Publications

Found 33 results
Filters: Author is W. Zhang  [Clear All Filters]
2016
W. Zhang, Zhu, L. Q., Huo, X. L., Qin, J., Yuan, G. Y., Zhang, W., Zhu, L. Q., Huo, X. L., Qin, J., Yuan, G. Y., Zhang, W., Zhu, L. Q., Huo, X. L., Qin, J., and Yuan, G. Y., Association between adiponectin gene T45G polymorphism and nonalcoholic fatty liver disease risk: a meta-analysis, vol. 15, p. -, 2016.
W. Zhang, Zhu, L. Q., Huo, X. L., Qin, J., Yuan, G. Y., Zhang, W., Zhu, L. Q., Huo, X. L., Qin, J., Yuan, G. Y., Zhang, W., Zhu, L. Q., Huo, X. L., Qin, J., and Yuan, G. Y., Association between adiponectin gene T45G polymorphism and nonalcoholic fatty liver disease risk: a meta-analysis, vol. 15, p. -, 2016.
W. Zhang, Zhu, L. Q., Huo, X. L., Qin, J., Yuan, G. Y., Zhang, W., Zhu, L. Q., Huo, X. L., Qin, J., Yuan, G. Y., Zhang, W., Zhu, L. Q., Huo, X. L., Qin, J., and Yuan, G. Y., Association between adiponectin gene T45G polymorphism and nonalcoholic fatty liver disease risk: a meta-analysis, vol. 15, p. -, 2016.
X. B. Luo, Liu, Z., Xu, L., Wang, Y., Zhu, X. W., Zhang, W., Chen, W., Zhu, Y. L., Su, X. J., Everlyne, M., Liu, L. W., Luo, X. B., Liu, Z., Xu, L., Wang, Y., Zhu, X. W., Zhang, W., Chen, W., Zhu, Y. L., Su, X. J., Everlyne, M., and Liu, L. W., Characterization of RsMYB28 and RsMYB29 transcription factor genes in radish (Raphanus sativus L.), vol. 15, p. -, 2016.
X. B. Luo, Liu, Z., Xu, L., Wang, Y., Zhu, X. W., Zhang, W., Chen, W., Zhu, Y. L., Su, X. J., Everlyne, M., Liu, L. W., Luo, X. B., Liu, Z., Xu, L., Wang, Y., Zhu, X. W., Zhang, W., Chen, W., Zhu, Y. L., Su, X. J., Everlyne, M., and Liu, L. W., Characterization of RsMYB28 and RsMYB29 transcription factor genes in radish (Raphanus sativus L.), vol. 15, p. -, 2016.
S. F. Wang, Yin, Z., Yin, J. J., Zhang, W., Dong, C. G., Wang, S. F., Yin, Z., Yin, J. J., Zhang, W., and Dong, C. G., Clinical significance of CTHRC1 protein expression in human cancers: a meta-analysis, vol. 15, p. -, 2016.
S. F. Wang, Yin, Z., Yin, J. J., Zhang, W., Dong, C. G., Wang, S. F., Yin, Z., Yin, J. J., Zhang, W., and Dong, C. G., Clinical significance of CTHRC1 protein expression in human cancers: a meta-analysis, vol. 15, p. -, 2016.
Y. L. Qian, Zhang, X. Q., Wang, L. F., Chen, J., Chen, B. R., Lv, G. H., Wu, Z. C., Guo, J., Wang, J., Qi, Y. C., Li, T. C., Zhang, W., Ruan, L., Zuo, X. L., Qian, Y. L., Zhang, X. Q., Wang, L. F., Chen, J., Chen, B. R., Lv, G. H., Wu, Z. C., Guo, J., Wang, J., Qi, Y. C., Li, T. C., Zhang, W., Ruan, L., and Zuo, X. L., Detection of QTLs controlling fast kernel dehydration in maize (Zea mays L.), vol. 15, p. -, 2016.
