Publications

Found 1 results
Filters: Author is X.-J. Yu  [Clear All Filters]
2011
G. Lin, Fang, F., Yu, X. - J., and Yu, L., Meta-analysis of the relationship between p21 Ser31Arg polymorphism and lung cancer susceptibility, vol. 10, pp. 2449-2456, 2011.
Abbas T and Dutta A (2009). p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer 9: 400-414. http://dx.doi.org/10.1038/nrc2657 PMid:19440234    PMCid:2722839 Chedid M, Michieli P, Lengel C, Huppi K, et al. (1994). A single nucleotide substitution at codon 31 (Ser/Arg) defines a polymorphism in a highly conserved region of the p53-inducible gene WAF1/CIP1. Oncogene 9: 3021-3024. PMid:8084608 Choi YY, Kang HK, Choi JE, Jang JS, et al. (2008). Comprehensive assessment of P21 polymorphisms and lung cancer risk. J. Hum. Genet. 53: 87-95. http://dx.doi.org/10.1007/s10038-007-0222-6 PMid:18046503 DerSimonian R and Laird N (1986). Meta-analysis in clinical trials. Control Clin. Trials 7: 177-188. http://dx.doi.org/10.1016/0197-2456(86)90046-2 Egger M, Davey SG, Schneider M and Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634. http://dx.doi.org/10.1136/bmj.315.7109.629 PMid:9310563    PMCid:2127453 Harada K and Ogden GR (2000). An overview of the cell cycle arrest protein, p21(WAF1). Oral Oncol. 36: 3-7. http://dx.doi.org/10.1016/S1368-8375(99)00049-4 Hsia TC, Chiang HC, Chiang D, Hang LW, et al. (2003). Prediction of survival in surgical unresectable lung cancer by artificial neural networks including genetic polymorphisms and clinical parameters. J. Clin. Lab. Anal. 17: 229-234. http://dx.doi.org/10.1002/jcla.10102 PMid:14614746 Kiyohara C, Otsu A, Shirakawa T, Fukuda S, et al. (2002). Genetic polymorphisms and lung cancer susceptibility: a review. Lung Can. 37: 241-256. http://dx.doi.org/10.1016/S0169-5002(02)00107-1 Lau J, Ioannidis JP and Schmid CH (1997). Quantitative synthesis in systematic reviews. Ann. Intern. Med. 127: 820-826. PMid:9382404 Mantel N and Haenszel W (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22: 719-748. PMid:13655060 Mitsudomi T (2010). Advances in target therapy for lung cancer. Jpn. J. Clin. Oncol. 40: 101-106. http://dx.doi.org/10.1093/jjco/hyp174 PMid:20031962 Popanda O, Edler L, Waas P, Schattenberg T, et al. (2007). Elevated risk of squamous-cell carcinoma of the lung in heavy smokers carrying the variant alleles of the TP53 Arg72Pro and p21 Ser31Arg polymorphisms. Lung Cancer 55: 25-34. http://dx.doi.org/10.1016/j.lungcan.2006.09.006 PMid:17059853 Shih CM, Lin PT, Wang HC, Huang WC, et al. (2000). Lack of evidence of association of p21WAF1/CIP1 polymorphism with lung cancer susceptibility and prognosis in Taiwan. Jpn. J. Cancer Res. 91: 9-15. http://dx.doi.org/10.1111/j.1349-7006.2000.tb00854.x Sjalander A, Birgander R, Rannug A, Alexandrie AK, et al. (1996). Association between the p21 codon 31 A1 (arg) allele and lung cancer. Hum. Hered. 46: 221-225. http://dx.doi.org/10.1159/000154357 Su L, Liu G, Zhou W, Xu LL, et al. (2003). No association between the p21 codon 31 serine-arginine polymorphism and lung cancer risk. Cancer Epidem. Biomar. Prev. 12: 174-175. PMid:12582031 Xiong Y, Hannon GJ, Zhang H, Casso D, et al. (1993). p21 is a universal inhibitor of cyclin kinases. Nature 366: 701-704. http://dx.doi.org/10.1038/366701a0 PMid:8259214