Natl. Acad. Sci. U. S. A. 93: 15227-15232. http://dx.doi.org/10.1073/pnas.93.26.15227 Shaw GM, Lu W, Zhu H, Yang W, et al. (2009). 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC Med. Genet. 10: 49. http://dx.doi.org/10.1186/1471-2350-10-49 PMid:19493349    PMCid:2700092 Silaste ML, Rantala M, Sampi M, Alfthan G, et al. (2001). Polymorphisms of key enzymes in homocysteine metabolism affect diet responsiveness of plasma homocysteine in healthy women. J. Nutr. 131: 2643-2647. PMid:11584084 Swanson DA, Liu ML, Baker PJ, Garrett L, et al. (2001). Targeted disruption of the methionine synthase gene in mice. Mol. Cell. Biol. 21: 1058-1065. http://dx.doi.org/10.1128/MCB.21.4.1058-1065.2001 PMid:11158293    PMCid:99560 Tennstedt C, Chaoui R, Korner H and Dietel M (1999). Spectrum of congenital heart defects and extracardiac malformations associated with chromosomal abnormalities: results of a seven year necropsy study. Heart 82: 34-39. PMid:10377306    PMCid:1729082 Tierney BJ, Ho T, Reedy MV and Brauer PR (2004). Homocysteine inhibits cardiac neural crest cell formation and morphogenesis in vivo. Dev. Dyn. 229: 63-73. http://dx.doi.org/10.1002/dvdy.10469 PMid:14699578 van Beynum IM, Kouwenberg M, Kapusta L, den Heijer M, et al. (2006). MTRR 66A>G polymorphism in relation to congenital heart defects. Clin. Chem. Lab. Med. 44: 1317-1323. http://dx.doi.org/10.1515/CCLM.2006.254 PMid:17087642 Verkleij-Hagoort AC, Verlinde M, Ursem NT, Lindemans J, et al. (2006). Maternal hyperhomocysteinaemia is a risk factor for congenital heart disease. BJOG 113: 1412-1418. http://dx.doi.org/10.1111/j.1471-0528.2006.01109.x Verkleij-Hagoort AC, van Driel LM, Lindemans J, Isaacs A, et al. (2008). Genetic and lifestyle factors related to the periconception vitamin B12 status and congenital heart defects: a dutch case-control study. Mol. Genet. Metab. 94: 112-119. http://dx.doi.org/10.1016/j.ymgme.2007.12.002 PMid:18226574
Y. Jiang, Nie, L. W., Huang, Z. F., Jing, W. X., Wang, L., Liu, L., and Dai, X. T., Comparison of complete mitochondrial DNA control regions among five Asian freshwater turtle species and their phylogenetic relationships, vol. 10, pp. 1545-1557, 2011.
Aquadro CF and Greenberg BD (1983). Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103: 287-312. PMid:6299878    PMCid:1219980 Avise JC, Bowen BW, Lamb T, Meylan AB, et al. (1992). Mitochondrial DNA evolution at a turtle’s pace: evidence for low genetic variability and reduced microevolutionary rate in the Testudines. Mol. Biol. Evol. 9: 457-473. PMid:1584014 Barth D, Bernhard D, Fritzsch G and Fritz U (2004). The freshwater turtle genus Mauremys (Testudines, Geoemydidae) - a textbook example of an east-west disjunction or a taxonomic misconcept? Zoolog. Scripta 33: 213-221. doi:10.1111/j.0300-3256.2004.00150.x Cann RL, Brown WM and Wilson AC (1984). Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106: 479-499. PMid:6323246    PMCid:1224251 Crochet PA and Desmarais E (2000). Slow rate of evolution in the mitochondrial control region of gulls (Aves: Laridae). Mol. Biol. Evol. 17: 1797-1806. PMid:11110895 Desalle R, Freedman T, Prager EM and Wilson AC (1987). Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J. Mol. Evol. 26: 157-164. doi:10.1007/BF02111289 PMid:3125333 Doda JN, Wright CT and Clayton DA (1981). Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc. Natl. Acad. Sci. U. S. A. 78: 6116-6120. doi:10.1073/pnas.78.10.6116 Feldman CR and Parham JF (2004). Molecular systematics of old world stripe-necked turtles (Testudines: Mauremys). Asiat. Herpetol. Res. 10: 28-37. Fong JJ, Parham JF, Shi H and Stuart BL (2007). A genetic survey of heavily exploited, endangered turtles: caveats on the conservation value of trade animals. Anim. Conserv. 