Y. L. Qian, Zhang, X. Q., Wang, L. F., Chen, J., Chen, B. R., Lv, G. H., Wu, Z. C., Guo, J., Wang, J., Qi, Y. C., Li, T. C., Zhang, W., Ruan, L., Zuo, X. L., Qian, Y. L., Zhang, X. Q., Wang, L. F., Chen, J., Chen, B. R., Lv, G. H., Wu, Z. C., Guo, J., Wang, J., Qi, Y. C., Li, T. C., Zhang, W., Ruan, L., and Zuo, X. L., Detection of QTLs controlling fast kernel dehydration in maize (Zea mays L.), vol. 15, p. -, 2016.
N. M. A. Rahman, Fu, H., Qiao, H., Jin, S., Bai, H., Zhang, W., Jiang, F. W., Liang, G., Sun, S., Gong, Y., Jiang, F. F., Xiong, Y., Wu, Y., Rahman, N. M. A., Fu, H., Qiao, H., Jin, S., Bai, H., Zhang, W., Jiang, F. W., Liang, G., Sun, S., Gong, Y., Jiang, F. F., Xiong, Y., and Wu, Y., Molecular cloning and expression analysis of Fem1b from oriental river prawn Macrobrachium nipponense, vol. 15, p. -, 2016.
N. M. A. Rahman, Fu, H., Qiao, H., Jin, S., Bai, H., Zhang, W., Jiang, F. W., Liang, G., Sun, S., Gong, Y., Jiang, F. F., Xiong, Y., Wu, Y., Rahman, N. M. A., Fu, H., Qiao, H., Jin, S., Bai, H., Zhang, W., Jiang, F. W., Liang, G., Sun, S., Gong, Y., Jiang, F. F., Xiong, Y., and Wu, Y., Molecular cloning and expression analysis of Fem1b from oriental river prawn Macrobrachium nipponense, vol. 15, p. -, 2016.
2014
W. Zhang, Qu, H. C., and Zhang, Y., Association of MSX1 and TGF-β1 genetic polymorphisms with hypodontia: meta-analysis, vol. 13, pp. 10007-10016, 2014.
S. Y. Sun, Zhang, W., Han, X., Huang, R. H., and Shi, F. X., Cell proliferation and apoptosis in the fetal and neonatal ovary of guinea pigs, vol. 13, pp. 1570-1578, 2014.
S. P. Sun, Zhang, Y., Cui, Z. Q., Chen, Q., Zhang, W., Zhou, C. X., Xie, P. P., and Liu, B. G., Clinical application of carbon nanoparticle lymph node tracer in the VI region lymph node dissection of differentiated thyroid cancer, vol. 13, pp. 3432-3437, 2014.
X. Liu, Zhang, W., Geng, D., He, J., Zhao, Y., and Yu, L., Clinical significance of fibroblast growth factor receptor-3 mutations in bladder cancer: a systematic review and meta-analysis, vol. 13, pp. 1109-1120, 2014.
L. L. Shao, Huang, D. Y., Sun, X. Y., Hao, J. S., Cheng, C. H., Zhang, W., and Yang, Q., Complete mitochondrial genome sequence of Cheirotonus jansoni (Coleoptera: Scarabaeidae), vol. 13, pp. 1047-1058, 2014.
W. Zhang, Li, L. L., Chen, X. H., and Peng, Z. Y., Dephosphorylation of NSSR1 regulates alternative splicing of the GluR-B minigene, vol. 13, pp. 1753-1763, 2014.
M. Zhang, Li, J. C., Lin, H., Zhang, W., Lin, M., Wu, L., Liu, W., Mu, J. S., Ye, J. X., and Cui, X. P., Diagnostic value of cytological and microbiological methods in cryptococcal meningitis, vol. 13, pp. 9253-9261, 2014.
M. X. Fang, Huang, Y. S., Ye, J., Zhang, W., Li, Y., and Nie, Q. H., Identification and characterization of RFRP gene in pigs and its association with reproductive traits, vol. 13, pp. 1661-1671, 2014.
