Publications

Found 2 results
Filters: Author is M. Mohammadi  [Clear All Filters]
2012
H. - R. Kouhpayeh, Hashemi, M., Hashemi, S. - A., Moazeni-Roodi, A., Naderi, M., Sharifi-Mood, B., Taheri, M., Mohammadi, M., and Ghavami, S., R620W functional polymorphism of protein tyrosine phosphatase non-receptor type 22 is not associated with pulmonary tuberculosis in Zahedan, southeast Iran, vol. 11, pp. 1075-1081, 2012.
Ban Y, Tozaki T, Taniyama M and Tomita M (2005). The codon 620 single nucleotide polymorphism of the protein tyrosine phosphatase-22 gene does not contribute to autoimmune thyroid disease susceptibility in the Japanese. Thyroid 15: 1115-1118. http://dx.doi.org/10.1089/thy.2005.15.1115 PMid:16279843 Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, et al. (2004). A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75: 330-337. http://dx.doi.org/10.1086/422827 PMid:15208781 Bellamy R, Beyers N, McAdam KP, Ruwende C, et al. (2000). Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc. Natl. Acad. Sci. U. S. A. 97: 8005-8009. http://dx.doi.org/10.1073/pnas.140201897 PMid:10859364 Bottini N, Musumeci L, Alonso A, Rahmouni S, et al. (2004). A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet. 36: 337-338. http://dx.doi.org/10.1038/ng1323 PMid:15004560 Bravo MJ, Colmenero JD, Queipo-Ortuno MI, Morata P, et al. (2009). PTPN22 C1858T polymorphism and human brucellosis. Scand J. Infect. Dis. 41: 109-112. http://dx.doi.org/10.1080/00365540802641864 PMid:19107641 Cervino AC, Lakiss S, Sow O, Bellamy R, et al. (2002). Fine mapping of a putative tuberculosis-susceptibility locus on chromosome 15q11-13 in African families. Hum. Mol. Genet. 11: 1599-1603. http://dx.doi.org/10.1093/hmg/11.14.1599 PMid:12075004 Chabchoub G, Maalej A, Petit-Teixeira E, Glikmans E, et al. (2006). Polymorphisms in the protein tyrosine phosphatase (PTPN22) gene is not associated with autoimmune thyroid in a large affected Tunisian family. Clin. Immunol. 120: 235-236. http://dx.doi.org/10.1016/j.clim.2006.04.565 PMid:16765647 Chabchoub G, Teixiera EP, Maalej A, Ben HM, et al. (2009). The R620W polymorphism of the protein tyrosine phosphatase 22 gene in autoimmune thyroid diseases and rheumatoid arthritis in the Tunisian population. Ann. Hum. Biol. 36: 342-349. http://dx.doi.org/10.1080/03014460902817968 PMid:19343596 Chelala C, Duchatelet S, Joffret ML, Bergholdt R, et al. (2007). PTPN22 R620W functional variant in type 1 diabetes and autoimmunity related traits. Diabetes 56: 522-526. http://dx.doi.org/10.2337/db06-0942 PMid:17259401 Cohen S, Dadi H, Shaoul E, Sharfe N, et al. (1999). Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 93: 2013-2024. Comstock GW (1978). Tuberculosis in twins: a re-analysis of the Prophit survey. Am. Rev. Respir. Dis. 117: 621-624. PMid:565607 Douroudis K, Prans E, Haller K, Nemvalts V, et al. (2008). Protein tyrosine phosphatase non-receptor type 22 gene variants at position 1858 are associated with type 1 and type 2 diabetes in Estonian population. Tissue Antigens 72: 425-430. http://dx.doi.org/10.1111/j.1399-0039.2008.01115.x PMid:18764813 Gomez LM, Anaya JM, Gonzalez CI, Pineda-Tamayo R, et al. (2005a). PTPN22 C1858T polymorphism in Colombian patients with autoimmune diseases. Genes Immun. 6: 628-631. http://dx.doi.org/10.1038/sj.gene.6364261 PMid:16163373 Gomez LM, Anaya JM and Martin J (2005b). Genetic influence of PTPN22 R620W polymorphism in tuberculosis. Hum. Immunol. 