Publications

Found 11 results
Filters: Author is X. Wu  [Clear All Filters]
2016
H. Liu, Wu, G. G., Wang, J. B., Wu, X., Bai, L., Jiang, W., Lv, B. B., Pan, A. H., Jia, J. W., Li, P., Zhao, K., Jiang, L. X., Tang, X. M., Liu, H., Wu, G. G., Wang, J. B., Wu, X., Bai, L., Jiang, W., Lv, B. B., Pan, A. H., Jia, J. W., Li, P., Zhao, K., Jiang, L. X., and Tang, X. M., Characterization and comparison of transgenic Artemisia annua GYR and wild-type NON-GYR plants in an environmental release trial, vol. 15, p. -, 2016.
H. Liu, Wu, G. G., Wang, J. B., Wu, X., Bai, L., Jiang, W., Lv, B. B., Pan, A. H., Jia, J. W., Li, P., Zhao, K., Jiang, L. X., Tang, X. M., Liu, H., Wu, G. G., Wang, J. B., Wu, X., Bai, L., Jiang, W., Lv, B. B., Pan, A. H., Jia, J. W., Li, P., Zhao, K., Jiang, L. X., and Tang, X. M., Characterization and comparison of transgenic Artemisia annua GYR and wild-type NON-GYR plants in an environmental release trial, vol. 15, p. -, 2016.
Y. He, Jian, C. X., Zhang, H. Y., Zhou, Y., Wu, X., Zhang, G., Tan, Y. H., He, Y., Jian, C. X., Zhang, H. Y., Zhou, Y., Wu, X., Zhang, G., and Tan, Y. H., Hypoxia enhances periodontal ligament stem cell proliferation via the MAPK signaling pathway, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS We thank the anonymous reviewers for reviewing this manuscript. REFERENCES Amemiya H, Matsuzaka K, Kokubu E, Ohta S, et al (2008). Cellular responses of rat periodontal ligament cells under hypoxia and re-oxygenation conditions in vitro. J. Periodontal Res. 43: 322-327. http://dx.doi.org/10.1111/j.1600-0765.2007.01032.x Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, et al (2014). p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20: 265-271. http://dx.doi.org/10.1038/nm.3465 Corbet EF, et al (2006). Periodontal diseases in Asians. J. Int. Acad. Periodontol. 8: 136-144. Dumitrescu AL, et al (2016). Editorial: Periodontal Disease - A Public Health Problem. Front. Public Health 3: 278. http://dx.doi.org/10.3389/fpubh.2015.00278 Eke PI, Dye BA, Wei L, Slade GD, et al (2015). Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J. Periodontol. 86: 611-622. http://dx.doi.org/10.1902/jop.2015.140520 Gay IC, Chen S, MacDougall M, et al (2007). Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod. Craniofac. Res. 10: 149-160. http://dx.doi.org/10.1111/j.1601-6343.2007.00399.x Hackett PH, Roach RC, et al (2001). High-altitude illness. N. Engl. J. Med. 345: 107-114. http://dx.doi.org/10.1056/NEJM200107123450206 Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, et al (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 275: 9645-9652. http://dx.doi.org/10.1074/jbc.275.13.9645 Jian C, Li C, Ren Y, He Y, et al (2014). Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells. Inflammation 37: 1413-1423. http://dx.doi.org/10.1007/s10753-014-9865-6 Li Q, Yu B, Yang P, et al (2015). Hypoxia-induced HMGB1 in would tissues promotes the osteoblast cell proliferation via activating ERK/JNK signaling. Int. J. Clin. Exp. Med. 8: 15087-15097. Liu Q, Cen L, Zhou H, Yin S, et al (2009). The role of the extracellular signal-related kinase signaling pathway in osteogenic differentiation of human adipose-derived stem cells and in adipogenic transition initiated by dexamethasone. Tissue Eng. Part A 15: 3487-3497. http://dx.doi.org/10.1089/ten.tea.2009.0175 Matsuda N, Morita N, Matsuda K, Watanabe M, et al (1998). Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem. Biophys. Res. Commun. 249: 350-354. http://dx.doi.org/10.1006/bbrc.1998.9151 Mattioli-Belmonte M, Teti G, Salvatore V, Focaroli S, et al (2015). Stem cell origin differently affects bone tissue engineering strategies. Front. Physiol. 