10: 452-460. doi:10.1111/j.1469-1795.2007.00131.x Fumagalli L, Taberlet P, Favre L and Hausser J (1996). Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Mol. Biol. Evol. 13: 31-46. PMid:8583904 Hirayama R, Kaneko N and Okazaki H (2007). Ocadia nipponica, a new species of aquatic turtle (Testudines: Testudinoidea: Geoemydidae) from the Middle Pleistocene of Chiba Prefecture, central Japan. Paleontol. Res. 11: 1-19. doi:10.2517/1342-8144(2007)11[1:ONANSO]2.0.CO;2 Hoelzel AR, Hancock JM and Dover GA (1993). Generation of VNTRs and heteroplasmy by sequence turnover in the mitochondrial control region of two elephant seal species. J. Mol. Evol. 37: 190-197. doi:10.1007/BF02407355 PMid:8411208 Honda M, Yasukawa Y and Ota H (2002). Phylogeny of Eurasian freshwater turtles of the genus Mauremys Gray 1869 (Testudines), with special reference to a close affinity of Mauremys japonica with Chinemys reevesii. J. Zool. Systemat. Evol. Res. 40: 195-200. doi:10.1046/j.1439-0469.2002.00176.x Lamb T, Lydeard C, Walker RB and Gibbons JW (1994). Molecular systematics of map turtles (Graptemys): a comparison of mitochondrial restriction site versus sequence data. Syst. Biol. 43: 543-559. doi:10.1093/sysbio/43.4.543 Li XS, Nie LW, Wang L, Xiong L, et al. (2010). The mitochondrial genome complete sequence and organization of the pig-nosed turtle Carettochelys insculpta (Testudines, Carettochelyidae) and its phylogeny position in Testudines. Amphibia-Reptilia 31: 541-551. doi:10.1163/017353710X530203 Peng QL, Nie LW and Pu YG (2006). Complete mitochondrial genome of Chinese big-headed turtle, Platysternon megacephalum, with a novel gene organization in vertebrate mtDNA. Gene 380: 14-20. doi:10.1016/j.gene.2006.04.001 PMid:16842936 Posada D and Crandall KA (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818. doi:10.1093/bioinformatics/14.9.817 PMid:9918953 Rand DM (1994). Concerted evolution and RAPping in mitochondrial VNTRs and the molecular geography of cricket populations. EXS 69: 227-245. PMid:7994109 Rand DM and Harrison RG (1989). Molecular population genetics of mtDNA size variation in crickets. Genetics 121: 551-569. PMid:2565855    PMCid:1203640 Randi E and Lucchini V (1998). Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J. Mol. Evol. 47: 449-462. doi:10.1007/PL00006402 PMid:9767690 Rhodin AGJ, van Dijk PP and Parham JF (2008). Turtles of the World: Annotated Checklist of Taxonomy and Synonymy. Chelonian Research Foundation, Lunenburg. Ronquist F and Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. doi:10.1093/bioinformatics/btg180 PMid:12912839 Ruokonen M and Kvist L (2002). Structure and evolution of the avian mitochondrial control region. Mol. Phylogenet. Evol. 23: 422-432. doi:10.1016/S1055-7903(02)00021-0 Spinks PQ, Bradley SH, Iverson JB and McCord WP (2004). Phylogenetic hypotheses for the turtle family Geoemydidae. Mol. Phylogenet. Evol. 32: 164-182. doi:10.1016/j.ympev.2003.12.015 PMid:15186805 Stuart BL and Parham JF (2007). Recent hybrid origin of three rare Chinese turtles. Conserv. Genet. 8: 169-175. doi:10.1007/s10592-006-9159-0 Su Y (2005). Conserved and heteroplasmy on mitochondrial DNA control region in animal. Sichuan J. Zoo. 24: 669-672. Swofford DL (2002). PAUP*: Phylogenenc Analysis using Parsimony (*and Other Methods), Version 4.0b l0. Sinauer Associates, Sunderland. Tamura K and Nei M (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526. PMid:8336541 Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. doi:10.1093/molbev/msm092 PMid:17488738 Vigilant L, Stoneking M, Harpending H, Hawkes K, et al. (1991). African populations and the evolution of human mitochondrial DNA. Science 253: 1503-1507. doi:10.1126/science.1840702 PMid:1840702 Xia X and Lemey P (2009). Assessing Substitution Saturation with DAMBE. 