Publications

Found 5 results
Filters: Author is D.X. Zhang  [Clear All Filters]
2013
J. K. Gan, Zhang, D. X., He, D. L., Zhang, X. Q., Chen, Z. Y., and Luo, Q. B., Promoter methylation negatively correlated with mRNA expression but not tissue differential expression after heat stress, vol. 12, pp. 809-819, 2013.
Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev. 16: 6-21. http://dx.doi.org/10.1101/gad.947102 PMid:11782440   Brena RM, Huang TH and Plass C (2006). Quantitative assessment of DNA methylation: Potential applications for disease diagnosis, classification, and prognosis in clinical settings. J. Mol. Med. 84: 365-377. http://dx.doi.org/10.1007/s00109-005-0034-0 PMid:16416310   Dai Z, Zhu WG, Morrison CD, Brena RM, et al. (2003). A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum. Mol. Genet. 12: 791-801. http://dx.doi.org/10.1093/hmg/ddg083 PMid:12651874   Dionello NJL, Ferro JA, Macari M, Rutz F, et al. (2001). Effect of acute heat stress on hepatic and cerebral messenger RNA heat shock protein 70 and heat shock protein 70 level of broiler chicks from 2 to 5 days old of different strains. Rev. Bras. Zootec. 5: 1506-1513. http://dx.doi.org/10.1590/S1516-35982001000600018   Ehrich M, Nelson MR, Stanssens P, Zabeau M, et al. (2005). Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 102: 15785-15790. http://dx.doi.org/10.1073/pnas.0507816102 PMid:16243968 PMCid:1276092   Esteller M (2007). Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet. 16 Spec No 1: R50-R59. http://dx.doi.org/10.1093/hmg/ddm018 PMid:17613547   Esteller M (2008). Epigenetics in evolution and disease. Lancet 372: S90-S96. http://dx.doi.org/10.1016/S0140-6736(08)61887-5   Gabriel JE, Ferro JA, Stefani RM, Ferro MI, et al. (1996). Effect of acute heat stress on heat shock protein 70 messenger RNA and on heat shock protein expression in the liver of broilers. Br. Poult. Sci. 37: 443-449. http://dx.doi.org/10.1080/00071669608417875 PMid:8773853   Givisiez PEN, Furlan RL, Malheiros EB and Macari M (2003). Incubation and rearing temperature effects on Hsp70 levels and heat stress response in broilers. Can. J. Anim. Sci. 2: 213-220. http://dx.doi.org/10.4141/A02-038   Guerreiro EN, Giachetto PF, Givisiez PEN, Ferro JA, et al. (2004). Brain and hepatic Hsp70 protein levels in heat-acclimated broiler chickens during heat stress. Braz. J. Poult. Sci. 6: 201-206. http://dx.doi.org/10.1590/S1516-635X2004000400002   Hartl FU (1996). Molecular chaperones in cellular protein folding. Nature 381: 571-579. http://dx.doi.org/10.1038/381571a0 PMid:8637592   Kregel KC (2002). Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92: 2177-2186. PMid:11960972   Kuroda A, Rauch TA, Todorov I, Ku HT, et al. (2009). Insulin gene expression is regulated by DNA methylation. PLoS One 4: e6953. http://dx.doi.org/10.1371/journal.pone.0006953 PMid:19742322 PMCid:2735004   Lopez-Serra L and Esteller M (2008). Proteins that bind methylated DNA and human cancer: reading the wrong words. Br. J. Cancer 98: 1881-1885. http://dx.doi.org/10.1038/sj.bjc.6604374 PMid:18542062 PMCid:2441952   Maak S, Melesse A, Schmidt R, Schneider F, et al. (2003). Effect of long-term heat exposure on peripheral concentrations of heat shock protein 70 (Hsp70) and hormones in laying hens with different genotypes. Br. Poult. Sci. 44: 133-138. http://dx.doi.org/10.1080/0007166031000085319 PMid:12737235   Mahmoud KZ (2000). Genetic and Environmental Variations of Chicken Heat Shock Proteins. PhD thesis, North Carolina State University, North Carolina.   