6: 266. http://dx.doi.org/10.3389/fphys.2015.00266 Park SY, Kim KH, Gwak EH, Rhee SH, et al (2015). Ex vivo bone morphogenetic protein 2 gene delivery using periodontal ligament stem cells for enhanced re-osseointegration in the regenerative treatment of peri-implantitis. J. Biomed. Mater. Res. A 103: 38-47. http://dx.doi.org/10.1002/jbm.a.35145 Qiu X, Zheng M, Song D, Huang L, et al (2016). Notoginsenoside Rb1 inhibits activation of ERK and p38 MAPK pathways induced by hypoxia and hypercapnia. Exp. Ther. Med. 11: 2455-2461. Rodríguez-Carballo E, Gámez B, Ventura F, et al (2016). p38 MAPK Signaling in Osteoblast Differentiation. Front. Cell Dev. Biol. 4: 40. http://dx.doi.org/10.3389/fcell.2016.00040 Seo BM, Miura M, Gronthos S, Bartold PM, et al (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364: 149-155. http://dx.doi.org/10.1016/S0140-6736(04)16627-0 Somerman MJ, Young MF, Foster RA, Moehring JM, et al (1990). Characteristics of human periodontal ligament cells in vitro. Arch. Oral Biol. 35: 241-247. http://dx.doi.org/10.1016/0003-9969(90)90062-F Sun Y, Liu WZ, Liu T, Feng X, et al (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35: 600-604. http://dx.doi.org/10.3109/10799893.2015.1030412 Tang R, Wei F, Wei L, Wang S, et al (2014). Osteogenic differentiated periodontal ligament stem cells maintain their immunomodulatory capacity. J. Tissue Eng. Regen. Med. 8: 226-232. http://dx.doi.org/10.1002/term.1516 Terrizzi AR, Fernandez-Solari J, Lee CM, Bozzini C, et al (2013). Alveolar bone loss associated to periodontal disease in lead intoxicated rats under environmental hypoxia. Arch. Oral Biol. 58: 1407-1414. http://dx.doi.org/10.1016/j.archoralbio.2013.06.010 Trubiani O, Giacoppo S, Ballerini P, Diomede F, et al (2016). Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis. Stem Cell Res. Ther. 7: 1. http://dx.doi.org/10.1186/s13287-015-0253-4 Vandana KL, Desai R, Dalvi PJ, et al (2015). Autologous Stem Cell Application in Periodontal Regeneration Technique (SAI-PRT) Using PDLSCs Directly From an Extracted Tooth···An Insight. Int. J. Stem Cells 8: 235-237. http://dx.doi.org/10.15283/ijsc.2015.8.2.235 Wang Z, Wang W, Xu S, Wang S, et al (2016). The role of MAPK signaling pathway in the Her-2-positive meningiomas. Oncol. Rep. 36: 685-695. Wu RX, Bi CS, Yu Y, Zhang LL, et al (2015). Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets. Acta Biomater. 22: 70-82. http://dx.doi.org/10.1016/j.actbio.2015.04.024 Wu Y, Yang Y, Yang P, Gu Y, et al (2013). The osteogenic differentiation of PDLSCs is mediated through MEK/ERK and p38 MAPK signalling under hypoxia. Arch. Oral Biol. 58: 1357-1368. http://dx.doi.org/10.1016/j.archoralbio.2013.03.011 Xiao X, Li Y, Zhang G, Gao Y, et al (2012). Detection of bacterial diversity in rat’s periodontitis model under imitational altitude hypoxia environment. Arch. Oral Biol. 57: 23-29. http://dx.doi.org/10.1016/j.archoralbio.2011.07.005 Xu CL, Zheng B, Pei JH, Shen SJ, et al (2016). Embelin induces apoptosis of human gastric carcinoma through inhibition of p38 MAPK and NF-κB signaling pathways. Mol. Med. Rep. 14: 307-312. Yang ZH, Zhang XJ, Dang NN, Ma ZF, et al (2009). Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J. Periodontal Res. 44: 199-210. http://dx.doi.org/10.1111/j.1600-0765.2008.01106.x Zhang HY, Liu R, Xing YJ, Xu P, et al (2013). Effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts in vitro. Exp. Ther. Med. 6: 1553-1559. Zhang QB, Zhang ZQ, Fang SL, Liu YR, et al (2014). Effects of hypoxia on proliferation and osteogenic differentiation of periodontal ligament stem cells: an in vitro and in vivo study. Genet. Mol. Res. 13: 10204-10214. http://dx.doi.org/10.4238/2014.December.4.15
Y. He, Jian, C. X., Zhang, H. Y., Zhou, Y., Wu, X., Zhang, G., Tan, Y. H., He, Y., Jian, C. X., Zhang, H. Y., Zhou, Y., Wu, X., Zhang, G., and Tan, Y. H., Hypoxia enhances periodontal ligament stem cell proliferation via the MAPK signaling pathway, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS We thank the anonymous reviewers for reviewing this manuscript. REFERENCES Amemiya H, Matsuzaka K, Kokubu E, Ohta S, et al (2008). Cellular responses of rat periodontal ligament cells under hypoxia and re-oxygenation conditions in vitro. J. Periodontal Res. 43: 322-327. http://dx.doi.org/10.1111/j.1600-0765.2007.01032.x Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, et al (2014). p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20: 265-271. http://dx.doi.org/10.1038/nm.3465 Corbet EF, et al (2006). Periodontal diseases in Asians. J. Int. Acad. Periodontol. 8: 136-144. Dumitrescu AL, et al (2016). Editorial: Periodontal Disease - A Public Health Problem. Front. Public Health 3: 278. http://dx.doi.org/10.3389/fpubh.2015.00278 Eke PI, Dye BA, Wei L, Slade GD, et al (2015). Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J. Periodontol. 86: 611-622. http://dx.doi.org/10.1902/jop.2015.140520 Gay IC, Chen S, MacDougall M, et al (2007). Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod. Craniofac. Res. 10: 149-160. http://dx.doi.org/10.1111/j.1601-6343.2007.00399.x Hackett PH, Roach RC, et al (2001). High-altitude illness. N. Engl. J. Med. 345: 107-114. http://dx.doi.org/10.1056/NEJM200107123450206 Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, et al (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 275: 9645-9652. http://dx.doi.org/10.1074/jbc.275.13.9645 Jian C, Li C, Ren Y, He Y, et al (2014). Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells. Inflammation 37: 1413-1423. http://dx.doi.org/10.1007/s10753-014-9865-6 Li Q, Yu B, Yang P, et al (2015). Hypoxia-induced HMGB1 in would tissues promotes the osteoblast cell proliferation via activating ERK/JNK signaling. Int. J. Clin. Exp. Med. 8: 15087-15097. Liu Q, Cen L, Zhou H, Yin S, et al (2009). The role of the extracellular signal-related kinase signaling pathway in osteogenic differentiation of human adipose-derived stem cells and in adipogenic transition initiated by dexamethasone. Tissue Eng. Part A 15: 3487-3497. http://dx.doi.org/10.1089/ten.tea.2009.0175 Matsuda N, Morita N, Matsuda K, Watanabe M, et al (1998). Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem. Biophys. Res. Commun. 249: 350-354. http://dx.doi.org/10.1006/bbrc.1998.9151 Mattioli-Belmonte M, Teti G, Salvatore V, Focaroli S, et al (2015). Stem cell origin differently affects bone tissue engineering strategies. Front. Physiol. 6: 266. http://dx.doi.org/10.3389/fphys.2015.00266 Park SY, Kim KH, Gwak EH, Rhee SH, et al (2015). Ex vivo bone morphogenetic protein 2 gene delivery using periodontal ligament stem cells for enhanced re-osseointegration in the regenerative treatment of peri-implantitis. J. Biomed. Mater. Res. A 103: 38-47. http://dx.doi.org/10.1002/jbm.a.35145 Qiu X, Zheng M, Song D, Huang L, et al (2016). Notoginsenoside Rb1 inhibits activation of ERK and p38 MAPK pathways induced by hypoxia and hypercapnia. Exp. Ther. Med. 11: 2455-2461. Rodríguez-Carballo E, Gámez B, Ventura F, et al (2016). p38 MAPK Signaling in Osteoblast Differentiation. Front. Cell Dev. Biol. 4: 40. http://dx.doi.org/10.3389/fcell.2016.00040 Seo BM, Miura M, Gronthos S, Bartold PM, et al (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364: 149-155. http://dx.doi.org/10.1016/S0140-6736(04)16627-0 Somerman MJ, Young MF, Foster RA, Moehring JM, et al (1990). Characteristics of human periodontal ligament cells in vitro. Arch. Oral Biol. 35: 241-247. http://dx.doi.org/10.1016/0003-9969(90)90062-F Sun Y, Liu WZ, Liu T, Feng X, et al (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35: 600-604. http://dx.doi.org/10.3109/10799893.2015.1030412 Tang R, Wei F, Wei L, Wang S, et al (2014). Osteogenic differentiated periodontal ligament stem cells maintain their immunomodulatory capacity. J. Tissue Eng. Regen. Med. 8: 226-232. http://dx.doi.org/10.1002/term.1516 Terrizzi AR, Fernandez-Solari J, Lee CM, Bozzini C, et al (2013). Alveolar bone loss associated to periodontal disease in lead intoxicated rats under environmental hypoxia. Arch. Oral Biol. 58: 1407-1414. http://dx.doi.org/10.1016/j.archoralbio.2013.06.010 Trubiani O, Giacoppo S, Ballerini P, Diomede F, et al (2016). Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis. Stem Cell Res. Ther. 7: 1. http://dx.doi.org/10.1186/s13287-015-0253-4 Vandana KL, Desai R, Dalvi PJ, et al (2015). Autologous Stem Cell Application in Periodontal Regeneration Technique (SAI-PRT) Using PDLSCs Directly From an Extracted Tooth···An Insight. Int. J. Stem Cells 8: 235-237. http://dx.doi.org/10.15283/ijsc.2015.8.2.235 Wang Z, Wang W, Xu S, Wang S, et al (2016). The role of MAPK signaling pathway in the Her-2-positive meningiomas. Oncol. Rep. 36: 685-695. Wu RX, Bi CS, Yu Y, Zhang LL, et al (2015). Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets. Acta Biomater. 