Publications

Found 2 results
Filters: Author is F.A. Aravanopoulos  [Clear All Filters]
2011
C. Manescu, Hamamouch, Ν., Maios, C., Harfouche, A., Doulis, A. G., and Aravanopoulos, F. A., Linkage mapping of the Mediterranean cypress, Cupressus sempervirens, based on molecular and morphological markers, vol. 10, pp. 1891-1909, 2011.
Ahuja MR (2009). Genetic constitution and diversity in four narrow endemic redwoods from the family Cupressaceae. Euphytica 165: 5-19. http://dx.doi.org/10.1007/s10681-008-9813-3 Altschul SF, Madden TL, Schäffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389 PMid:9254694    PMCid:146917 Aravanopoulos FA, Zsuffa L and Chong KX (1993). The genetic basis of electrophoretic variation in Salix exigua Nutt. Hereditas 119: 77-88. http://dx.doi.org/10.1111/j.1601-5223.1993.00077.x Bailey NTJ (1961). Introduction to the Mathematical Theory of Genetic Linkage. Clarendon Press, Oxford. Barreneche T, Bodenes C, Lexer C, Trontin JF, et al (1998). A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theor. Appl. Genet. 97: 1090-1103. http://dx.doi.org/10.1007/s001220050996 Bradshaw HD, Villar M, Watson BD, Otto KG, et al. (1994). Molecular genetics of growth and development in Populus. III. A genetic linkage map of a hybrid poplar composed of RFLP, STS, and RAPD markers. Theor. Appl. Genet. 89: 167-178. http://dx.doi.org/10.1007/BF00225137 Brondani RPV, Williams ER, Brondani C and Grattapaglia D (2006). A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol. 6: 1-16. http://dx.doi.org/10.1186/1471-2229-6-20 PMid:16995939    PMCid:1599733 Busconi M, Sebastiani L and Fogher C (2006). Development of SCAR markers for germplasm characterisation in olive tree (Olea europaea L.). Mol. Breed. 17: 59-68. http://dx.doi.org/10.1007/s11032-005-1395-3 Chagné D, Lalanne C, Madur D, Kumar S, et al. (2002). A high density genetic map of maritime pine based on AFLPs. Ann. Forest Sci. 59: 627-636. http://dx.doi.org/10.1051/forest:2002048 Chakravarti A, Lasher LK and Reefer JE (1991). A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128: 175-182. PMid:2060775    PMCid:1204446 Doebley J and Lukens L (1998). Transcriptional regulators and the evolution of plant form. Plant Cell 10: 1075-1082. Available at [http://www.chemweb.com/library/kluwer/pmbrdisplay.exe?jcode=pmbr]. Accessed August 29, 2011. Doulis AG, Harfouche AL and Aravanopoulos FA (2000). Rapid, high quality DNA isolation from cypress (Cupressus sempervirens L.) needles and optimization of the RAPD marker technique. Plant Mol. Biol. Rep. 17: 411-412. http://dx.doi.org/10.1023/A:1007679220683 Fjellstrom RG and Parfitt DE (1994). RFLP inheritance and linkage in walnut. Thear. Appl. Genet. 89: 665-670. http://dx.doi.org/10.1007/BF00223702 Gerendiain AZ, Peltola H, Pulkkinen P, Ikonen VP, et al. (2008). Differences in growth and wood properties between narrow and normal crowned types of Norway spruce grown at narrow spacing in southern Finland. Silva Fenn. 42: 423-437. Gomez A, Aravanopoulos FA, Bueno MA and Alia R (2002). Linkage of random amplified polymorphic DNA markers in Pinus halepensis Mill. Silvae Genet. 51: 196-201. Harfouche AL, Aravanopoulos FA, Doulis AG and Xenopoulos S (2000). Identification of RAPD markers associated with crown form in Cupressus sempervirens by bulked segregant analysis. Forest Genet. 