Mayer MP and Bukau B (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol. Life Sci. 62: 670-684. http://dx.doi.org/10.1007/s00018-004-4464-6 PMid:15770419 PMCid:2773841   Mazzi CM, Ferro MIT, Coelho AAD, Savino VJM, et al. (2002). Effect of heat exposure on the thermoregulatory responses of selected naked neck chickens. Arq. Bras. Med. Vet. Zootec. 54: 35-41. http://dx.doi.org/10.1590/S0102-09352002000100006   Mazzi CM, Ferro JA, Ferro MIT, Savino VJM, et al. (2003). Polymorphism analysis of the hsp70 stress gene in Broiler chickens (Gallus gallus) of different breeds. Genet. Mol. Biol. 3: 275-281.   Robertson KD and Wolffe AP (2000). DNA methylation in health and disease. Nat. Rev. Genet. 1: 11-19. http://dx.doi.org/10.1038/35049533 PMid:11262868   Safe S and Abdelrahim M (2005). Sp transcription factor family and its role in cancer. Eur. J. Cancer 41: 2438-2448. http://dx.doi.org/10.1016/j.ejca.2005.08.006 PMid:16209919   Samson SL and Wong NC (2002). Role of Sp1 in insulin regulation of gene expression. J. Mol. Endocrinol. 29: 265-279. http://dx.doi.org/10.1677/jme.0.0290265 PMid:12459029   Song F, Smith JF, Kimura MT, Morrow AD, et al. (2005). Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc. Natl. Acad. Sci. U. S. A. 102: 3336-3341. http://dx.doi.org/10.1073/pnas.0408436102 PMid:15728362 PMCid:552919   Straussman R, Nejman D, Roberts D, Steinfeld I, et al. (2009). Developmental programming of CpG island methylation profiles in the human genome. Nat. Struct. Mol. Biol. 16: 564-571. http://dx.doi.org/10.1038/nsmb.1594 PMid:19377480   Strichman-Almashanu LZ, Lee RS, Onyango PO, Perlman E, et al. (2002). A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res. 12: 543-554. PMid:11932239 PMCid:187522   Ushijima T and Asada K (2010). Aberrant DNA methylation in contrast with mutations. Cancer Sci. 101: 300-305. http://dx.doi.org/10.1111/j.1349-7006.2009.01434.x PMid:19958364   Wang S and Edens FW (1998). Heat conditioning induces heat shock proteins in broiler chickens and turkey poults. Poult. Sci. 77: 1636-1645. PMid:9835337   Watanabe Y and Maekawa M (2010). Methylation of DNA in cancer. Adv. Clin. Chem. 52: 145-167. http://dx.doi.org/10.1016/S0065-2423(10)52006-7   Xing JY, Kang L, Hu Y, Jiang YL, et al. (2011). Effect of dietary betaine supplementation on mRNA expression and promoter CpG methylation of lipoprotein lipase gene in laying hens. J. Poult. Sci. 3: 224-228.   Xu Q, Zhang Y, Sun D, Wang Y, et al. (2007). Analysis on DNA methylation of various tissues in chicken. Anim. Biotechnol. 18: 231-241. http://dx.doi.org/10.1080/10495390701574838 PMid:17934897   Yossifoff M, Kisliouk T and Meiri N (2008). Dynamic changes in DNA methylation during thermal control establishment affect CREB binding to the brain-derived neurotrophic factor promoter. Eur. J. Neurosci. 28: 2267-2277. http://dx.doi.org/10.1111/j.1460-9568.2008.06532.x PMid:19046370   Zaid A, Li R, Luciakova K, Barath P, et al. (1999). On the role of the general transcription factor Sp1 in the activation and repression of diverse mammalian oxidative phosphorylation genes. J. Bioenerg. Biomembr. 31: 129-135. http://dx.doi.org/10.1023/A:1005499727732 PMid:10449239   Zhang X, Du H and Li J (2002). Single Nucleotide Polymorphism of Chicken Heat Shock Protein 70 Gene. 7th World Congress on Genetics Applied to Livestock Production, Montpellier.   Zhen FS, Du HL, Xu HP, Luo QB, et al. (2006). Tissue and allelic-specific expression of hsp70 gene in chickens: basal and heat-stress-induced mRNA level quantified with real-time reverse transcriptase polymerase chain reaction. Br. Poult. Sci. 47: 449-455. http://dx.doi.org/10.1080/00071660600827690 PMid:16905471
2011
H. P. Xu, Zeng, H., Zhang, D. X., Jia, X. L., Luo, C. L., Fang, M. X., Nie, Q. H., and Zhang, X. Q., Polymorphisms associated with egg number at 300 days of age in chickens, vol. 10, pp. 2279-2289, 2011.