Q. Z. Yang, Yang, Z. J., Zhang, Y., Li, X. L., and Zhang, W., Molecular characteristic and expression analysis of collagenolytic serine protease from the Chinese mitten crab Eriocheir sinensis with defense response to Vibrio anguillarum challenge, vol. 13, pp. 3885-3894, 2014.
W. Zhang, Qu, H. C., and Zhang, Y., PAX-9 polymorphism may be a risk factor for hypodontia: a meta-analysis, vol. 13, pp. 9997-10006, 2014.
2013
L. H. Wang, Zhang, W., Ji, J. L., Gao, Q. X., Xiao, S. H., and Wang, F., Molecular characterization and expression analysis of the Lrh-1 gene in Chinese Hu sheep, vol. 12, pp. 1490-1500, 2013.
J. Wang, Zhang, W., Zhao, H., Li, F. R., Wang, Z. G., Ji, J., Zhang, X. Q., Wang, D. W., and Li, J. M., Molecular cytogenetic characterization of the Aegilops biuncialis karyotype, vol. 12. pp. 683-692, 2013.
Badaeva ED (2002). Evaluation of phylogenetic relationships between five polyploid Aegilops L. species of the U-genome cluster by means of chromosomal analysis. Genetika 38: 799-811. PMid:12138779   Badaeva ED, Amosova AV, Samatadze TE, Zoshchuk SA, et al. (2004). Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst. Evol. 246: 45-76. http://dx.doi.org/10.1007/s00606-003-0072-4   Bedbrook JR, Jones J, O'Dell M, Thompson RD, et al. (1980). A molecular description of telometic heterochromatin in secale species. Cell 19: 545-560. http://dx.doi.org/10.1016/0092-8674(80)90529-2   Dhaliwal HS, Harjit-Singh and William M (2002). Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterisation of resistant derivatives. Euphytica 126: 153-159. http://dx.doi.org/10.1023/A:1016312723040   Friebe B and Heun M (1989). C-banding pattern and powdery mildew resistance of Triticum ovatum and four T. aestivum - T. ovatum chromosome addition lines. Theor. Appl. Genet. 78: 417-424. http://dx.doi.org/10.1007/BF00265306   Friebe B, Mukai Y and Gill BS (1992a). C-banding polymorphisms in several accessions of Triticum tauschii (Aegilops squarrosa). Genome 35: 192-199. http://dx.doi.org/10.1139/g92-030   Friebe B, Schubert V, Blüthner W and Hammer K (1992b). C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum - Ae. caudata and six derived chromosome addition lines. Theor. Appl. Genet. 83: 589-596. http://dx.doi.org/10.1007/BF00226902   Friebe B, Jiang J, Tuleen N and Gill BS (1995). Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor. Appl. Genet. 90: 150-156. http://dx.doi.org/10.1007/BF00221010   Friebe B, Badaeva ED, Kammer K and Gill BS (1996). Standard karyotypes of Aegilops uniaristata, Ae. mutica, Ae. comosa subspecies comosa and heldreichii (Poaceae). Plant Syst. Evol. 202: 199-210. http://dx.doi.org/10.1007/BF00983382   Friebe B, Qi LL, Nasuda S, Zhang P, et al. (2000). Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor. Appl. Genet. 101: 51-58. http://dx.doi.org/10.1007/s001220051448   Gerlach WL and Bedbrook JR (1979). Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7: 1869-1885. http://dx.doi.org/10.1093/nar/7.7.1869 PMid:537913 PMCid:342353   Gerlach WL and Dyer TA (1980). Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 8: 4851-4865. http://dx.doi.org/10.1093/nar/8.21.4851 PMid:7443527 PMCid:324264   Gill BS and Kimber G (1974). Giemsa C-banding and the evolution of wheat. Proc. Natl. Acad. Sci. U. S. A. 71: 4086- 4090. http://dx.doi.org/10.1073/pnas.71.10.4086 PMid:16592188 PMCid:434333   Makkouk K, Ghulam W and Comeau A (1994). Resistance to barley yellow dwarf luteovirus in Aegilops species. Can. J. Plant Sci. 74: 631-634. http://dx.doi.org/10.4141/cjps94-113   McIntyre CL, Pereira S, Moran LB and Appels R (1990). New secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33: 635-640. http://dx.doi.org/10.1139/g90-094 PMid:2262137   Molnár I, Gáspár L, Sárvári É, Dulai S, et al. (2004). Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct. Plant Biol. 31: 1149-1159. http://dx.doi.org/10.1071/FP03143   Mukai Y, Nakahara Y and Yamamoto M (1993). Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36: 489-494. http://dx.doi.org/10.1139/g93-067 PMid:18470003   Nagy ED, Molnar-Lang M, Linc G and Lang L (2002). Identification of wheat-barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome 45: 1238- 1247. http://dx.doi.org/10.1139/g02-068 PMid:12502270   Rayburn AL and Gill BS (1986). Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 4: 102-109. http://dx.doi.org/10.1007/BF02732107   Resta P, Zhang HB, Dubcovsky J and Dvorak J (1996). The origins of the genomes of Triticum biunciale, T. ovatum, T. neglectum, T. columnare, and T. rectum (Poaceae) based on variation in repeated nucleotide sequences. Am. J. Bot. 83: 1556-1565. http://dx.doi.org/10.2307/2445829   Riley R, Chapman V and Johnson R (1968). Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217: 383-384. http://dx.doi.org/10.1038/217383a0   Schneider A, Linc G, Molnar I and Molnar-Lang M (2005). Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat - Aegilops biuncialis disomic addition lines. Genome 48: 1070- 1082. http://dx.doi.org/10.1139/g05-062 PMid:16391676   van Slageren MWSJ (1994). Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae): A Revision of All Taxa Closely Related to Wheat, Excluding Wild Triticum Species, with Notes on Other Genera in the Tribe Triticcae, Especially Triticum: Wageningen Agricultural University, Wageningen.   Wang ZG, An TG, Li JM, Marta ML, et al. (2004). Fluorescent in situ hybridization analysis of rye chromatin in the background of "Xiaoyan No. 6". Acta Bot. Sin. 46: 436-442.
Z. B. Zhang, Zhang, W., Li, R. L., Li, J. B., Zhong, J. F., Zhao, Z. S., and Huang, J. M., Novel splice variants of the bovine PCK1 gene, vol. 12, pp. 4028-4035, 2013.
2012
L. H. Wang, Zhang, W., Gao, Q. X., and Wang, F., Expression of the luteinizing hormone receptor (LHR) gene in ovine non-gonadal tissues during estrous cycle, vol. 11, pp. 3766-3780, 2012.
Ascoli M, Fanelli F and Segaloff DL (2002). The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr. Rev 23: 141-174. http://dx.doi.org/10.1210/er.23.2.141 PMid:11943741   Chen XY, Wen HS, He F, Chen CF, et al. (2010). Partial sequence cloning of LHR gene in Cynoglossus semilaevis and its tissue expression analysis. J. Ocean Univ. China 40: 71-77.   Gawronska B, Paukku T, Huhtaniemi I, Wasowicz G, et al. (1999). Oestrogen-dependent expression of LH/hCG receptors in pig Fallopian tube and their role in relaxation of the oviduct. J Reprod. Fertil. 115: 293-301. http://dx.doi.org/10.1530/jrf.0.1150293 PMid:10434935   Gawronska B, Stepien A and Ziecik AJ (2000). Effect of estradiol and progesterone on oviductal LH-receptors and LH-dependent relaxation of the porcine oviduct. Theriogenology 53: 659-672. http://dx.doi.org/10.1016/S0093-691X(99)00265-4   Jiang J, Cao SX, Mao DG and Hui FM (2011). Expression of uterine LHR mRNA during estrous cycle in Guinea pig. Sci. Agric. Sin. 44: 3420-3426.   Kwok HF, So WK, Wang Y and Ge W (2005). Zebrafish gonadotropins and their receptors: I. Cloning and characterization of zebrafish follicle-stimulating hormone and luteinizing hormone receptors--evidence for their distinct functions in follicle development. Biol. Reprod. 