7: 171-178. Hertel H and Kohlstock N (1994). Different genetic structures of two morphological types of Scots pine (Pinus sylvestris L.). Silvae Genet. 43: 268-272. Hulbert SH, Illot TW, Legg EJ, Linkloln SE, et al. (1988). Genetic analysis of the fungus Bremia lactucae using RFLPs. Genetics 120: 947-958. PMid:2906309    PMCid:1203586 Jermstad KD, Bassoni DL, Wheeler NC and Neale DB (1998). A sex-averaged genetic linkage map in coastal Douglas-fir (Pseudotsuga menziesii[Mirb.] Franco var “menziesii”) based on RFLP and RAPD markers. Theor. Appl. Genet. 97: 762-770. http://dx.doi.org/10.1007/s001220050953 Kesseli RV, Paran I and Michelmore RW (1994). Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics 136: 1435-1446. PMid:7912217    PMCid:1205922 Krutovskii KV, Vollmer SS, Sorensen FC, Adams WT, et al. (1998). RAPD genome maps of Douglas-fir. J. Hered. 89: 197-205. http://dx.doi.org/10.1093/jhered/89.3.197 Kuang H, Richardson T, Carson S, Wilcox P, et al. (1999). Genetic analysis of inbreeding depression in plus tree 850.55 of Pinus radiata D. Don. I. Genetic map with distorted markers. Theor. Appl. Genet. 98: 697-703. http://dx.doi.org/10.1007/s001220051123 Li XZ, Yuan XJ, Jiang S, Pan JS, et al. (2008). Detecting QTLs for plant architecture in cucumber (Cucumis sativus L.). Breed. Sci. 58: 453-460. http://dx.doi.org/10.1270/jsbbs.58.453 Lincoln SE, Daly MJ and Lander ES (1993). Constructing Genetic Linkage Maps with MAPMAKER. Version 3.0. Whitehead Institute for Biomedical Research Technical Report. Whitehead Institute, Cambridge. Liu BH (1998). Statistical Genomics: Linkage Mapping and QTL Analysis. CRC Press, Boca Ratton. Mukai Y, Suyama Y, Tsumura Y, Kawahara T, et al. (1995). A linkage map for sugi (Cryptomeria japonica) based on RFLP, RAPD, and isozyme loci. Theor. Appl. Genet. 90: 835-840. http://dx.doi.org/10.1007/BF00222019 Nikaido A, Yoshimaru H, Tsumura Y, Suyama Y, et al. (1999). Segregation distortion for AFLP markers in Cryptomeria japonica. Genes Genet. Syst. 74: 55-59. http://dx.doi.org/10.1266/ggs.74.55 Ohri D and Khoshoo TN (1986). Genome size in gymnosperms. Plant Syst. Evol. 153: 119-132. http://dx.doi.org/10.1007/BF00989421 Pedron L, Baldi P, Hietala AM and La PN (2009). Genotype-specific regulation of cold-responsive genes in cypress (Cupressus sempervirens L.). Gene 437: 45-53. http://dx.doi.org/10.1016/j.gene.2008.12.012 PMid:19374025 Peters JL, Cnudde F and Gerats T (2003). Forward genetics and map-based cloning approaches. Trends Plant Sci. 8: 484-491. http://dx.doi.org/10.1016/j.tplants.2003.09.002 PMid:14557045 Plomion C, O’Malley DM and Durel CE (1995). Genomic analysis in maritime pine (Pinus pinaster). Comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. Theor. Appl. Genet. 90: 1028-1034. http://dx.doi.org/10.1007/BF00222917 Qi X, Stam P and Lindhout P (1996). Comparison and integration of four barley genetic maps. Genome 39: 379-394. http://dx.doi.org/10.1139/g96-049 PMid:18469901 Rameau C, Dènouet D, Fraval F, Hauronge K, et al. (1998). Genetic mapping in pea. 2. Identification of RAPD and SCAR primers linked to genes affecting plant architecture. Theor. Appl. Genet. 