66: 1242-1247. http://dx.doi.org/10.1016/j.humimm.2005.11.008 PMid:16690411 Guide SV and Holland SM (2002). Host susceptibility factors in mycobacterial infection. Genetics and body morphotype. Infect. Dis. Clin. North Am. 16: 163-186. http://dx.doi.org/10.1016/S0891-5520(03)00051-5 Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, et al. (2010a). Lack of association between paraoxonase-1 Q192R polymorphism and rheumatoid arthritis in southeast Iran. Genet. Mol. Res. 9: 333-339. http://dx.doi.org/10.4238/vol9-1gmr728 PMid:20198589 Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, et al. (2010b). The L55M polymorphism of paraoxonase-1 is a risk factor for rheumatoid arthritis. Genet. Mol. Res. 9: 1735-1741. http://dx.doi.org/10.4238/vol9-3gmr893 PMid:20812194 Hashemi M, Hoseini H, Yaghmaei P, Moazeni-Roodi A, et al. (2011a). Association of polymorphisms in glutamate-cysteine ligase catalytic subunit and microsomal triglyceride transfer protein genes with nonalcoholic fatty liver disease. DNA Cell Biol. 30: 569-575. http://dx.doi.org/10.1089/dna.2010.1162 PMid:21438662 Hashemi M, Sharifi-Mood B, Nezamdoost M, Moazeni-Roodi A, et al. (2011b). Functional polymorphism of interferon-gamma (IFN-gamma) gene +874T/A polymorphism is associated with pulmonary tuberculosis in Zahedan, Southeast Iran. Prague Med. Rep. 112: 38-43. PMid:21470497 Hermiston ML, Xu Z, Majeti R and Weiss A (2002). Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J. Clin. Invest. 109: 9-14. PMid:11781344 PMCid:150828 Hill RJ, Zozulya S, Lu YL, Ward K, et al. (2002). The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation. Exp. Hematol. 30: 237-244. http://dx.doi.org/10.1016/S0301-472X(01)00794-9 Hinks A, Worthington J and Thomson W (2006). The association of PTPN22 with rheumatoid arthritis and juvenile idiopathic arthritis. Rheumatology 45: 365-368. http://dx.doi.org/10.1093/rheumatology/kel005 PMid:16418195 Ikegami H, Kawabata Y, Noso S, Fujisawa T, et al. (2007). Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res. Clin. Pract. 77 (Suppl 1): S116-S121. http://dx.doi.org/10.1016/j.diabres.2007.01.044 PMid:17452059 Jagiello P, Aries P, Arning L, Wagenleiter SE, et al. (2005). The PTPN22 620W allele is a risk factor for Wegener’s granulomatosis. Arthritis Rheum. 52: 4039-4043. http://dx.doi.org/10.1002/art.21487 Lamsyah H, Rueda B, Baassi L, Elaouad R, et al. (2009). Association of PTPN22 gene functional variants with development of pulmonary tuberculosis in Moroccan population. Tissue Antigens 74: 228-232. http://dx.doi.org/10.1111/j.1399-0039.2009.01304.x PMid:19563523 Lee YH, Rho YH, Choi SJ, Ji JD, et al. (2007). The PTPN22 C1858T functional polymorphism and autoimmune diseases - a meta-analysis. Rheumatology 46: 49-56. http://dx.doi.org/10.1093/rheumatology/kel170 PMid:16760194 Mori M, Yamada R, Kobayashi K, Kawaida R, et al. (2005). Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J. Hum. Genet. 50: 264-266. http://dx.doi.org/10.1007/s10038-005-0246-8 PMid:15883854 Mustelin T, Brockdorff J, Rudbeck L, Gjorloff-Wingren A, et al. (1999). The next wave: protein tyrosine phosphatases enter T cell antigen receptor signalling. Cell Signal. 11: 637-650. http://dx.doi.org/10.1016/S0898-6568(99)00016-9 Mustelin T, Abraham RT, Rudd CE, Alonso A, et al. (2002). Protein tyrosine phosphorylation in T cell signaling. Front Biosci. 7: d918-d969. http://dx.doi.org/10.2741/musteli1 PMid:11897562 Naderi M, Hashemi M, Kouhpayeh H and Ahmadi R (2009). The status of serum procalcitonin in pulmonary tuberculosis and nontuberculosis pulmonary disease. J. Pak. Med. Assoc. 59: 647-648. PMid:19750868 Naderi M, Hashemi M, Mehdizadeh A and Mehrabifar H (2010). Serum adenosine deaminase activity and total antioxidant capacity of plasma in pulmonary tuberculosis and non-tuberculosis pulmonary disease. Turk. J. Med. Sci. 40: 701-706. North RJ and Jung YJ (2004). Immunity to tuberculosis. Annu. Rev. Immunol. 