72: 1370-1381. http://dx.doi.org/10.1095/biolreprod.104.038190 PMid:15728795   Lei ZM, Rao CV, Kornyei JL, Licht P, et al. (1993). Novel expression of human chorionic gonadotropin/luteinizing hormone receptor gene in brain. Endocrinology 132: 2262-2270. http://dx.doi.org/10.1210/en.132.5.2262 PMid:8477671   Li GJ, Wang H, Wang SY, Hou YM, et al. (2009). Localization and differential expression of LHR and LHR mRNA in the oviduct of jining gray goat during estrous cycle. Sci. Agric. Sin. 44: 3235-3245.   Rao CV and Lei ZM (2007). The past, present and future of nongonadal LH/hCG actions in reproductive biology and medicine. Mol. Cell Endocrinol. 269: 2-8. http://dx.doi.org/10.1016/j.mce.2006.07.007 PMid:17382462   Reshef E, Segars JH, Jr., Hill GA, Pridham DD, et al. (1990). Endometrial inadequacy after treatment with human menopausal gonadotropin/human chorionic gonadotropin. Fertil. Steril. 54: 1012-1016. PMid:2123159   Rzucidlo SJ, Weigl RM and Tilton JE (1998). Myometrial LH/hCG receptors during the estrous cycle and pregnancy in pigs. Anim. Reprod. Sci. 51: 249-257. http://dx.doi.org/10.1016/S0378-4320(98)00073-6   Sawitzke AL and Odell WD (1991). Uterine binding sites for LH/hCG can be modulated by hormonal status in rabbits and rats. Acta Endocrinol. (Copenh.) 124: 322-330.   Shemesh M, Gurevich M, Mizrachi D, Dombrovski L, et al. (1997). Expression of functional luteinizing hormone (LH) receptor and its messenger ribonucleic acid in bovine uterine veins: LH induction of cyclooxygenase and augmentation of prostaglandin production in bovine uterine veins. Endocrinology 138: 4844-4851. http://dx.doi.org/10.1210/en.138.11.4844 PMid:9348214   Shemesh M, Mizrachi D, Gurevich M, Stram Y, et al. (2001). Functional importance of bovine myometrial and vascular LH receptors and cervical FSH receptors. Semin. Reprod. Med. 19: 87-96. http://dx.doi.org/10.1055/s-2001-13915 PMid:11394209   Shen Y, Wang H, Wang SY, Wang LQ, et al. (2009). Different expression of LHR mRNA in the uterus of four estrous cycle phases in jining gray goat. Chin. J. Anim. Vet. Sci. 40: 338-342.   Sun T, Lei ZM and Rao CV (1997). A novel regulation of the oviductal glycoprotein gene expression by luteinizing hormone in bovine tubal epithelial cells. Mol. Cell. Endocrinol. 131: 97-108. http://dx.doi.org/10.1016/S0303-7207(97)00104-4   Vischer HF and Bogerd J (2003). Cloning and functional characterization of a gonadal luteinizing hormone receptor complementary DNA from the African catfish (Clarias gariepinus). Biol. Reprod. 68: 262-271. http://dx.doi.org/10.1095/biolreprod.102.004515 PMid:12493722   Wang L, LI TY, Wang SY, Huang LB, et al. (2011). Studies on expression of GTH receptor genes in the oviduct of Yimeng Black goat during the estrous cycle. Chinese Veterinary Sci. 41: 832-838.   Wang YX, Yan YQ, Cheng RH, Wang SY, et al. (2000). Effects of single fecundity selection in Hu sheep. Contemp. Anim. Husb. 4: 31-32.   Wasowicz G and Ziecik AJ (2000). Influence of oestradiol and progesterone on the expression of LH/hCG receptors in the porcine broad ligament. Polish J. Vet. Sci. 3: 119-130.   Yue GH (1996). Reproductive characteristics of Chinese Hu sheep. Anim. Rep. Sci. 44: 223-230. http://dx.doi.org/10.1016/0378-4320(96)01562-X   Zhang M, Shi H, Segaloff DL and Van Voorhis BJ (2001). Expression and localization of luteinizing hormone receptor in the female mouse reproductive tract. Biol. Reprod. 