97: 916-928. http://dx.doi.org/10.1007/s001220050972 Scotti I, Vendramin GG, Matteotti LS, Scarponi C, et al. (2000). Postglacial recolonization routes for Picea abies K. in Italy as suggested by the analysis of sequence-characterized amplified region (SCAR) markers. Mol. Ecol. 9: 699-708. http://dx.doi.org/10.1046/j.1365-294x.2000.00911.x PMid:10849286 Sebastiani F, Buonamici A, Fineschi S, Racchi ML, et al. (2005). Novel polymorphic nuclear microsatellites in Cupressus sempervirens L. Mol. Ecol. Notes 5: 393-394. http://dx.doi.org/10.1111/j.1471-8286.2005.00938.x Segura V, Durel CE and Costes E (2009). QTL analysis for growth and branching traits annually assessed along the trunk of three-year-old apple hybrids. Acta Hort. 814: 669-674. Sewell MM, Sherman BK and Neale DB (1999). A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151: 321-330. PMid:9872970    PMCid:1460451 Song X and Zhang T (2009). Quantitative trait loci controlling plant architectural traits in cotton. Plant Sci. 177: 317-323. http://dx.doi.org/10.1016/j.plantsci.2009.05.015 Sterck FJ (2005). Woody Tree Architecture. In: Plant Architecture and its Manipulation (Turnbull GN, ed.). Ann. Plant. Rev. 17: 209-237, Blackwell Publ., Oxford. Stuber B, Boller B, Herrmann D, Bauer E, et al. (2006). Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor. Appl. Genet. 113: 661-671. http://dx.doi.org/10.1007/s00122-006-0330-2 PMid:16799808 Van Ooijen JW and Voorips RE (2001). JOINMAP, Version 3.0, Software for the Calculation of Genetic Linkage Maps. Plant Research International, Wageningen. Weng C, Kubisiak TL and Stine M (1998). SCAR markers in a longleaf pine x slash pine F1 family. Forest Genet. 5: 239-247. Xu H, Shi D, Wang J, Xu T, et al. (2008). Isolation and characterization of polymorphic microsatellite markers in Cupressus chenggiana S. Y. Hu (Cupressaceae). Conserv. Genet. 9: 1023-1026. http://dx.doi.org/10.1007/s10592-007-9439-3 Yakubov B, Barazani O and Golan-Goldhirsh A (2005). Combination of SCAR primers and touchdown-PCR for sex identification in Pistacia vera L. Sci. Hort. 103: 473-478. http://dx.doi.org/10.1016/j.scienta.2004.06.008
2010
K. Roubos, Moustakas, M., and Aravanopoulos, F. A., Molecular identification of Greek olive (Olea europaea) cultivars based on microsatellite loci, vol. 9, pp. 1865-1876, 2010.
Baldoni L, Cultrera NG, Mariotti R, Ricciolini C, et al. (2009). A consensus list of microsatellite markers for olive genotyping. Mol. Breed. 24: 213-231. http://dx.doi.org/10.1007/s11032-009-9285-8   Banilas G, Minas J, Gregoriou C, Demoliou C, et al. (2003). Genetic diversity among accessions of an ancient olive variety of Cyprus. Genome 46: 370-376. http://dx.doi.org/10.1139/g03-011 PMid:12834052   Belaj A, Trujillo I, De la Rosa R and Rallo L (2001). Polymorphism and discriminating capacity of randomly amplified polymorphic markers in an olive germplasm bank. J. Am. Soc. Hort. Sci. 126: 64-71.   Belaj A, Satovic Z, Rallo L and Trujillo I (2002). Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA. Theor. Appl. Genet. 105: 638-644. http://dx.doi.org/10.1007/s00122-002-0981-6 PMid:12582515   Besnard G, Khadari B, Villemur P and Bervillé A (2000). Cytoplasmic male sterility in the olive (Olea europaea L.). Theor. Appl. Genet. 100: 1018-1024. http://dx.doi.org/10.1007/s001220051383   Besnard G, Breton C, Baradat P, Khadari B, et al. (2001a). Cultivar identification in olive based on RAPD markers. J. Am. Hort. Sci. 126: 668-675.   Besnard G, Baradat P and Bervillé A (2001b). Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor. Appl. Genet. 