Publications

Found 4 results
Filters: Author is D.R. Love  [Clear All Filters]
2012
A. M. George, Taylor, J., and Love, D. R., Microdeletions in 16p11.2 and 13q31.3 associated with developmental delay and generalized overgrowth, vol. 11, pp. 3133-3137, 2012.
Bachmann-Gagescu R, Mefford HC, Cowan C, Glew GM, et al. (2010). Recurrent 200-kb deletions of 16p11.2 that include the SH2B1 gene are associated with developmental delay and obesity. Genet. Med. 12: 641-647. http://dx.doi.org/10.1097/GIM.0b013e3181ef4286 PMid:20808231   Ballif BC, Hornor SA, Jenkins E, Madan-Khetarpal S, et al. (2007). Discovery of a previously unrecognized microdeletion syndrome of 16p11.2-p12.2. Nat. Genet. 39: 1071-1073. http://dx.doi.org/10.1038/ng2107 PMid:17704777   Battaglia A, Novelli A, Bernardini L, Igliozzi R, et al. (2009). Further characterization of the new microdeletion syndrome of 16p11.2-p12.2. Am. J. Med. Genet. A. 149A: 1200-1204. http://dx.doi.org/10.1002/ajmg.a.32847 PMid:19449418   Bijlsma EK, Gijsbers AC, Schuurs-Hoeijmakers JH, van HA, et al. (2009). Extending the phenotype of recurrent rearrangements of 16p11.2: deletions in mentally retarded patients without autism and in normal individuals. Eur. J. Med. Genet. 52: 77-87. http://dx.doi.org/10.1016/j.ejmg.2009.03.006 PMid:19306953   Bochukova EG, Huang N, Keogh J, Henning E, et al. (2010). Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 463: 666-670. http://dx.doi.org/10.1038/nature08689 PMid:19966786 PMCid:3108883   Firth HV, Richards SM, Bevan AP, Clayton S, et al. (2009). DECIPHER: Database of chromosomal imbalance and phenotype in humans using ensembl resources. Am. J. Hum. Genet. 84: 524-533. http://dx.doi.org/10.1016/j.ajhg.2009.03.010 PMid:19344873 PMCid:2667985   Fombonne E (2002). Epidemiological trends in rates of autism. Mol. Psychiatry 7 (Suppl 2): S4-S6. http://dx.doi.org/10.1038/sj.mp.4001162 PMid:12142931   Font-Llitjos M, Jimenez-Vidal M, Bisceglia L, Di Perna M, et al. (2005). New insights into cystinuria: 40 new mutations, genotype-phenotype correlation, and digenic inheritance causing partial phenotype. J. Med. Genet. 42: 58-68. http://dx.doi.org/10.1136/jmg.2004.022244 PMid:15635077 PMCid:1735913   Girirajan S, Rosenfeld JA, Cooper GM, Antonacci F, et al. (2010). A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat. Genet. 42: 203-209. http://dx.doi.org/10.1038/ng.534 PMid:20154674 PMCid:2847896   Hempel M, Rivera BN, Wagenstaller J, Lederer G, et al. (2009). Microdeletion syndrome 16p11.2-p12.2: clinical and molecular characterization. Am. J. Med. Genet. A. 149A: 2106-2112. http://dx.doi.org/10.1002/ajmg.a.33042 PMid:19676056   Kumar RA, Karamohamed S, Sudi J, Conrad DF, et al. (2008). Recurrent 16p11.2 microdeletions in autism. Hum. Mol. Genet. 17: 628-638. http://dx.doi.org/10.1093/hmg/ddm376 PMid:18156158   Marshall CR, Noor A, Vincent JB, Lionel AC, et al. (2008). Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82: 477-488. http://dx.doi.org/10.1016/j.ajhg.2007.12.009 PMid:18252227 PMCid:2426913   Mefford HC, Muhle H, Ostertag P, von Spiczak S, et al. (2010). Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 6: e1000962. http://dx.doi.org/10.1371/journal.pgen.1000962 PMid:20502679 PMCid:2873910   Miller DT, Adam MP, Aradhya S, Biesecker LG, et al. (2010). Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86: 749-764. http://dx.doi.org/10.1016/j.ajhg.2010.04.006 PMid:20466091 PMCid:2869000   Quélin C, Bendavid C, Dubourg C, de la Rochebrochard C, et al. (2009). Twelve new patients with 13q deletion syndrome: genotype-phenotype analyses in progress. Eur. J. Med. Genet. 52: 41-46. http://dx.doi.org/10.1016/j.ejmg.2008.10.002 PMid:19022413   Sharp AJ, Mefford HC, Li K, Baker C, et al. (2008). A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat. Genet. 40: 322-328. http://dx.doi.org/10.1038/ng.93 PMid:18278044 PMCid:2365467   Shi W and Filmus J (2009). A patient with the Simpson-Golabi-Behmel syndrome displays a loss-of-function point mutation in GPC3 that inhibits the attachment of this proteoglycan to the cell surface. Am. J. Med. Genet. A. 149A: 552-554. http://dx.doi.org/10.1002/ajmg.a.32669 PMid:19215053   Weiss LA, Shen Y, Korn JM, Arking DE, et al. (2008). Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358: 667-675. http://dx.doi.org/10.1056/NEJMoa075974 PMid:18184952   Woodberry KA, Giuliano AJ and Seidman LJ (2008). Premorbid IQ in schizophrenia: a meta-analytic review. Am. J. Psychiatry 165: 579-587. http://dx.doi.org/10.1176/appi.ajp.2008.07081242 PMid:18413704
2011
R. A. Johnson, Hellens, R. P., and Love, D. R., A transient assay for recombination demonstrates that Arabidopsis SNM1 and XRCC3 enhance non-homologous recombination, vol. 10, pp. 2104-2132, 2011.
Bleuyard JY and White CI (2004). The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis. EMBO J. 23: 439-449. http://dx.doi.org/10.1038/sj.emboj.7600055 PMid:14726957    PMCid:1271761 Bleuyard JY, Gallego ME and White CI (2006). Recent advances in understanding of the DNA double-strand break repair machinery of plants. DNA Repair 5: 1-12. http://dx.doi.org/10.1016/j.dnarep.2005.08.017 PMid:16202663 Brenneman MA, Weiss AE, Nickoloff JA and Chen DJ (2000). XRCC3 is required for efficient repair of chromosome breaks by homologous recombination. Mutat. Res. 459: 89-97. PMid:10725659 Brenneman MA, Wagener BM, Miller CA, Allen C, et al. (2002). XRCC3 controls the fidelity of homologous recombination: roles for XRCC3 in late stages of recombination. Mol. Cell 10: 387-395. http://dx.doi.org/10.1016/S1097-2765(02)00595-6 Britt AB and May GD (2003). Re-engineering plant gene targeting. Trends Plant Sci. 8: 90-95. http://dx.doi.org/10.1016/S1360-1385(03)00002-5 Childs KL, Hamilton JP, Zhu W, Ly E, et al. (2007). The TIGR plant transcript assemblies database. Nucleic Acids Res. 35: D846-D851. http://dx.doi.org/10.1093/nar/gkl785 PMid:17088284    PMCid:1669722 Chung BY, Simons C, Firth AE, Brown CM, et al. (2006). Effect of 5' UTR introns on gene expression in Arabidopsis thaliana. BMC Genomics 7: 120. http://dx.doi.org/10.1186/1471-2164-7-120 PMid:16712733    PMCid:1482700 Coates D, Taliercio EW and Gelvin SB (1987). Chromatin structure of integrated T-DNA in crown gall tumors. Plant Mol. Biol. 8: 159-168. http://dx.doi.org/10.1007/BF00025327 Cotsaftis O and Guiderdoni E (2005). Enhancing gene targeting efficiency in higher plants: rice is on the move. Transgenic Res. 14: 1-14. http://dx.doi.org/10.1007/s11248-004-4066-y PMid:15865044 Di Primo C, Galli A, Cervelli T, Zoppe M, et al. (2005). Potentiation of gene targeting in human cells by expression of Saccharomyces cerevisiae Rad52. Nucleic Acids Res. 33: 4639-4648. http://dx.doi.org/10.1093/nar/gki778 PMid:16106043    PMCid:1187822 Dray E, Siaud N, Dubois E and Doutriaux MP (2006). Interaction between Arabidopsis Brca2 and its partners Rad51, Dmc1, and Dss1. Plant Physiol. 