64: 179-187. PMid:11133673   Ziecik AJ, Stanchev PD and Tilton JE (1986). Evidence for the presence of luteinizing hormone/human chorionic gonadotropin-binding sites in the porcine uterus. Endocrinology 119: 1159-1163. http://dx.doi.org/10.1210/endo-119-3-1159 PMid:3015568   Ziecik AJ, Ostrowska G, Kisielewska J and Zezula-Szpyra A (1995). Distribution and cycle phase dependency of gonadotropin receptors in musculature and blood vessels of the porcine broad ligament. Exp. Clin. Endocrinol. Diabetes 103: 44-51. http://dx.doi.org/10.1055/s-0029-1211328 PMid:7621104   Ziecik AJ, Kaczmarek MM, Blitek A, Kowalczyk AE, et al. (2007). Novel biological and possible applicable roles of LH/ hCG receptor. Mol. Cell. Endocrinol. 269: 51-60. http://dx.doi.org/10.1016/j.mce.2006.08.016 PMid:17367919   Zuo J, Lei ZM and Rao CV (1994). Human myometrial chorionic gonadotropin/luteinizing hormone receptors in preterm and term deliveries. J. Clin. Endocrinol. Metab. 79: 907-911. http://dx.doi.org/10.1210/jc.79.3.907 PMid:8077381
C. L. Hou, Huang, Q., Wei, Y., Zhang, W., Mi, J. H., Ying, D. J., and Zhou, Z. H., Protein transduction domain-hA20 fusion protein protects endothelial cells against high glucose-induced injury, vol. 11, pp. 1899-1908, 2012.
Hiroshi M, Takashi I, Reilo K, Shibagaki N, et al. (2006). Polyarginine-mediated protein delivery to dendritic cells presents antigen more efficiently onto MHC class I and class II and elicits superior antitumor immunity. J. Investig. Dermatol. 126: 1804-1812. http://dx.doi.org/10.1038/sj.jid.5700335 PMid:16645583   Hou CL, Zhang W, Wei Y, Mi JH, et al. (2011). Zinc finger protein A20 overexpression inhibits monocyte homing and protects endothelial cells from injury induced by high glucose. Genet. Mol. Res. 10: 1050-1059. http://dx.doi.org/10.4238/vol10-2gmr1102 PMid:21710455   Lutz J, Luong lA, Strobl M, Deng M, et al. (2008). The A20 gene protects kidneys from ischaemia/reperfusion injury by suppressing pro-inflammatory activation. J. Mol. Med. 86: 1329-1339. http://dx.doi.org/10.1007/s00109-008-0405-4 PMid:18813897   Mitchell DJ, Kim DT, Steinman L, Fathman CG, et al. (2000). Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res. 56: 318-325. http://dx.doi.org/10.1034/j.1399-3011.2000.00723.x PMid:11095185   Mitsui H, Inozume T, Kitamura R, Shibagaki N, et al. (2006). Polyarginine-mediated protein delivery to dendritic cells presents antigen more efficiently onto MHC class I and class II and elicits superior antitumor immunity. J. Invest Dermatol. 126: 1804-1812. http://dx.doi.org/10.1038/sj.jid.5700335 PMid:16645583   Papadopoulou LC and Tsiftsoglou AS (2011). Transduction of human recombinant proteins into mitochondria as a protein therapeutic approach for mitochondrial disorders. Pharm. Res. 28: 2639-2656. http://dx.doi.org/10.1007/s11095-011-0546-y PMid:21874377   Patel VI, Daniel S, Longo CR, Shrikhande GV, et al. (2006). A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB J. 20: 1418-1430. http://dx.doi.org/10.1096/fj.05-4981com PMid:16816117   Schwarze SR, Ho A, Vocero-Akbani A and Dowdy SF (1999). In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285: 1569-1572. http://dx.doi.org/10.1126/science.285.5433.1569 PMid:10477521   Tezgel AO, Telfer JC and Tew GN (2011). De novo designed protein transduction domain mimics from simple synthetic polymers. Biomacromolecules 12: 3078-3083. http://dx.doi.org/10.1021/bm200694u PMid:21714570   Wang AB, Li HL, Zhang R, She ZG, et al. (2007). A20 attenuates vascular smooth muscle cell proliferation and migration through blocking PI3k/Akt singling in vitro and in vivo. J. Biomed. Sci. 14: 357-371. http://dx.doi.org/10.1007/s11373-007-9150-x PMid:17260188   Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, et al. (2000). The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl. Acad. Sci. U. S. A. 97: 13003-13008. http://dx.doi.org/10.1073/pnas.97.24.13003 PMid:11087855 PMCid:27168   Zeng W, Li L, Yuan W, Wei Y, et al. (2009). A20 overexpression inhibits low shear flow-induced CD14-positive monocyte recruitment to endothelial cells. Biorheology 46: 21-30. PMid:19252225   Zhou Z, Shi S, Song M, Huang H, et al. (2009). Development of transgenic endothelial progenitor cell-seeded stents. J. Biomed. Mater. Res. A 91: 623-628. http://dx.doi.org/10.1002/jbm.a.32300 PMid:18985790   Zhu C, Ying D, Mi J, Li L, et al. (2008). Development of anti-atherosclerotic tissue-engineered blood vessel by A20- regulated endothelial progenitor cells seeding decellularized vascular matrix. Biomaterials 29: 2628-2636. http://dx.doi.org/10.1016/j.biomaterials.2008.03.005 PMid:18377984
2011
J. P. Zhou, Zhu, X. P., Zhang, W., Qin, F., Zhang, S. W., and Jia, Z. H., A novel single-nucleotide polymorphism in the 5' upstream region of the prolactin receptor gene is associated with fiber traits in Liaoning cashmere goats, vol. 10. pp. 2511-2516, 2011.
Choy VJ, Nixon AJ and Pearson AJ (1997). Distribution of prolactin receptor immunoreactivity in ovine skin and changes during the wool follicle growth cycle. J. Endocrinol. 155: 265-275. http://dx.doi.org/10.1677/joe.0.1550265 PMid:9415061 Craven AJ, Ormandy CJ, Robertson FG, Wilkins RJ, et al. (2001). Prolactin signaling influences the timing mechanism of the hair follicle: analysis of hair growth cycles in prolactin receptor knockout mice. Endocrinology 142: 2533-2539. http://dx.doi.org/10.1210/en.142.6.2533 PMid:11356702 Craven AJ, Nixon AJ, Ashby MG, Ormandy CJ, et al. (2006). Prolactin delays hair regrowth in mice. J. Endocrinol. 191: 415-425. http://dx.doi.org/10.1677/joe.1.06685 PMid:17088411 Dicks P, Russel AJ and Lincoln GA (1994). The role of prolactin in the reactivation of hair follicles in relation to moulting in cashmere goats. J. Endocrinol. 143: 441-448. http://dx.doi.org/10.1677/joe.0.1430441 PMid:7836888 Foitzik K, Krause K, Nixon AJ, Ford CA, et al. (2003). Prolactin and its receptor are expressed in murine hair follicle epithelium, show hair cycle-dependent expression, and induce catagen. Am. J. Pathol. 162: 1611-1621. http://dx.doi.org/10.1016/S0002-9440(10)64295-2 Kelly PA, Binart N, Freemark M, Lucas B, et al. (2001). Prolactin receptor signal transduction pathways and actions determined in prolactin receptor knockout mice. Biochem. Soc. Trans. 29: 48-52. http://dx.doi.org/10.1042/BST0290048 PMid:11356125 Nixon AJ, Ford CA, Wildermoth JE, Craven AJ, et al. (2002). Regulation of prolactin receptor expression in ovine skin in relation to circulating prolactin and wool follicle growth status. J. Endocrinol. 172: 605-614. http://dx.doi.org/10.1677/joe.0.1720605 PMid:11874709 Pearson AJ, Parry AL, Ashby MG, Choy VJ, et al. (1996). Inhibitory effect of increased photoperiod on wool follicle growth. J. Endocrinol. 148: 157-166. http://dx.doi.org/10.1677/joe.0.1480157 PMid:8568463 Thompson DL Jr, Hoffman R and DePew CL (1997). Prolactin administration to seasonally anestrous mares: reproductive, metabolic, and hair-shedding responses. J. Anim. Sci. 75: 1092-1099. PMid:9110225
C. L. Hou, Zhang, W., Wei, Y., Mi, J. H., Li, L., Zhou, Z. H., Zeng, W., and Ying, D. J., Zinc finger protein A20 overexpression inhibits monocyte homing and protects endothelial cells from injury induced by high glucose, vol. 10, pp. 1050-1059, 2011.