102: 251-258. http://dx.doi.org/10.1007/s001220051642   Besnard G, Garcia-Verdugo C, De Casas RR, Treier UA, et al. (2008). Polyploidy in the olive complex (Olea europaea): evidence from flow cytometry and nuclear microsatellite analyses. Ann. Bot. 101: 25-30. http://dx.doi.org/10.1093/aob/mcm275 PMid:18024415 PMCid:2701839   Bracci T, Sebastiani L, Busconi M and Fogher C (2009). SSR markers reveal the uniqueness of olive cultivars from the Italian region of Liguria. Sci. Hortic. 122: 209-215. http://dx.doi.org/10.1016/j.scienta.2009.04.010   Breton C, Pinatel C, Medail F and Bonhomme F (2008). Comparison between classical and Bayesian methods to investigate the history of olive cultivars using SSR-polymorphisms. Plant. Sci. 175: 524-532. http://dx.doi.org/10.1016/j.plantsci.2008.05.025   Carriero F, Fontanazza G, Cellini F and Giorio G (2002). Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theor. Appl. Genet. 104: 301-307. http://dx.doi.org/10.1007/s001220100691 PMid:12582701   Cipriani G, Marrazzo MT, Marconi R, Cimato A, et al. (2002). Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor. Appl. Genet. 104: 223-228. http://dx.doi.org/10.1007/s001220100685 PMid:12582690   De La Rosa R, James CM and Tobutt KR (2002). Isolation and characterization of polymorphic microsatellites in olive (Olea europaea L.) and their transferability to other genera in the Oleaceae. Mol. Ecol. Notes 2: 265-267. http://dx.doi.org/10.1046/j.1471-8286.2002.00217.x   Díaz A, Martín A, Rallo P and De la Rosa R (2006a). Self- and cross incompatibility mechanisms: a strategy to ensure a great variability in olive (Olea europaea L.) populations. Olea 25: 29-33.   Díaz A, De la Rosa R, Martín A and Rallo P (2006b). Development, characterization and inheritance of new microsatellites in olive (Olea europaea L.) and evaluation of their usefulness in cultivar identification and genetic relationship studies. Tree Genet. Genomes 2: 165-175. http://dx.doi.org/10.1007/s11295-006-0041-5   Essadki M, Ouazzani N, Lumaret R and Moumni M (2006). ISSR variation in olive-tree cultivars from Morocco and other Western Countries of the Mediterranean Basin. Genet. Resour. Crop Evol. 53: 475-482. http://dx.doi.org/10.1007/s10722-004-1931-8   Fabbri A, Hormaza JI and Polito VS (1995). Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars. J. Am. Soc. Hortic. Sci. 120: 538-542.   Gomes S, Martins-Lopes P, Lopes J and Guedes-Pinto H (2009). Assessing genetic diversity in Olea europaea L. using ISSR and SSR markers. Plant. Mol. Biol. Rep. 27: 365-373. http://dx.doi.org/10.1007/s11105-009-0106-3   Hagidimitriou M, Katsiotis A, Menexes G, Pontikis C, et al. (2005). Genetic diversity of major Greek olive cultivars using molecular (AFLPs and RAPDs) markers and morphological traits. J. Am. Soc. Hortic. Sci. 130: 211-217.   Ipek A, Barut E, Gulen H, Oz AT, et al. (2009). SSR analysis demonstrates that olive production in the southern Marmara region in Turkey uses a single genotype. Genet. Mol. Res. 8: 1264-1272. http://dx.doi.org/10.4238/vol8-4gmr659 PMid:19876868   Kalinowski ST, Taper ML and Marshall TC (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099-1106. http://dx.doi.org/10.1111/j.1365-294X.2007.03089.x PMid:17305863   Khadari B, Charafi J, Moukhli A and Ater M (2008). Substantial genetic diversity in cultivated Moroccan olive despite a single major cultivar: a paradoxical situation evidenced by the use of SSR loci. Tree Genet. Genomes 4: 213-221. http://dx.doi.org/10.1007/s11295-007-0102-4   Kostelenos G (2006). Registry and Geographical Distribution of Greek Olive Cultivars (in Greek). Evripos Publ, Athens, 1-22.   