Al Kahtane, Chaiseha Y and El Halawani M (2003). Dopaminergic regulation of avian prolactin gene transcription. J. Mol. Endocrinol. 31: 185-196. http://dx.doi.org/10.1677/jme.0.0310185 PMid:12914535 Caldwell SR, Johnson AF, Yule TD, Grimes JL, et al. (1999). Increased egg production in juvenile turkey hens after active immunization with vasoactive intestinal peptide. Poult. Sci. 78: 899-901. PMid:10438136 Chaiseha Y, Youngren OM and El Halawani ME (2004). Expression of vasoactive intestinal peptide receptor messenger RNA in the hypothalamus and pituitary throughout the turkey reproductive cycle. Biol. Reprod. 70: 593-599. http://dx.doi.org/10.1095/biolreprod.103.022715 PMid:14568918 Chatterjee R, Sharma RP, Bhattacharya TK, Niranjan M, et al. (2010). Microsatellite variability and its relationship with growth, egg production, and immunocompetence traits in chickens. Biochem. Genet. 48: 71-82. http://dx.doi.org/10.1007/s10528-009-9296-5 PMid:20094843 Chen CF, Shiue YL, Yen CJ, Tang PC, et al. (2007). Laying traits and underlying transcripts, expressed in the hypothalamus and pituitary gland, that were associated with egg production variability in chickens. Theriogenology 68: 1305-1315. http://dx.doi.org/10.1016/j.theriogenology.2007.08.032 PMid:17931698 Cui JX, Du HL, Liang Y, Deng XM, et al. (2006). Association of polymorphisms in the promoter region of chicken prolactin with egg production. Poult. Sci. 85: 26-31. PMid:16493942 Dhillon SS, Gingerich S and Belsham DD (2009). Neuropeptide Y induces gonadotropin-releasing hormone gene expression directly and through conditioned medium from mHypoE-38 NPY neurons. Regul. Pept. 156: 96-103. http://dx.doi.org/10.1016/j.regpep.2009.04.005 PMid:19371763 Dunn IC, Miao YW, Morris A, Romanov MN, et al. (2004). A study of association between genetic markers in candidate genes and reproductive traits in one generation of a commercial broiler breeder hen population. Heredity 92: 128-134. http://dx.doi.org/10.1038/sj.hdy.6800396 PMid:14679392 El Halawani ME, Silsby JL, Rozenboim I and Pitts GR (1995). Increased egg production by active immunization against vasoactive intestinal peptide in the turkey (Meleagris gallopavo). Biol. Reprod. 52: 179-183. http://dx.doi.org/10.1095/biolreprod52.1.179 PMid:7711177 El Halawani ME, Pitts GR, Sun S, Silsby JL, et al. (1996). Active immunization against vasoactive intestinal peptide prevents photo-induced prolactin secretion in turkeys. Gen. Comp. Endocrinol. 104: 76-83. http://dx.doi.org/10.1006/gcen.1996.0143 PMid:8921358 Emsley A (1997). Integration of classical and molecular approaches of genetic selection: egg production. Poult. Sci. 76: 1127-1130. PMid:9251140 Hansen C, Yi N, Zhang YM, Xu S, et al. (2005). Identification of QTL for production traits in chickens. Anim. Biotechnol. 16: 67-79. http://dx.doi.org/10.1081/ABIO-200055016 PMid:15926264 Hirayama S, Bajari TM, Nimpf J and Schneider WJ (2003). Receptor-mediated chicken oocyte growth: differential expression of endophilin isoforms in developing follicles. Biol. Reprod. 