2nd edn. In: The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny (Lemey P, Salemi M and Vandamme A-M, eds.). Cambridge University Press, Cambridge, 615-630. Xiao B, Ma F, Sun Y and Li QW (2006). Comparative analysis of complete mitochondrial DNA control region of four species of Strigiformes. Yi. Chuan Xue. Bao. 33: 965-974. PMid:17112967 Yan L, Zhang Y, Wang N and Zhang L (2008). Comparison of mitochondrial control region sequences between Chelydridae and Platysternidae. Zool. Res. 29: 127-133. doi:10.3724/SP.J.1141.2008.00127 Zardoya R and Meyer A (1998). Cloning and characterization of a microsatellite in the mitochondrial control region of the African side-necked turtle, Pelomedusa subrufa. Gene 216: 149-153. doi:10.1016/S0378-1119(98)00332-1 Zhang L, Nie L, Cao C and Zhan Y (2008). The complete mitochondrial genome of the Keeled box turtle Pyxidea mouhotii and phylogenetic analysis of major turtle groups. J. Genet. Genom. 35: 33-40. doi:10.1016/S1673-8527(08)60005-3 Zhang YY, Nie LW, Huang YQ and Pu YG (2009). The mitochondrial DNA control region comparison studies of four hinged turtles and its phylogentic significance of the genus Cuora sensu lato (Testudinata: Geoemydidae). Genes Genom. 31: 349-359. doi:10.1007/BF03191253 Zhao EM and Zhou T (2004). Atlas for Identification of Turtles and Tortoises. China Agriculture Press, Beijing. Zhu SH, Zheng WJ, Zou JX and Yang YC (2007). Mitochondrial DNA control region structure and molecular phylogenetic relationship of Carangidae. Zool. Res. 28: 606-614. Zink RM and Blackwell RC (1998). Molecular systematics and biogeography of aridland gnatcatchers (genus Polioptila) and evidence supporting species status of the California gnatcatcher (Polioptila california). Mol. Phylogenet. Evol. 9: 26-32. doi:10.1006/mpev.1997.0444 PMid:9479690
X. J. Bu, Liu, L., Wang, L., and Nie, L. W., Isolation and characterization of 21 novel polymorphic microsatellite loci in the Chinese soft-shelled turtle Pelodiscus sinensis, vol. 10. pp. 1006-1010, 2011.
Altherr S and Freyer D (2000). Asian turtles are threatened by extinction. Turtle Tortoise Newsl. 1: 7-11. Bloor PA, Barker FS, Watts PC and Noyes HA (2001). Microsatellite libraries by enrichment. Available at [http://www.genomics.liv.ac.uk/animal/MICROSAT.PDF]. Accessed January 2009. Bonin F, Devaux B and Dupré A (2006). Turtles of the World. Johns Hopkins University Press, Baltimore, 146-147. Fischer D and Bachmann K (1998). Microsatellite enrichment in organisms with large genomes (Allium cepa L.). Biotechniques 24: 796-800, 802. PMid:9591129 Kalinowski ST, Taper ML and Marshall TC (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099-1106. doi:10.1111/j.1365-294X.2007.03089.x PMid:17305863 Que Y, Zhu B, Rosenthal H and Chang JB (2007). Isolation and characterization of microsatellites in Chinese soft-shelled turtle, Pelodiscus sinensis. Mol. Ecol. 7: 1265-1267. doi:10.1111/j.1471-8286.2007.01850.x Raymond M and Rousset F (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86: 248-249. Sambrook J and Russell DW (2001). Molecular Cloning. 3rd edn. Cold Spring Harbor Laboratory Press, New York. Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538. doi:10.1111/j.1471-8286.2004.00684.x Zhao EM (1998). China Red Data Book of Endangered Animals. In: Amphibia and Reptilia. Science Press, Beijing, 167-169.