Loukas M and Krimbas CB (1983). History of olive cultivars based on their genetic distances. J. Hortic. Sci. 58: 121-127.   Montemurro C, Simeone R, Pasqualone A and Ferrara E (2005). Genetic relationships and cultivar identification among 112 olive accessions using AFLP and SSR markers. J. Hortic. Sci. Biotech. 80: 105-110.   Nikoloudakis N, Banilas G, Gazis F and Hatzopoulos P (2003). Discrimination and genetic diversity among cultivated olives of Greece using RAPD markers. J. Am. Soc. Hortic. Sci. 128: 741-746.   Omrani-Sabbaghi A, Shahriari M, Falahati-Anbaran M, Mohammadi AS, et al. (2007). Microsatellite markers based assessment of genetic diversity in Iranian olive (Olea europaea L.) collections. Sci. Hortic. 112: 439-447. http://dx.doi.org/10.1016/j.scienta.2006.12.051   Owen CA, Bita EC, Banilas G, Hajjar SE, et al. (2005). AFLP reveals structural details of genetic diversity within cultivated olive germplasm from the Eastern Mediterranean. Theor. Appl. Genet. 110: 1169-1176. http://dx.doi.org/10.1007/s00122-004-1861-z PMid:15609052   Peakall R and Smouse PE (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288-295. http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x   Pemberton JM, Slate J, Bancroft DR and Barrett JA (1995). Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol. Ecol. 4: 249-252. http://dx.doi.org/10.1111/j.1365-294X.1995.tb00214.x PMid:7735527   Poljuha D, Sladonja B, Šetić E and Milotić A (2008). DNA fingerprinting of olive varieties in Istria (Croatia) by microsatellite markers. Sci. Hortic. 115: 223-230. http://dx.doi.org/10.1016/j.scienta.2007.08.018   Rallo P, Dorado G and Martín A (2000). Development of simple sequence repeats (SSRs) in olive tree (Olea europaea L.). Theor. Appl. Genet. 101: 984-989. http://dx.doi.org/10.1007/s001220051571   Rallo P, Tenzer I, Gessler C, Baldoni L, et al. (2003). Transferability of olive microsatellite loci across the genus Olea. Theor. Appl. Genet. 107: 940-946. http://dx.doi.org/10.1007/s00122-003-1332-y PMid:12827252   Rohlf FJ (2002). Numerical Taxonomy and Multivariate Analysis System, Version 2.11e. Exeter Software, Setauket, NY. PMCid:379191   Sarri V, Baldoni L, Porceddu A, Cultrera NG, et al. (2006). Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographically defined populations. Genome 49: 1606-1615. http://dx.doi.org/10.1139/g06-126 PMid:17426775   Sefc KM, Lopes MS, Mendonça D and Rodrigues Dos Santos M (2000). Identification of microsatellite loci in olive (Olea europaea) and their characterization in Italian and Iberian olive trees. Mol. Ecol. 9: 1171-1173. http://dx.doi.org/10.1046/j.1365-294x.2000.00954.x PMid:10964237   Terzopoulos PJ, Kolano B, Bebeli PJ and Kaltsikes PJ (2005). Identification of Olea europaea L. cultivars using inter-simple sequence repeat markers. Sci. Hortic. 105: 45-51. http://dx.doi.org/10.1016/j.scienta.2005.01.011   Wagner HW and Sefc KM (1999). Identity 1.0. Software for the analysis of microsatellite data. Centre for Applied Genetics, University of Agricultural Sciences, Vienna.   Zitoun B, Bronzini de Caraffa V, Giannettini J, Breton C, et al. (2008). Genetic diversity in Tunisian olive accessions and their relatedness with other Mediterranean olive genotypes. Sci. Hortic. 115: 416-419. http://dx.doi.org/10.1016/j.scienta.2007.10.033