140: 1059-1069. http://dx.doi.org/10.1104/pp.105.075838 PMid:16415210    PMCid:1400560 Durrant WE, Wang S and Dong X (2007). Arabidopsis SNI1 and RAD51D regulate both gene transcription and DNA recombination during the defense response. Proc. Natl. Acad. Sci. U. S. A. 104: 4223-4227. http://dx.doi.org/10.1073/pnas.0609357104 PMid:17360504    PMCid:1820736 Forget AL, Bennett BT and Knight KL (2004). Xrcc3 is recruited to DNA double strand breaks early and independent of Rad51. J. Cell. Biochem. 93: 429-436. http://dx.doi.org/10.1002/jcb.20232 PMid:15372620 Fuller LF and Painter RB (1988). A Chinese hamster ovary cell line hypersensitive to ionizing radiation and deficient in repair replication. Mutat. Res. 193: 109-121. PMid:3347204 Gelvin SB (2003). Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 67: 16-37, table. http://dx.doi.org/10.1128/MMBR.67.1.16-37.2003 PMid:12626681    PMCid:150518 Gorbunova V, Avivi-Ragolski N, Shalev G, Kovalchuk I, et al. (2000). A new hyperrecombinogenic mutant of Nicotiana tabacum. Plant J. 24: 601-611. http://dx.doi.org/10.1046/j.1365-313x.2000.00905.x PMid:11123799 Hanin M, Mengiste T, Bogucki A and Paszkowski J (2000). Elevated levels of intrachromosomal homologous recombination in Arabidopsis overexpressing the MIM gene. Plant J. 24: 183-189. http://dx.doi.org/10.1046/j.1365-313x.2000.00867.x PMid:11069693 Hellens RP, Allan AC, Friel EN, Bolitho K, et al. (2005). Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1: 13. http://dx.doi.org/10.1186/1746-4811-1-13 PMid:16359558    PMCid:1334188 Hemphill AW, Bruun D, Thrun L, Akkari Y, et al. (2008). Mammalian SNM1 is required for genome stability. Mol. Genet. Metab. 94: 38-45. http://dx.doi.org/10.1016/j.ymgme.2007.11.012 PMid:18180189    PMCid:2413150 Hrouda M and Paszkowski J (1994). High fidelity extrachromosomal recombination and gene targeting in plants. Mol. Gen. Genet. 243: 106-111. http://dx.doi.org/10.1007/BF00283882 Iida S and Terada R (2005). Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol. Biol. 59: 205-219. http://dx.doi.org/10.1007/s11103-005-2162-x PMid:16217613 Ilnytskyy Y, Boyko A and Kovalchuk I (2004). Luciferase-based transgenic recombination assay is more sensitive than beta-glucoronidase-based. Mutat. Res. 559: 189-197. PMid:15066586 Kim SI and Gelvin SB (2007). Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J. 51: 779-791. http://dx.doi.org/10.1111/j.1365-313X.2007.03183.x PMid:17605756 Kimura S, Saotome A, Uchiyama Y, Mori Y, et al. (2005). The expression of the rice (Oryza sativa L.) homologue of Snm1 is induced by DNA damages. Biochem. Biophys. Res. Commun. 