22: 70-82. http://dx.doi.org/10.1016/j.actbio.2015.04.024 Wu Y, Yang Y, Yang P, Gu Y, et al (2013). The osteogenic differentiation of PDLSCs is mediated through MEK/ERK and p38 MAPK signalling under hypoxia. Arch. Oral Biol. 58: 1357-1368. http://dx.doi.org/10.1016/j.archoralbio.2013.03.011 Xiao X, Li Y, Zhang G, Gao Y, et al (2012). Detection of bacterial diversity in rat’s periodontitis model under imitational altitude hypoxia environment. Arch. Oral Biol. 57: 23-29. http://dx.doi.org/10.1016/j.archoralbio.2011.07.005 Xu CL, Zheng B, Pei JH, Shen SJ, et al (2016). Embelin induces apoptosis of human gastric carcinoma through inhibition of p38 MAPK and NF-κB signaling pathways. Mol. Med. Rep. 14: 307-312. Yang ZH, Zhang XJ, Dang NN, Ma ZF, et al (2009). Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J. Periodontal Res. 44: 199-210. http://dx.doi.org/10.1111/j.1600-0765.2008.01106.x Zhang HY, Liu R, Xing YJ, Xu P, et al (2013). Effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts in vitro. Exp. Ther. Med. 6: 1553-1559. Zhang QB, Zhang ZQ, Fang SL, Liu YR, et al (2014). Effects of hypoxia on proliferation and osteogenic differentiation of periodontal ligament stem cells: an in vitro and in vivo study. Genet. Mol. Res. 13: 10204-10214. http://dx.doi.org/10.4238/2014.December.4.15
2012
J. J. Jiang, Wu, X., Zhou, P., Yu, W. Z., Huang, L. Z., and Li, X. X., Meta-analysis of the relationship between the LOC387715/ARMS2 polymorphism and polypoidal choroidal vasculopathy, vol. 11, pp. 4256-4267, 2012.
Bessho H, Honda S, Kondo N and Negi A (2011). The association of age-related maculopathy susceptibility 2 polymorphisms with phenotype in typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Mol. Vis. 17: 977-982. PMid:21541271 PMCid:3084225   Chang YC, Chang TJ, Jiang YD, Kuo SS, et al. (2007). Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes 56: 2631-2637. http://dx.doi.org/10.2337/db07-0421 PMid:17579206   Ciardella AP, Donsoff IM, Huang SJ, Costa DL, et al. (2004). Polypoidal choroidal vasculopathy. Surv. Ophthalmol. 49: 25-37. http://dx.doi.org/10.1016/j.survophthal.2003.10.007 PMid:14711438   DeAngelis MM, Ji F, Kim IK, Adams S, et al. (2007). Cigarette smoking, CFH, APOE, ELOVL4, and risk of neovascular age-related macular degeneration. Arch. Ophthalmol. 125: 49-54. http://dx.doi.org/10.1001/archopht.125.1.49 PMid:17210851   Dewan A, Liu M, Hartman S, Zhang SS, et al. (2006). HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314: 989-992. http://dx.doi.org/10.1126/science.1133807 PMid:17053108   Fritsche LG, Loenhardt T, Janssen A, Fisher SA, et al. (2008). Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat. Genet. 40: 892-896. http://dx.doi.org/10.1038/ng.170 PMid:18511946   Fuse N, Mengkegale M, Miyazawa A, Abe T, et al. (2011). Polymorphisms in ARMS2 (LOC387715) and LOXL1 genes in the Japanese with age-related macular degeneration. Am. J. Ophthalmol. 151: 550-556. http://dx.doi.org/10.1016/j.ajo.2010.08.048 PMid:21236409   Gotoh N, Nakanishi H, Hayashi H, Yamada R, et al. (2009). ARMS2 (LOC387715) variants in Japanese patients with exudative age-related macular degeneration and polypoidal choroidal vasculopathy. Am. J. Ophthalmol. 147: 1037- 41, 1041.   Gotoh N, Yamashiro K, Nakanishi H, Saito M, et al. (2010). Haplotype analysis of the ARMS2/HTRA1 region in Japanese patients with typical neovascular age-related macular degeneration or polypoidal choroidal vasculopathy. Jpn. J. Ophthalmol. 54: 609-614. http://dx.doi.org/10.1007/s10384-010-0865-2 PMid:21191724   Hayashi H, Yamashiro K, Gotoh N, Nakanishi H, et al. (2010). CFH and ARMS2 variations in age-related macular degeneration, polypoidal choroidal vasculopathy, and retinal angiomatous proliferation. Invest. Ophthalmol. Vis. Sci. 51: 5914-5919. http://dx.doi.org/10.1167/iovs.10-5554 PMid:20574013   Imamura Y, Engelbert M, Iida T, Freund KB, et al. (2010). Polypoidal choroidal vasculopathy: a review. Surv. Ophthalmol. 55: 501-515. http://dx.doi.org/10.1016/j.survophthal.2010.03.004 PMid:20850857   Jakobsdottir J, Conley YP, Weeks DE, Mah TS, et al. (2005). Susceptibility genes for age-related maculopathy on chromosome 10q26. Am. J. Hum. Genet. 