22: 599-623. http://dx.doi.org/10.1146/annurev.immunol.22.012703.104635 PMid:15032590 Orozco G, Sanchez E, Gonzalez-Gay MA, Lopez-Nevot MA, et al. (2005). Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum. 52: 219-224. http://dx.doi.org/10.1002/art.20771 Porter JD and McAdam KP (1994). The re-emergence of tuberculosis. Annu. Rev. Public Health 15: 303-323. http://dx.doi.org/10.1146/annurev.pu.15.050194.001511 PMid:8054087 Qu HQ, Fisher-Hoch SP and McCormick JB (2011). Molecular immunity to mycobacteria: knowledge from the mutation and phenotype spectrum analysis of Mendelian susceptibility to mycobacterial diseases. Int. J. Infect. Dis. 15: e305-e313. http://dx.doi.org/10.1016/j.ijid.2011.01.004 PMid:21330176 PMCid:3078969 Reddy MV, Johansson M, Sturfelt G, Jonsen A, et al. (2005). The R620W C/T polymorphism of the gene PTPN22 is associated with SLE independently of the association of PDCD1. Genes Immun. 6: 658-662. PMid:16052172 Seldin MF, Shigeta R, Laiho K, Li H, et al. (2005). Finnish case-control and family studies support PTPN22 R620W polymorphism as a risk factor in rheumatoid arthritis, but suggest only minimal or no effect in juvenile idiopathic arthritis. Genes Immun. 6: 720-722. PMid:16107870 Veillette A, Latour S and Davidson D (2002). Negative regulation of immunoreceptor signaling. Annu. Rev. Immunol. 20: 669-707. http://dx.doi.org/10.1146/annurev.immunol.20.081501.130710 PMid:11861615 Wipff J, Allanore Y, Kahan A, Meyer O, et al. (2006). Lack of association between the protein tyrosine phosphatase non-receptor 22 (PTPN22)*620W allele and systemic sclerosis in the French Caucasian population. Ann. Rheum. Dis. 65: 1230-1232. http://dx.doi.org/10.1136/ard.2005.048181 PMid:16464986 PMCid:1798267 Zhang ZH, Chen F, Zhang XL, Jin Y, et al. (2008). PTPN22 allele polymorphisms in 15 Chinese populations. Int. J. Immunogenet. 35: 433-437. http://dx.doi.org/10.1111/j.1744-313X.2008.00803.x PMid:19046301
2011
M. Tabib, Zolgharnein, H., Mohammadi, M., Salari-Aliabadi, M. A., Qasemi, A., Roshani, S., Rajabi-Maham, H., and Frootan, F., mtDNA variation of the critically endangered hawksbill turtle (Eretmochelys imbricata) nesting on Iranian islands of the Persian Gulf, vol. 10, pp. 1499-1503, 2011.
Baillie J and Groombridge B (1996). IUCN Red List of Threatened Animals. IUCN, Gland, Switzerland and Cambridge. Bass AL (1996). Application of Isolation by Distance Models to Hawksbill Turtle (Eretmochelys imbricata) Nesting Sites in the Caribbean. In: Proceedings of the International Symposium on Sea Turtle Conservation Genetics (Bowen BW and Witzell WN, eds.). NOAA Technical Memorandum. National Marine Fisheries Service, Southeast Fisheries Science Center, 396, Miami, 41-46. Bourjea J, Lapegue S, Gagnevin L, Broderick D, et al. (2007). Phylogeography of the green turtle, Chelonia mydas, in the Southwest Indian Ocean. Mol. Ecol. 16: 175-186. doi:10.1111/j.1365-294X.2006.03122.x PMid:17181729 Bowen BW (2003). What is a Loggerhead Turtle? The Genetic Perspective. In: Loggerhead Sea Turtles (Bolten AB and Witherington BE, eds.). Smithsonian Institution Press, Washington, 7-27. Bowen BW and Karl SA (2007). Population genetics and phylogeography of sea turtles. Mol. Ecol. 16: 4886-4907. doi:10.1111/j.1365-294X.2007.03542.x PMid:17944856 Bowen BW, Avise JC, Richardson JI, Meylan AB, et al. (1993). Population structure of loggerhead turtles (Caretta caretta) in the northwestern Atlantic Ocean and Mediterranean Sea. Conserv. Biol. 7: 834-844. doi:10.1046/j.1523-1739.1993.740834.x Bowen BW, Bass AL, Garcia-Rodriguez A, Diez CE, et al. (1996). Origin of hawksbill turtles in a Caribbean feeding area as indicated by genetic markers. Ecol. Appl. 6: 