329: 668-672. http://dx.doi.org/10.1016/j.bbrc.2005.01.161 PMid:15737637 Kurumizaka H, Ikawa S, Nakada M, Eda K, et al. (2001). Homologous-pairing activity of the human DNA-repair proteins Xrcc3.Rad51C. Proc. Natl. Acad. Sci. U. S. A. 98: 5538-5543. http://dx.doi.org/10.1073/pnas.091603098 PMid:11331762    PMCid:33248 Li L, Santerre-Ayotte S, Boivin EB, Jean M, et al. (2004). A novel reporter for intrachromosomal homoeologous recombination in Arabidopsis thaliana. Plant J. 40: 1007-1015. http://dx.doi.org/10.1111/j.1365-313X.2004.02270.x PMid:15584964 Li X and Moses RE (2003). The β-lactamase motif in Snm1 is required for repair of DNA double-strand breaks caused by interstrand crosslinks in S. cerevisiae. DNA Repair 2: 121-129. http://dx.doi.org/10.1016/S1568-7864(02)00192-1 Li X, Hejna J and Moses RE (2005). The yeast Snm1 protein is a DNA 5’-exonuclease. DNA Repair 4: 163-170. http://dx.doi.org/10.1016/j.dnarep.2004.08.012 PMid:15590324 Lyznik LA, McGee JD, Tung PY, Bennetzen JL, et al. (1991). Homologous recombination between plasmid DNA molecules in maize protoplasts. Mol. Gen. Genet. 230: 209-218. http://dx.doi.org/10.1007/BF00290670 Molinier J, Stamm ME and Hohn B (2004). SNM-dependent recombinational repair of oxidatively induced DNA damage in Arabidopsis thaliana. EMBO Rep. 5: 994-999. http://dx.doi.org/10.1038/sj.embor.7400256 PMid:15448639    PMCid:1299156 Orel N and Puchta H (2003). Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution. Plant Mol. Biol. 51: 523-531. http://dx.doi.org/10.1023/A:1022324205661 PMid:12650618 Osakabe K, Yoshioka T, Ichikawa H and Toki S (2002). Molecular cloning and characterization of RAD51-like genes from Arabidopsis thaliana. Plant Mol. Biol. 50: 71-81. http://dx.doi.org/10.1023/A:1016047231597 Puchta H and Hohn B (1991). A transient assay in plant cells reveals a positive correlation between extrachromosomal recombination rates and length of homologous overlap. Nucleic Acids Res. 19: 2693-2700. http://dx.doi.org/10.1093/nar/19.10.2693 PMid:2041745    PMCid:328188 Reiss B, Klemm M, Kosak H and Schell J (1996). RecA protein stimulates homologous recombination in plants. Proc. Natl. Acad. Sci. U. S. A. 93: 3094-3098. http://dx.doi.org/10.1073/pnas.93.7.3094 Schuermann D, Molinier J, Fritsch O and Hohn B (2005). The dual nature of homologous recombination in plants. Trends Genet. 21: 172-181. http://dx.doi.org/10.1016/j.tig.2005.01.002 PMid:15734576 Shaked H, Melamed-Bessudo C and Levy AA (2005). High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc. Natl. Acad. Sci. U. S. A. 102: 12265-12269. http://dx.doi.org/10.1073/pnas.0502601102 PMid:16093317    PMCid:1189313 Shaked H, Avivi-Ragolsky N and Levy AA (2006). Involvement of the Arabidopsis SWI2/SNF2 chromatin remodeling gene family in DNA damage response and recombination. Genetics 173: 985-994. http://dx.doi.org/10.1534/genetics.105.051664 PMid:16547115    PMCid:1526515 Shalev G, Sitrit Y, Avivi-Ragolski N, Lichtenstein C, et al. (1999). Stimulation of homologous recombination in plants by expression of the bacterial resolvase RuvC. Proc. Natl. Acad Sci U. S. A. 96: 7398-7402. http://dx.doi.org/10.1073/pnas.96.13.7398 Tebbs RS, Zhao Y, Tucker JD, Scheerer JB, et al. (1995). Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene. Proc. Natl. Acad. Sci. U. S. A. 92: 6354-6358. http://dx.doi.org/10.1073/pnas.92.14.6354 Ursin VM, Irvine JM, Hiatt WR and Shewmaker CK (1991). Developmental analysis of elongation factor-1 alpha expression in transgenic tobacco. Plant Cell 3: 583-591. PMid:1841719    PMCid:160026
2010
R. Marquis-Nicholson, Glamuzina, E., Prosser, D., Wilson, C., and Love, D. R., Citrullinemia type I: molecular screening of the ASS1 gene by exonic sequencing and targeted mutation analysis, vol. 9. pp. 1483-1489, 2010.