77: 389-407. http://dx.doi.org/10.1086/444437 PMid:16080115 PMCid:1226205   Kondo N, Honda S, Ishibashi K, Tsukahara Y, et al. (2007). LOC387715/HTRA1 variants in polypoidal choroidal vasculopathy and age-related macular degeneration in a Japanese population. Am. J. Ophthalmol. 144: 608-612. http://dx.doi.org/10.1016/j.ajo.2007.06.003 PMid:17692272   Laude A, Cackett PD, Vithana EN, Yeo IY, et al. (2010). Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog. Retin. Eye Res. 29: 19-29. http://dx.doi.org/10.1016/j.preteyeres.2009.10.001 PMid:19854291   Lee KY, Vithana EN, Mathur R, Yong VH, et al. (2008). Association analysis of CFH, C2, BF, and HTRA1 gene polymorphisms in Chinese patients with polypoidal choroidal vasculopathy. Invest. Ophthalmol. Vis. Sci. 49: 2613- 2619. http://dx.doi.org/10.1167/iovs.07-0860 PMid:18515590   Leske MC, Wu SY, Hennis A, Nemesure B, et al. (2006). Nine-year incidence of age-related macular degeneration in the Barbados Eye Studies. Ophthalmology 113: 29-35. http://dx.doi.org/10.1016/j.ophtha.2005.08.012 PMid:16290049   Lima LH, Schubert C, Ferrara DC, Merriam JE, et al. (2010). Three major loci involved in age-related macular degeneration are also associated with polypoidal choroidal vasculopathy. Ophthalmology 117: 1567-1570. http://dx.doi.org/10.1016/j.ophtha.2009.12.018 PMid:20378180 PMCid:2901561   Machida S, Takahashi T, Gotoh N, Yoshimura N, et al. (2010). Monozygotic twins with polypoidal choroidal vasuculopathy. Clin. Ophthalmol. 4: 793-800. http://dx.doi.org/10.2147/OPTH.S11003 PMid:20689796 PMCid:2915866   Maruko I, Iida T, Saito M, Nagayama D, et al. (2007). Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am. J. Ophthalmol. 144: 15-22. http://dx.doi.org/10.1016/j.ajo.2007.03.047 PMid:17509509   Nakanishi H, Yamashiro K, Yamada R, Gotoh N, et al. (2010). Joint effect of cigarette smoking and CFH and LOC387715/ HTRA1 polymorphisms on polypoidal choroidal vasculopathy. Invest. Ophthalmol. Vis. Sci. 51: 6183-6187. http://dx.doi.org/10.1167/iovs.09-4948 PMid:20688737   Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, et al. (2005). Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum. Mol. Genet. 14: 3227-3236. http://dx.doi.org/10.1093/hmg/ddi353 PMid:16174643   Sakurada Y, Kubota T, Mabuchi F, Imasawa M, et al. (2008). Association of LOC387715 A69S with vitreous hemorrhage in polypoidal choroidal vasculopathy. Am. J. Ophthalmol. 145: 1058-1062. http://dx.doi.org/10.1016/j.ajo.2008.02.007 PMid:18400199   Sakurada Y, Kubota T, Imasawa M, Mabuchi F, et al. (2010). Association of LOC387715 A69S genotype with visual prognosis after photodynamic therapy for polypoidal choroidal vasculopathy. Retina 30: 1616-1621. http://dx.doi.org/10.1097/IAE.0b013e3181e587e3 PMid:20671585   Sakurada Y, Kubota T, Imasawa M, Mabuchi F, et al. (2011). Role of complement factor H I62V and age-related maculopathy susceptibility 2 A69S variants in the clinical expression of polypoidal choroidal vasculopathy. Ophthalmology 118: 1402-1407. PMid:21397333   Sho K, Takahashi K, Yamada H, Wada M, et al. (2003). Polypoidal choroidal vasculopathy: incidence, demographic features, and clinical characteristics. Arch. Ophthalmol. 121: 1392-1396. http://dx.doi.org/10.1001/archopht.121.10.1392 PMid:14557174   Tang NP, Zhou B, Wang B and Yu RB (2009). HTRA1 promoter polymorphism and risk of age-related macular degeneration: a meta-analysis. Ann. Epidemiol. 19: 740-745. http://dx.doi.org/10.1016/j.annepidem.2009.03.002 PMid:19375943   Tsujikawa A, Ojima Y, Yamashiro K, Nakata I, et al. (2011). Association of lesion size and visual prognosis to polypoidal choroidal vasculopathy. Am. J. Ophthalmol. 151: 961-972. http://dx.doi.org/10.1016/j.ajo.2011.01.002 PMid:21457926   Wittke-Thompson JK, Pluzhnikov A and Cox NJ (2005). Rational inferences about departures from Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 76: 967-986. http://dx.doi.org/10.1086/430507 PMid:15834813 PMCid:1196455   Yannuzzi LA, Wong DW, Sforzolini BS, Goldbaum M, et al. (1999). Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration. Arch. Ophthalmol. 117: 1503-1510. http://dx.doi.org/10.1001/archopht.117.11.1503 PMid:10565519   Yoshida T, Dewan A, Zhang H, Sakamoto R, et al. (2007). HTRA1 promoter polymorphism predisposes Japanese to age-related macular degeneration. Mol. Vis. 13: 545-548. PMid:17438519 PMCid:2652018