L. Liu, Li, J. J., Ouyang, Y. D., and Yao, J. L., Sexual reproduction development in apomictic Eulaliopsis binata (Poaceae), vol. 10, pp. 2326-2339, 2011.
Araujo ACG, Nóbrega JM, Pozzobon MT and Carneiro VT (2005). Evidence of sexuality in induced tetraploids of Brachiaria brizantha (Poaceae). Euphytica 144: 39-50. http://dx.doi.org/10.1007/s10681-005-2842-2 Bicknell RA and Koltunow AM (2004). Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16 (Suppl): S228-S245. http://dx.doi.org/10.1105/tpc.017921 PMid:15131250    PMCid:2643386 Bouman F (1984). The Ovule. In: Embryology of Angiosperms (Johri BM, ed.). Springer-Verlag, Berlin, 123-157. http://dx.doi.org/10.1007/978-3-642-69302-1_3 Bray RA (1978). Evidence for facultative apomixis in Cenchrus ciliaris. Euphytica Oct. 27: 801-804. Carman JG, Crane CF and Riera-Lizarazu O (1991). Comparative histology of cell walls during meiotic and apomeiotic megasporogenesis in two hexaploid Australasian Elymus species. Crop Sci. 31: 1527-1532. http://dx.doi.org/10.2135/cropsci1991.0011183X003100060029x Doležel J and Göhde W (1995). Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19: 103-106. http://dx.doi.org/10.1002/cyto.990190203 PMid:7743889 Ebina M, Kouki K, Tsuruta S, Takahara M, et al. (2005). Development of Simple Sequence Repeat (SSR) Markers and Their use to Assess Genetic Diversity in Apomictic Guineagrass (Panicum maximum Jacq.). In: Molecular Breeding for the Genetic Improvement of Forage Crops and Turf (Humphreys MO, ed.). Wageningen Academic Publishers, Wageningen, 127. Kaushal P, Malaviya DR, Roy AK, Pathak S, et al. (2008). Reproductive pathways of seed development in apomictic guinea grass (Panicum maximum Jacq.) reveal uncoupling of apomixis components. Euphytica 164: 81-92. http://dx.doi.org/10.1007/s10681-008-9650-4 Koltunow AM (1993). Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5: 1425-1437. PMid:12271038    PMCid:160373 Koltunow AM and Grossniklaus U (2003). Apomixis: a developmental perspective. Annu. Rev. Plant Biol. 54: 547-574. http://dx.doi.org/10.1146/annurev.arplant.54.110901.160842 PMid:14503003 Koltunow AM and Tucker MR (2008). Functional embryo sac formation in Arabidopsis without meiosis - one step towards asexual seed formation (apomixis) in crops? J. Biosci. 33: 309-311. http://dx.doi.org/10.1007/s12038-008-0049-0 PMid:19005229 Koltunow AM, Johnson SD and Bicknell RA (1998). Sexual and apomictic development in Hieracium. Sex. Plant Reprod. 11: 213-230. http://dx.doi.org/10.1007/s004970050144 Koltunow AM, Johnson SD and Bicknell RA (2000). Apomixis is not developmentally conserved in related, genetically characterized Hieracium plants of varying ploidy. Sex. Plant Reprod. 12: 253-266. http://dx.doi.org/10.1007/s004970050193 Laspina NV, Vega T, Seijo JG, Gonzalez AM, et al. (2008). Gene expression analysis at the onset of aposporous apomixis in Paspalum notatum. Plant Mol. Biol. 67: 615-628. http://dx.doi.org/10.1007/s11103-008-9341-5 PMid:18481185 Leblanc O and Mazzucato A (2001). Screening Procedures to Identify and Quantify Apomixes. In: Flowering of Apomixis: from Mechanisms to Genetic Engineering (Savidan YCJ and Dresselhaus T, eds.). CIMMYT, IRD European Commission DG VI, Mexico, 121-136. Leblanc O, Peel MD, Carman JG and Savidan Y (1995). Megasporogenesis and megagametogenesis in several Tripsacum species (Poaceae). 