Dimmock DP, Trapane P, Feigenbaum A, Keegan CE, et al. (2008). The role of molecular testing and enzyme analysis in the management of hypomorphic citrullinemia. Am. J. Med. Genet. A 146A: 2885-2890. http://dx.doi.org/10.1002/ajmg.a.32527 PMid:18925679 PMCid:2597641   Engel K, Hohne W and Haberle J (2009). Mutations and polymorphisms in the human argininosuccinate synthetase (ASS1) gene. Hum. Mutat. 30: 300-307. http://dx.doi.org/10.1002/humu.20847 PMid:19006241   Häberle J, Pauli S, Linnebank M, Kleijer WJ, et al. (2002). Structure of the human argininosuccinate synthetase gene and an improved system for molecular diagnostics in patients with classical and mild citrullinemia. Hum. Genet. 110: 327-333. http://dx.doi.org/10.1007/s00439-002-0686-6 PMid:11941481   Häberle J, Pauli S, Schmidt E, Schulze-Eilfing B, et al. (2003). Mild citrullinemia in Caucasians is an allelic variant of argininosuccinate synthetase deficiency (citrullinemia type 1). Mol. Genet. Metab. 80: 302-306. http://dx.doi.org/10.1016/j.ymgme.2003.08.002 PMid:14680976   Okayama N, Fujimura K, Nakamura J, Suehiro Y, et al. (2004). Evaluation of a new efficient procedure for single-nucleotide polymorphism genotyping: tetra-primer amplification refractory mutation system-polymerase chain reaction. Clin. Chem. Lab. Med. 42: 13-16. http://dx.doi.org/10.1515/CCLM.2004.004 PMid:15061374   Sander J, Janzen N, Sander S, Steuerwald U, et al. (2003). Neonatal screening for citrullinaemia. Eur. J. Pediatr. 162: 417-420. PMid:12684898   Waisbren SE, Albers S, Amato S, Ampola M, et al. (2003). Effect of expanded newborn screening for biochemical genetic disorders on child outcomes and parental stress. JAMA 290: 2564-2572. http://dx.doi.org/10.1001/jama.290.19.2564 PMid:14625333   Ye S, Dhillon S, Ke X, Collins AR, et al. (2001). An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 29: E88. http://dx.doi.org/10.1093/nar/29.17.e88 PMid:11522844 PMCid:55900
F. Ashton, O’Connor, R., Love, J. M., Doherty, E., Aftimos, S., George, A., and Love, D. R., Molecular characterisation of a der(Y)t(Xp;Yp) with Xp functional disomy and sex reversal, vol. 9. pp. 1815-1823, 2010.