Z. P. Zheng, Liu, X. H., Huang, Y. B., Wu, X., He, C., and Li, Z., QTLs for days to silking in a recombinant inbred line maize population subjected to high and low nitrogen regimes, vol. 11, pp. 790-798, 2012.
Agrama HAS, Zakaria AG, Said FB and Tuinstra M (1999). Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol. Breed. 5: 187-195. http://dx.doi.org/10.1023/A:1009669507144 Bänziger M, Betran FJ and Lafitte HR (1997). Efficiency of high-nitrogen selection environments for improving maize for low-nitrogen target environments. Crop Sci. 37: 1103-1109. http://dx.doi.org/10.2135/cropsci1997.0011183X003700040012x Doerge RW and Churchill GA (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285-294. PMid:8770605    PMCid:1206957 Gong Q, Wang TY, Tan XL, Shi YS, et al. (2006). QTL analysis of traits related to flowering in elite maize inbred line Dan330 with early maturity. J. Plant Genet. Resour. 7: 437-441. Hu YM, Wu X, Li CX, Fu ZY, et al. (2008). Genetic analysis on the related traits of florescence for hybrid seed production in maize. J. Nanjing Agric. Univ. 31: 11-16. Khairallah MM, Bohn M, Jiang C, Deutsch JA, et al. (1998). Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed. 117: 309-318. http://dx.doi.org/10.1111/j.1439-0523.1998.tb01947.x Li YL, Li XH, Dong YB, Niu SZ, et al. (2007). QTL mapping of developmental stages using F2:3 and BC2S1 populations derived from the same cross in maize. Acta Agric. Boreali-Sin. 22: 38-43. Liu XH, Tan ZB and Tan ZB (2009). Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica 167: 229-235. http://dx.doi.org/10.1007/s10681-008-9874-3 Liu X, Zheng Z, Tan Z, Li Z, et al. (2010). QTL mapping for controlling anthesis-silking interval based on RIL population in maize. Afr. J. Biotechnol. 9: 950-955. McIntyre CL, Mathews KL, Rattey A, Chapman SC, et al. (2010). Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor. Appl. Genet. 120: 527-541. http://dx.doi.org/10.1007/s00122-009-1173-4 PMid:19865806 Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, et al. (1996). Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet. 92: 905-914. http://dx.doi.org/10.1007/BF00221905 Ribaut JM, Fracheboud Y, Monneveux P, Banziger M, et al. (2007). Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol. Breed. 20: 15-29. http://dx.doi.org/10.1007/s11032-006-9041-2 Sabadin PK, Souza CL Jr, Souza AP and Garcia AAF (2008). QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 145: 194-203. http://dx.doi.org/10.1111/j.0018-0661.2008.02065.x Szalma SJ, Hostert BM, Ledeaux JR, Stuber CW, et al. (2007). QTL mapping with near-isogenic lines in maize. Theor. Appl. Genet. 114: 1211-1228. http://dx.doi.org/10.1007/s00122-007-0512-6 PMid:17308934 Tang H, Yan JB, Huang YQ, Zheng YL, et al. (2005). QTL mapping of five agronomic traits in maize. Yi. Chuan Xue. Bao. 32: 203-209. PMid:15759869 Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78. http://dx.doi.org/10.1093/jhered/93.1.77 PMid:12011185 Wan XY, Wan JM, Jiang L, Wang JK, et al. (2006). QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor. Appl. Genet. 112: 1258-1270. http://dx.doi.org/10.1007/s00122-006-0227-0 PMid:16477428 Wang S, Basten CJ and Zeng ZB (2010). Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. Available at [http://statgen.ncsu.edu/qtlcart/WQTLCart.htm]. Accessed March 10, 2010. Wu JW, Liu C, Wang TY, Li Y, et al. (2008). QTL analysis of flowering related traits in maize under different water regimes. J. Maize Sci. 16: 61-65. Yang GB, Liu XY, Gao DJ, Tan FZ, et al. (2007). Constrict factors and countermeasures of maize planting in northern premature areas of Heilongjiang. Heilongjiang Agric. Sci. 6: 18-19. Yang X, Guo Y, Yan J, Zhang J, et al. (2010). Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theor. Appl. Genet. 120: 665-678. http://dx.doi.org/10.1007/s00122-009-1184-1 PMid:19856173 Zhang JM, Liu C, Shi YS, Song YC, et al. (2004). QTL analysis of parameters related to flowering in maize under drought stress and normal irrigation condition. J. Plant Genet. Resour. 5: 161-165.