Fogelman AM, Elahi F, Sykes K, Van Lenten BJ, et al. (1988). Modification of the Recalde method for the isolation of human monocytes. J. Lipid Res. 29: 1243-1247. PMid:3183529 La Fontaine J, Harkless LB, Davis CE, Allen MA, et al. (2006). Current concepts in diabetic microvascular dysfunction. J. Am. Podiatr. Med. Assoc. 96: 245-252. PMid:16707637 Lutz J, Luong Le A, Strobl M, Deng M, et al. (2008). The A20 gene protects kidneys from ischaemia/reperfusion injury by suppressing pro-inflammatory activation. J. Mol. Med. 86: 1329-1339. doi:10.1007/s00109-008-0405-4 PMid:18813897 McGinn S, Saad S, Poronnik P and Pollock CA (2003). High glucose-mediated effects on endothelial cell proliferation occur via p38 MAP kinase. Am. J. Physiol. Endocrinol. Metab. 285: E708-E717. PMid:12783777 Mohan S, Mohan N, Valente AJ and Sprague EA (1999). Regulation of low shear flow-induced HAEC VCAM-1 expression and monocyte adhesion. Am. J. Physiol. 276: C1100-C1107. PMid:10329958 Patel VI, Daniel S, Longo CR, Shrikhande GV, et al. (2006). A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB J. 20: 1418-1430. doi:10.1096/fj.05-4981com PMid:16816117 Romero MJ, Platt DH, Tawfik HE, Labazi M, et al. (2008). Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ. Res. 102: 95-102. doi:10.1161/CIRCRESAHA.107.155028 PMid:17967788    PMCid:2822539 Wang AB, Li HL, Zhang R, She ZG, et al. (2007). A20 attenuates vascular smooth muscle cell proliferation and migration through blocking PI3k/Akt singling in vitro and in vivo. J. Biomed. Sci. 14: 357-371. doi:10.1007/s11373-007-9150-x PMid:17260188 Yang WS, Seo JW, Han NJ, Choi J, et al. (2008). High glucose-induced NF-kappaB activation occurs via tyrosine phosphorylation of IkappaBalpha in human glomerular endothelial cells: involvement of Syk tyrosine kinase. Am. J. Physiol. Renal Physiol. 294: F1065-F1075. doi:10.1152/ajprenal.00381.2007 PMid:18353872 Zeng W, Li L, Yuan W, Wei Y, et al. (2009). A20 overexpression inhibits low shear flow-induced CD14-positive monocyte recruitment to endothelial cells. Biorheology 46: 21-30. PMid:19252225 Zhu CH, Ying DJ, Mi JH, Zhang W, et al. (2004). The zinc finger protein A20 protects endothelial cells from burns serum injury. Burns 30: 127-133. doi:10.1016/j.burns.2003.08.010 PMid:15019119