566-572. doi:10.2307/2269392 Broderick D and Moritz C (1996). Hawksbill Breeding and Foraging Populations in the Indo-Pacific Region. In: Proceedings of the International Symposium on Sea Turtle Conservation Genetics (Bowen BW and Witzell WN, eds.). NOAA Technical Memorandum. National Marine Fisheries Service, Southeast Fisheries Science Center, 396, Miami, 119-128. Broderick D, Moritz C, Miller JD, Guine M, et al. (1994). Genetic studies of the Hawksbill turtle (Eretmochelys imbricate): evidence for multiple stocks in Australian waters. Pacific Conserv. Biol. 1: 123-131. Encalada SE, Bjorndal KA, Bolten AB, Zurita JC, et al. (1998). Population structure of loggerhead turtle (Caretta caretta) nesting colonies in the Atlantic and Mediterranean as inferred from mitochondrial DNA control region sequences. Mar. Biol. 130: 567-575. doi:10.1007/s002270050278 Groombridge B and Luxmoore R (1989). The Green Turtle and Hawksbill (Reptilia: Cheloniidae): World Status, Exploitation, and Trade. CITES Secretatiat, Lausanne. Hillis DM and Moritz C (1990). Molecular Taxonomy. Sinauer Associates Inc. Publishers, Sanderland. Hirayama R (1998). Oldest known sea turtle. Nature 392: 705-708. doi:10.1038/33669 IUCN (1968). Classifications of Rare and Endangered Forms. In: Survival Service Commission Red Data Book. IUCN, Morges. IUCN (2009). The IUCN Red List of Threatened Species. Available at [http://www.iucnredlist.org]. Accessed July 2011. Kinunen W and Walczak PS (1971). Persian Gulf Sea Turtle Nesting Surveys. Job Completion Rept., Division of Research Development, F7-F50. Koike H, Okayama T, Baba Y, Diaz R, et al. (1996). Conservation Genetics for the CITES-Listed Animals - Mitochondrial DNA Analysis Using the Scutes of Hawksbill Turtles. International Symposium on Network and Evolution of Molecular Information, Tokyo. Lara-Ruiz P, Lopez GG, Santos FR and Soares LS (2006). Extensive hybridization in hawksbill turtles (Eretmochelys imbricata) nesting in Brazil revealed by mtDNA analyses. Conserv. Genet. 7: 773-781. doi:10.1007/s10592-005-9102-9 Laurent L, Casale P, Bradai MN, Godley BJ, et al. (1998). Molecular resolution of marine turtle stock composition in fishery bycatch: a case study in the Mediterranean. Mol. Ecol. 7: 1529-1542. doi:10.1046/j.1365-294x.1998.00471.x PMid:9819906 Maffucci F, Kooistra WHCF and Bentivegna F (2006). Natal origin of loggerhead turtles, Caretta caretta, in the neritic habitat off the Italian coasts, Central Mediterranean. Biol. Conserv. 127: 183-189. doi:10.1016/j.biocon.2005.08.009 Mobaraki A (2004). Nesting of the hawksbill turtle in Shidvar Island, Hormozgan Province, Iran. Mar. Turtle Newsl. 103: 13. Okayama T, Diaz R, Koike H, Diez CE, et al. (1996). Mitochondrial DNA Analysis of the Hawksbill Turtle. I. Haplotype Detection Among Samples in the Pacific and Atlantic Oceans. International Symposium on Network and Evolution of Molecular Information, Tokyo. Okayama T, Diaz-Fernandez R, Baba Y, Halim M, et al. (1999). Genetic diversity of the hawksbill turtle in the Indo- Pacific and Caribbean regions. Chelonian Conserv. Biol. 3: 362-367. Pritchard PCH (1996). Evolution, Phylogeny and Current Status. In: The Biology of Sea Turtles (Lutz PL and Musick JA, eds.). CRC Press, Florida, 1-28. Schroth W, Streit B and Schierwater B (1996). Evolutionary handicap for turtles. Nature 384: 521-522. doi:10.1038/384521a0 Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. doi:10.1093/nar/22.22.4673 PMid:7984417    PMCid:308517 Velez-Zuazo X, Ramos WD, van Dam RP, Diez CE, et al. (2008). Dispersal, recruitment and migratory behaviour in a hawksbill sea turtle aggregation. Mol. Ecol. 17: 839-853. doi:10.1111/j.1365-294X.2007.03635.x PMid:18208487