2011
C. L. Ma, Wu, H. L., Hu, H. Y., Wu, X., Ma, G. C., Fu, Y. G., and Peng, Z. Q., Isolation and characterization of eight polymorphic microsatellite loci for the coconut pest, Brontispa longissima (Coleoptera: Hispidae), vol. 10. pp. 429-432, 2011.
Chen YH, Opp SB, Berlocher SH and Roderick GK (2006). Are bottlenecks associated with colonization? Genetic diversity and diapause variation of native and introduced Rhagoletis completa populations. Oecologia 149: 656-667. http://dx.doi.org/10.1007/s00442-006-0482-4 PMid:16858586   De Barro P, Hidayat S, Frohlich D, Subandiyah S, et al. (2008). A virus and its vector, pepper yellow leaf curl virus and Bemisia tabaci, two new invaders of Indonesia. Biol. Invas. 10: 411-433. http://dx.doi.org/10.1007/s10530-007-9141-x   Frankham R (2005). Resolving the genetic paradox in invasive species. Heredity 94: 385. http://dx.doi.org/10.1038/sj.hdy.6800634 PMid:15602569   Hamilton MB, Pincus EL, Di Fiore A and Fleischer RC (1999). Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27: 500-507. PMid:10489609   Lockwood J, Hoopes M and Marchetti M (2007). Invasion Ecology. Blackwell Publishing, Oxford.   Lu B, Tang C, Peng Z, La Salle J, et al. (2008). Biological assessment in quarantine of Asecodes hispinarum Boucek (Hymenoptera: Eulophidae) as an imported biological control agent of Brontispa longissima (Gestro) (Coleoptera: Hispidae) in Hainan, China. Biol. Cont. 45: 29-35. http://dx.doi.org/10.1016/j.biocontrol.2007.11.008   Marshall TC, Slate J, Kruuk LE and Pemberton JM (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639-655. http://dx.doi.org/10.1046/j.1365-294x.1998.00374.x PMid:9633105   Nei M (1987). Molecular Evolutionary Genetics. Columbia University Press, New York.   Puillandre N, Dupas S, Dangles O and Zeddam J (2008). Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol. Invas. 10: 319-333. http://dx.doi.org/10.1007/s10530-007-9132-y   Raymond M and Rousset F (1995). Genepop (version 3.4): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249.   Sambrook J and Russell D (2001). Molecular Cloning: a Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory, New York.   Simon B, Cenis JL and De La Rua P (2007). Distribution patterns of the Q and B biotypes of Bemisia tabaci in the Mediterranean Basin based on microsatellite variation. Ent. Exp. Appl. 124: 336. http://dx.doi.org/10.1111/j.1570-7458.2007.00586.x   Stapley J (1980). Coconut leaf beetle (Brontispa) in the Solomons. Alafua Agricul. Bull. 5: 17-22.   van Oosterhout C, Hutchinson W, Wills D and Shipley P (2004). Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538. http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x   Wilson JR, Dormontt EE, Prentis PJ, Lowe AJ, et al. (2009). Biogeographic concepts define invasion biology. Trends Ecol. Evol. 24: 586. http://dx.doi.org/10.1016/j.tree.2009.07.004   Wu H, Meng K and Zhu G (2008). Isolation and characterization of microsatellite markers in black muntjac (Muntiacus crinifrons). Mol. Ecol. Res. 8: 584-586. http://dx.doi.org/10.1111/j.1471-8286.2007.02003.x PMid:21585839
G. - C. Ma, Wu, X., Ma, C. - L., Wu, H. - L., Hu, H. - Y., Niu, L. - M., and Fu, Y. - G., Isolation and characterization of polymorphic microsatellite loci in Aleurodicus dispersus (Hemiptera, Aleyrodidae), vol. 10. pp. 2523-2526, 2011.