82: 57-63. Levy A, Erlanger M, Rosenthal M and Epel BL (2007). A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J. 49: 669-682. http://dx.doi.org/10.1111/j.1365-313X.2006.02986.x PMid:17270015 Liu CH, Zhou ZX, Zhou Y and Yao JL (2006). RAPD analysis on genetic diversity of different populations in Eulaliopsis binata (in Chinese). Acta Bot. Boreal -Occident Sin. 26: 915-920. Liu CH, Zhang QP, Yao JL and Chen CL (2007). Karyotype analysis and pollen mother cells meiosis observation in Eulaliopsis binata. Sci. Agric. Sin. 40: 27-33. Liu L, Zhang JZ, Mei L, Hu CG, et al. (2008). Development of SSR markers and detection of hybrid progenies from facultative apomictic Eulaliopsis binata. Acta Bot. Boreal-Occident Sin. 28: 1947-1953. Malecka J (1973). Problems of the mode of reproduction in microspecies of Taraxacum section Palustria Dahlstedt. Acta Biol. Cracov. Ser. Bot. 16: 37-84. Martonfiova L (2006). Possible pathways of the gene flow in Taraxacum sect. ruderalia. Folia Geobotanica 41: 183-202. http://dx.doi.org/10.1007/BF02806478 Matzk F (1991). New efforts to overcome apomixis in Poa pratensis L. Euphytica 55: 65-72. http://dx.doi.org/10.1007/BF00022561 Matzk F, Meister A and Schubert I (2000). An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J. 21: 97-108. http://dx.doi.org/10.1046/j.1365-313x.2000.00647.x PMid:10652155 Matzk F, Hammer K and Schubert I (2003). Coevolution of apomixis and genome size within the genus Hypericum. Sex. Plant Reprod. 16: 51-58. http://dx.doi.org/10.1007/s00497-003-0174-8 Nogler GA (1984). Gametophytic Apomixis. In: Embryology of Angiosperms (Johri BM, ed.). Springer, Berlin, 474-518. http://dx.doi.org/10.1007/978-3-642-69302-1_10 Richards AJ (1970). Eutriploid facultative agamospermy in Taraxacum. New Phytol. 69: 761-774. http://dx.doi.org/10.1111/j.1469-8137.1970.tb02461.x Roche D, Cong P, Chen Z, Hanna WW, et al. (1999). Short Communication: An apospory-specific genomic region is conserved between Buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen. Plant J. 19: 203-208. http://dx.doi.org/10.1046/j.1365-313X.1999.00514.x PMid:10476067 Rodkiewicz B (1970). Callose in cell walls during megasporogenesis in angiosperms. Planta 93: 39-47. http://dx.doi.org/10.1007/BF00387650 Rodrigues JC, Cabral GB, Dusi DM, de Mello LV, et al. (2003). Identification of differentially expressed cDNA sequences in ovaries of sexual and apomictic plants of Brachiaria brizantha. Plant Mol. Biol. 53: 745-757. http://dx.doi.org/10.1023/B:PLAN.0000023664.21910.bd PMid:15082923 Shen Y, Shen JH, Guo DD, Fang XH, et al. (2006). Dynamics of callose deposition in cell walls during megasporogenesis in the apomictic monosomic addition line M14 of Beta corolliflora of sugar beet. Acta Agric. Sin. 32: 894-898. Siena LA, Sartor ME, Espinoza F, Quarin CL, et al. (2008). Genetic and embryological evidences of apomixis at the diploid level in Paspalum rufum support recurrent auto-polyploidization in the species. Sex. Plant Reprod. 21: 205-215. http://dx.doi.org/10.1007/s00497-008-0080-1 Taskin KM, Turgut K and Scott RJ (2004). Apomictic development in Arabis gunnisoniana. Israel J. Plant Sci. 52: 155- 160. http://dx.doi.org/10.1560/L3DE-FMVY-1XCQ-QRY5 Tucker MR and Koltunow AMG (2009). Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relationships. Funct. Plant Biol. 36: 490-504. http://dx.doi.org/10.1071/FP09078 Tucker MR, Paech NA, Willemse MT and Koltunow AM (2001). Dynamics of callose deposition and beta-1,3-glucanase expression during reproductive events in sexual and apomictic Hieracium. Planta 212: 487-498. http://dx.doi.org/10.1007/s004250000445 PMid:11525505 Wen XS, Ye XL and Chen ZL (1998). Embryological studies on apomixis in Pennisetum squamulatum. Acta Bot. Sin. 40: 598-604.