68: 1850-1860. http://dx.doi.org/10.1095/biolreprod.102.012427 PMid:12606338 Kim MH, Seo DS and Ko Y (2004). Relationship between egg productivity and insulin-like growth factor-I genotypes in Korean native Ogol chickens. Poult. Sci. 83: 1203-1208. PMid:15285513 Klenke U, Constantin S and Wray S (2010). Neuropeptide Y directly inhibits neuronal activity in a subpopulation of gonadotropin-releasing hormone-1 neurons via Y1 receptors. Endocrinology 151: 2736-2746. http://dx.doi.org/10.1210/en.2009-1198 PMid:20351316    PMCid:2875836 Kuo YM, Shiue YL, Chen CF, Tang PC, et al. (2005). Proteomic analysis of hypothalamic proteins of high and low egg production strains of chickens. Theriogenology 64: 1490-1502. http://dx.doi.org/10.1016/j.theriogenology.2005.03.020 PMid:16182870 Leska A and Dusza L (2007). Seasonal changes in the hypothalamo-pituitary-gonadal axis in birds. Reprod. Biol. 7: 99- 126. PMid:17873963 Lewis PD and Gous RM (2006). Effect of final photoperiod and twenty-week body weight on sexual maturity and early egg production in broiler breeders. Poult. Sci. 85: 377-383. PMid:16553263 Liu HK, Lilburn MS, Koyyeri B, Anderson JW, et al. (2004). Preovulatory surge patterns of luteinizing hormone, progesterone, and estradiol-17beta in broiler breeder hens fed ad libitum or restricted fed. Poult. Sci. 83: 823-829. PMid:15141842 Luo PT, Yang RQ and Yang N (2007). Estimation of genetic parameters for cumulative egg numbers in a broiler dam line by using a random regression model. Poult. Sci. 86: 30-36. PMid:17179412 Proudman JA, Scanes CG, Johannsen SA, Berghman LR, et al. (2006). Comparison of the ability of the three endogenous GnRHs to stimulate release of follicle-stimulating hormone and luteinizing hormone in chickens. Domest. Anim. Endocrinol. 31: 141-153. http://dx.doi.org/10.1016/j.domaniend.2005.10.002 PMid:16300920 Reddy IJ, David CG and Raju SS (2007). Effect of suppression of plasma prolactin on luteinizing hormone concentration, intersequence pause days and egg production in domestic hen. Domest. Anim. Endocrinol. 33: 167-175. http://dx.doi.org/10.1016/j.domaniend.2006.05.002 PMid:16787735 Reutens AT and Begley CG (2002). Endophilin-1: a multifunctional protein. Int. J. Biochem. Cell Biol. 34: 1173-1177. http://dx.doi.org/10.1016/S1357-2725(02)00063-8 Rodríguez S, Gaunt TR, Dennison E, Chen XH, et al. (2006). Replication of IGF2-INS-TH*5 haplotype effect on obesity in older men and study of related phenotypes. Eur. J. Hum. Genet. 14: 109-116. PMid:16251897 Sartsoongnoen N, Kosonsiriluk S, Prakobsaeng N, Songserm T, et al. (2008). The dopaminergic system in the brain of the native Thai chicken, Gallus domesticus: localization and differential expression across the reproductive cycle. Gen. Comp. Endocrinol. 159: 107-115. http://dx.doi.org/10.1016/j.ygcen.2008.08.002 PMid:18765240 Sasaki O, Odawara S, Takahashi H, Nirasawa K, et al. (2004). Genetic mapping of quantitative trait loci affecting body weight, egg character and egg production in F2 intercross chickens. Anim. Genet. 35: 188-194. http://dx.doi.org/10.1111/j.1365-2052.2004.01133.x PMid:15147389 Schmidt A, Wolde M, Thiele C, Fest W, et al. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401: 133-141. http://dx.doi.org/10.1038/43613 PMid:10490020 Schreiweis MA, Hester PY, Settar P and Moody DE (2006). Identification of quantitative trait loci associated with egg quality, egg production, and body weight in an F2 resource population of chickens. Anim. Genet. 37: 106-112. http://dx.doi.org/10.1111/j.1365-2052.2005.01394.x PMid:16573524 Shacham S, Harris D, Ben-Shlomo H, Cohen I, et al. (2001). Mechanism of GnRH receptor signaling on gonadotropin release and gene expression in pituitary gonadotrophs. Vitam. Horm. 63: 63-90. http://dx.doi.org/10.1016/S0083-6729(01)63003-6 Sharp PJ (2005). Photoperiodic regulation of seasonal breeding in birds. Ann. Acad. Sci. 1040: 189-199. http://dx.doi.org/10.1196/annals.1327.024 PMid:15891024 Shiue YL, Chen LR, Chen CF, Chen YL, et al. (2006). Identification of transcripts related to high egg production in the chicken hypothalamus and pituitary gland. Theriogenology 66: 1274-1283. http://dx.doi.org/10.1016/j.theriogenology.2006.03.037 PMid:16725186 Soñez MC, Soñez CA, Mugnaini MT, Haedo M, et al. (2010). Effects of differential pulse frequencies of chicken gonadotrophin-releasing hormone-I (cGnRH-I) on laying hen gonadotrope responses in vitro. Biotech. Histochem. 85: 355-363. http://dx.doi.org/10.3109/10520290903368774 Tuiskula-Haavisto M, Honkatukia M, Vilkki J, de Koning DJ, et al. (2002). Mapping of quantitative trait loci affecting quality and production traits in egg layers. Poult. Sci. 81: 919-927. PMid:12162350 Tuiskula-Haavisto M, de Koning DJ, Honkatukia M, Schulman NF, et al. (2004). Quantitative trait loci with parent-of-origin effects in chicken. Genet. Res. 84: 57-66. http://dx.doi.org/10.1017/S0016672304006950 PMid:15663259 Xu H, Shen X, Zhou M, Fang M, et al. (2010a). The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet. 11: 17. http://dx.doi.org/10.1186/1471-2156-11-17 PMid:20199684    PMCid:2848132 Xu HP, Shen X, Zhou M, Luo CL, et al. (2010b). The dopamine D2 receptor gene polymorphisms associated with chicken broodiness. Poult. Sci. 89: 428-438. http://dx.doi.org/10.3382/ps.2009-00428 PMid:20181857 Zhang K, Calabrese P, Nordborg M and Sun F (2002). Haplotype block structure and its applications to association studies: power and study designs. Am. J. Hum. Genet. 71: 1386-1394. http://dx.doi.org/10.1086/344780 PMid:12439824 Zhou M, Lei M, Rao Y, Nie Q, et al. (2008a). Polymorphisms of vasoactive intestinal peptide receptor-1 gene and their genetic effects on broodiness in chickens. Poult. Sci. 87: 893-903. http://dx.doi.org/10.3382/ps.2007-00495 PMid:18420979 Zhou M, Liang F, Rao Y and Zeng H (2008b). Association of twelve polymorphisms of the VIPR-1 gene with chicken early egg production traits. Chinese J. Anim. Vet. Sci. 39: 1147-1152. Zhou M, Du Y, Nie Q, Liang Y, et al. (2010). Associations between polymorphisms in the chicken VIP gene, egg production and broody traits. Br. Poult. Sci. 51: 195-203. http://dx.doi.org/10.1080/00071661003745786 PMid:20461580