Alam S, Islam MN, Alam MZ and Islam MS (1998). Effectiveness of three insecticides for the control of the spiralling whitefly Aleurodìcus dispersili Rüssel, of guava. Bangladesh J. Entomol. 8: 53-58. Bloor P, Barker FS, Watts PC and Noyes HA (2001). Microsatellite Libraries by Enrichment. School of Biological Sciences, University of Liverpool, Liverpool. Charati SN, Pokharkar DS and Ghorpade SA (2003). Abundance of spiralling whitefly, a newly introduced pest in Maharashtra State. J. Maharashtra Agric. Univ. 28: 83-84. Han DY, Liu K, Chen W and Fan ZW (2008). Distribution and host plants of spiralling whitefly, Aleurodicus dispersus, in Hainan. Chin. Bull. Entomol. 45: 583-588. Marshall TC, Slate J, Kruuk LE and Pemberton JM (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639-655. http://dx.doi.org/10.1046/j.1365-294x.1998.00374.x PMid:9633105 Raymond M and Rousset F (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249. Russell LM (1965). A new species of Aleurodicus Douglas and two close relatives (Homoptera: Aleyrodidae). Florida Entomol. 48: 47-55. http://dx.doi.org/10.2307/3493523 Sambrook J and Russell D (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory, New York. van Oosterhout C, Hutchinson W, Wills D and Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538. http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x Waterhouse DF and Norris KR (1989). Biological Control: Pacific Prospects: Supplement 1. Australian Centre for International Agricultural Research (ACIAR), Canberra. Wu HL, Meng K and Zhu GP (2008). Isolation and characterization of microsatellite markers in black muntjac (Muntiacus crinifrons). Mol. Ecol. Res. 8: 584-586. http://dx.doi.org/10.1111/j.1471-8286.2007.02003.x PMid:21585839 Yu GY, Zhang GL, Peng ZQ and Liu K (2007). The spiralling whitefly, Aleurodicus dispersus, invaded Hainan Island of China. China Bull. Entomol. 44: 42-43.
2010
L. Yu, Wu, X., Tang, X., and Yan, B., Simple and efficient method for isolating cDNA fragments of lea3 genes with potential for wide application in the grasses (Poaceae), vol. 9. pp. 1321-1325, 2010.
Bookstein R, Lai CC, To H and Lee WH (1990). PCR-based detection of a polymorphic BamHI site in intron 1 of the human retinoblastoma (RB) gene. Nucleic Acids Res. 18: 1666. http://dx.doi.org/10.1093/nar/18.6.1666 PMid:2326211 PMCid:330577   Brands A and David Ho TH (2002). Function of a plant stress-induced gene, HVA22, synthetic enhancement screen with its yeast homology reveals its role in vesicular traffic. Plant Physiol. 130: 1121-1131. http://dx.doi.org/10.1104/pp.007716 PMid:12427979 PMCid:166633   Dure L (1993). A repeating 11-mer amino acid motif and plant desiccation. Plant J. 3: 363-369. http://dx.doi.org/10.1046/j.1365-313X.1993.t01-19-00999.x PMid:8220448   Federspiel N (2000). Deciphering a weed. Genomic sequencing of Arabidopsis. Plant Physiol. 124: 1456-1459. http://dx.doi.org/10.1104/pp.124.4.1456 PMid:11115858 PMCid:1539295   Han B and Kermode AR (1996). Dehydrin-like proteins in castor bean seeds and seedling are differentially produced in response to ABA and water-deficit-related stresses. J. Exp. Bot. 47: 933-939. http://dx.doi.org/10.1093/jxb/47.7.933   Kawasaki ES (1990). Sample preparation from blood, cells and other fluids. In: PCR Protocols: A Guide to Methods and Applications (Innis MA, Gelfand DH, Sninsky JJ, and White TJ, eds.). Academic Press, New York, 146-152. PMid:2232363   Kovarova M and Draber P (2000). New specificity and yield enhancer of polymerase chain reactions. Nucleic Acids Res. 28: E70. http://dx.doi.org/10.1093/nar/28.13.e70 PMid:10871414 PMCid:102717   Li M, Lin YC, Wu CC and Liu HS (2005). Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic Acids Res. 33: e184. http://dx.doi.org/10.1093/nar/gni183 PMid:16314298 PMCid:1297711   Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, et al. (1990). Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res. 18: 7465. http://dx.doi.org/10.1093/nar/18.24.7465   Shih MD, Lin SC, Hsieh JS, Tsou CH, et al. (2004). Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16. Plant Mol. Biol. 56: 689-703. http://dx.doi.org/10.1007/s11103-004-4680-3 PMid:15803408   Weissensteiner T and Lanchbury JS (1996). Strategy for controlling preferential amplification and avoiding false negatives in PCR typing. Biotechniques 21: 1102-1108. PMid:8969839   Zhang LS and Zhao WM (2003). LEA protein functions to tolerance drought of the plant. Plant Physiol. Commun. 39: 61-66.