Achermann JC, Ito M, Ito M, Hindmarsh PC, et al. (1999). A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat. Genet. 22: 125-126.http://dx.doi.org/10.1038/9629PMid:10369247 Achermann JC, Ozisik G, Ito M, Orun UA, et al. (2002). Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dose-dependent manner. J. Clin. Edocrinol. Metab. 87: 1829-1833.http://dx.doi.org/10.1210/jc.87.4.1829PMid:11932325 Bajalica S, Blennow E, Tsezou A, Galla-Voumvouraki A, et al. (1995). Partial disomy of Xp and the presence of SRY in a phenotypic female. J. Med. Genet. 32: 987-990.http://dx.doi.org/10.1136/jmg.32.12.987PMid:8825932 PMCid:1051785 Barbaro M, Oscarson M, Schoumans J, Staaf J, et al. (2007). Isolated 46,XY gonadal dysgenesis in two sisters caused by a Xp21.2 interstitial duplication containing the DAX1 gene. J. Clin. Endocrinol. Metab. 92: 3305-3313.http://dx.doi.org/10.1210/jc.2007-0505PMid:17504899 Barbaro M, Cicognani A, Balsamo A, Lofgren A, et al. (2008). Gene dosage imbalances in patients with 46,XY gonadal DSD detected by an in-house-designed synthetic probe set for multiplex ligation-dependent probe amplification analysis. Clin. Genet. 73: 453-464.http://dx.doi.org/10.1111/j.1399-0004.2008.00980.xPMid:18384427 Bardoni B, Floridia G, Guioli S, Peverali G, et al. (1993). Functional disomy of Xp22-pter in three males carrying a portion of Xp translocated to Yq. Hum. Genet. 91: 333-338.http://dx.doi.org/10.1007/BF00217352PMid:8099057 Bardoni B, Zanaria E, Guioli S, Floridia G, et al. (1994). A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat. Genet. 7: 497-501.http://dx.doi.org/10.1038/ng0894-497PMid:7951319 Biason-Lauber A, Konrad D, Navratil F and Schoenle EJ (2004). A WNT4 mutation associated with Mullerian-duct regression and virilization in a 46,XX woman. N. Engl. J. Med. 351: 792-798.http://dx.doi.org/10.1056/NEJMoa040533PMid:15317892 Biason-Lauber A, De Filippo G, Konrad D, Scarano G, et al. (2007). WNT4 deficiency - a clinical phenotype distinct from the classic Mayer-Rokitansky-Kuster-Hauser syndrome: a case report. Hum. Reprod. 22: 224-229.http://dx.doi.org/10.1093/humrep/del360PMid:16959810 Cameron FJ, Hageman RM, Cooke-Yarborough C, Kwok C, et al. (1996). A novel germ line mutation in SOX9 causes familial campomelic dysplasia and sex reversal. Hum. Mol. Genet. 5: 1625-1630.http://dx.doi.org/10.1093/hmg/5.10.1625PMid:8894698 Canto P, Soderlund D, Reyes E and Mendez JP (2004). Mutations in the desert hedgehog (DHH) gene in patients with 46,XY complete pure gonadal dysgenesis. J. Clin. Endocrinol. Metab. 89: 4480-4483.http://dx.doi.org/10.1210/jc.2004-0863PMid:15356051 Chan WY (1998). Molecular genetic, biochemical, and clinical implications of gonadotropin receptor mutations. Mol. Genet. Metab. 63: 75-84.http://dx.doi.org/10.1006/mgme.1997.2650PMid:9562960 Chen W, Kalscheuer V, Tzschach A, Menzel C, et al. (2008). Mapping translocation breakpoints by next-generation sequencing. Genome Res. 18: 1143-1149.http://dx.doi.org/10.1101/gr.076166.108PMid:18326688 PMCid:2493403 Correa RV, Domenice S, Bingham NC, Billerbeck AE, et al. (2004). A microdeletion in the ligand binding domain of human steroidogenic factor 1 causes XY sex reversal without adrenal insufficiency. J Clin. Endocrinol. Metab. 89: 1767-1772.http://dx.doi.org/10.1210/jc.2003-031240PMid:15070943 Erdogan F, Chen W, Kirchhoff M, Kalscheuer VM, et al. (2006). Impact of low copy repeats on the generation of balanced and unbalanced chromosomal aberrations in mental retardation. Cytogenet. Genome Res. 115: 247-253.http://dx.doi.org/10.1159/000095921PMid:17124407 Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, et al. (1994). Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372: 525-530.http://dx.doi.org/10.1038/372525a0PMid:7990924 Hasegawa T, Fukami M, Sato N, Katsumata N, et al. (2004). Testicular dysgenesis without adrenal insufficiency in a 46,XY patient with a heterozygous inactive mutation of steroidogenic factor-1. J. Clin. Endocrinol. Metab. 89: 5930-5935.http://dx.doi.org/10.1210/jc.2004-0935PMid:15579739 Huang B, Wang S, Ning Y, Lamb AN, et al. (1999). Autosomal XX sex reversal caused by duplication of SOX9. Am. J. Med. Genet. 87: 349-353.http://dx.doi.org/10.1002/(SICI)1096-8628(19991203)87:4<349::AID-AJMG13>3.0.CO;2-N Jordan BK, Mohammed M, Ching ST, Delot E, et al. (2001). Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am. J. Hum. Genet. 68: 1102-1109.http://dx.doi.org/10.1086/320125PMid:11283799 PMCid:1226091 Kohany O, Gentles AJ, Hankus L and Jurka J (2006). Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7: 474.http://dx.doi.org/10.1186/1471-2105-7-474PMid:17064419 PMCid:1634758 Kohler B, Lin L, Ferraz-de-Souza B, Wieacker P, et al. (2008). Five novel mutations in steroidogenic factor 1 (SF1, NR5A1) in 46,XY patients with severe underandrogenization but without adrenal insufficiency. Hum. Mutat. 29: 59-64.http://dx.doi.org/10.1002/humu.20588PMid:17694559 PMCid:2359628 Le Caignec C, Delnatte C, Vermeesch JR, Boceno M, et al. (2007). Complete sex reversal in a WAGR syndrome patient. Am. J. Med. Genet. A 143A: 2692-2695.http://dx.doi.org/10.1002/ajmg.a.31997PMid:17935232 Lin L, Philibert P, Ferraz-de-Souza B, Kelberman D, et al. (2007). Heterozygous missense mutations in steroidogenic factor 1 (SF1/Ad4BP, NR5A1) are associated with 46,XY disorders of sex development with normal adrenal function. J. Clin. Endocrinol. Metab. 92: 991-999.http://dx.doi.org/10.1210/jc.2006-1672PMid:17200175 PMCid:1872053 Mallet D, Bretones P, Michel-Calemard L, Dijoud F, et al. (2004). Gonadal dysgenesis without adrenal insufficiency in a 46,XY patient heterozygous for the nonsense C16X mutation: a case of SF1 haploinsufficiency. J. Clin. Endocrinol. Metab. 89: 4829-4832.http://dx.doi.org/10.1210/jc.2004-0670PMid:15472171 Muscatelli F, Strom TM, Walker AP, Zanaria E, et al. (1994). Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372: 672-676.http://dx.doi.org/10.1038/372672a0PMid:7990958 Ogata T, Hawkins JR, Taylor A, Matsuo N, et al. (1992). Sex reversal in a child with a 46,X,Yp+ karyotype: support for the existence of a gene(s), located in distal Xp, involved in testis formation. J. Med. Genet. 29: 226-230.http://dx.doi.org/10.1136/jmg.29.4.226PMid:1583640 PMCid:1015917 Sanlaville D, Vialard F, Thepot F, Vue-Droy L, et al. (2004). Functional disomy of Xp including duplication of DAX1 gene with sex reversal due to t(X;Y)(p21.2;p11.3). Am. J. Med. Genet. A 128A: 325-330.http://dx.doi.org/10.1002/ajmg.a.30115PMid:15216557 Tzschach A, Chen W, Erdogan F, Hoeller A, et al. (2008). Characterization of interstitial Xp duplications in two families by tiling path array CGH. Am. J. Med. Genet. A 146A: 197-203.http://dx.doi.org/10.1002/ajmg.a.32070PMid:18076117 Umehara F, Tate G, Itoh K, Yamaguchi N, et al. (2000). A novel mutation of desert hedgehog in a patient with 46,XY partial gonadal dysgenesis accompanied by minifascicular neuropathy. Am. J. Hum. Genet. 67: 1302-1305.PMid:11017805 PMCid:1288570 Vasquez AI, Rivera H, Mayorquin A, Mejia-Baltodano G, et al. (1999). Sex reversal due to Xp disomy by t(X;Y)(p21;q11). Genet. Couns. 10: 301-304.PMid:10546103 Zanaria E, Muscatelli F, Bardoni B, Strom TM, et al. (1994). An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372: 635-641.http://dx.doi.org/10.1038/372635a0PMid:7990953