Publications

Found 2 results
Filters: Author is M. Zakria  [Clear All Filters]
2011
A. Saeed, Saleem, M. F., Zakria, M., Anjum, S. A., Shakeel, A., and Saeed, N., Genetic variability of NaCl tolerance in tomato, vol. 10, pp. 1371-1382, 2011.
Akinci S, Yilmaz K and Akinci IE (2004). Response of tomato (Lycopersicon esculentum Mill.) to salinity in the early growth stages for agricultural cultivation in saline environments. J. Environ. Biol. 25: 351-357. PMid:15847348 Al-Khatib M, McNeilly T and Collins JC (1994). The genetic basis of salt tolerance in lucerne (Medicago sativa L.). J. Genet. Breed. 48: 169-174. Ali Z, Khan AS and Asad MA (2002). Salt tolerance in bread wheat: genetic variation and heritability for growth and ion relation. Asian J. Plant Sci. 1: 420-422. doi:10.3923/ajps.2002.420.422 Ashraf M and McNeilly T (1988). Variability in salt tolerance of nine spring wheat cultivars. J. Agron. Crop Sci. 160: 14-21. doi:10.1111/j.1439-037X.1988.tb01160.x Aslam M, Qureshi RH and Ahmad N (1993). A rapid screening technique for salt tolerance in rice (Oryza sativa L.). Plant Soil 150: 99-107. doi:10.1007/BF00779180 Azhar FM and McNeilly T (1989). The response of four sorghum accessions/cultivars to salinity during plant development. J. Agron. Crop Sci. 163: 33-43. doi:10.1111/j.1439-037X.1989.tb00734.x Azhar FM and Ahmad R (2000). Variation and heritability of salinity tolerance in upland cotton at early stage of plant development. Pak. J. Biol. Sci. 3: 1991-1993. doi:10.3923/pjbs.2000.1991.1993 Azhar FM and McNeilly T (2001). Compartmentation of Na+ and Cl- ions in different parts of Sorghum bicolor (L.) moench during plant development. Pak. J. Bot. 33: 101-107. Bhatti MA and Azhar FM (2002). Salt tolerance of nine Gossypium hirsutum L. varieties to NaCl salinity at early stage of plant development. Int. J. Agric. Biol. 4: 544-546. Bottger M (1978). Levels of endogenous indole-3-acetic acid and abscisic acid during the course of formation of roots. Z. Pflanzenphysiol 86: 283-286. Cramer GR, Alberico GJ and Schmidt C (1994). Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Aust. J. Plant Physiol. 21: 675-692. doi:10.1071/PP9940675 Falconer DS and MacKay TFC (1996). Introduction to Quantitative Genetics. Chapman and Hall, London. Farooq S and Azam F (2001). Co-existence of salt and drought tolerance in Triticeae. Hereditas 135: 205-210. doi:10.1111/j.1601-5223.2001.00205.x Flowers TJ and Yeo AR (1995). Breeding for salinity resistance in crop plants: where next? Aust. J. Plant Physiol. 22: 875-884. doi:10.1071/PP9950875 Forster BP (2001). Mutation genetics of salt tolerance in barley: an assessment of Golden Promise and other semi-dwarf mutants. Euphytica 120: 317-328. doi:10.1023/A:1017592618298 Furr JR and Ream CL (1969). Breeding Citrus Rootstocks for Salt Tolerance. In: Proceedings of the First International Citrus Symposium (Chapman HD, ed.). University of California, Riverside, 373-380. Gain P, Mannan MA, Pal PS, Hossain MM, et al. (2004). Effect of salinity on some yield attributes of rice. Pak. J. Biol. Sci. 7: 760-762. doi:10.3923/pjbs.2004.760.762 Gottschalk W (1981). Mutation: higher plants. Prog. Bot. 43: 139-152. Hassan AA, Nassar HH, Barkat MA and Tolba MS (1999). Tomato breeding for salinity tolerance. III. Genetics of tolerance. Egyptian J. Hort. 26: 391-403. Hoagland DR and Arnon DI (1950). The Water-Culture Method for Growing Plants Without Soil. Circular, University of California, College of Agriculture, Agricultural Experiment Station, California, 347. Hollington PA (1998). Technological Breakthroughs in Screening/Breeding Wheat Varieties for Salt Tolerance. In: National Conference on “Salinity Management in Agriculture”. CSSRI, Karnal. Khan AS, Asad MA and Ali Z (2003). Assessment of genetic variability for NaCl tolerance in wheat. Pak. J. Agric. Sci. 40: 33-36. Larkin PJ and Scowcroft WR (1981). Somaclonal variation a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60: 197-214. doi:10.1007/BF02342540 Leim ASN, Hendriks A, Kraal H and Loenen M (1985). Effect of deicing salt on roadside grasses and herbs. Plant Soil 84: 299-310. doi:10.1007/BF02275470 Levitt J (1980). Responses of Plants to Environmental Stresses, Water, Radiation, Salt and other Stresses. Academic Press Inc., New York. Maas EV (1986). Salt tolerance of plants. Appl. Agric. Res. 1: 12-26. Maiti RK, Amaya LED, Cardona SI, Dimas AMO, et al. (1996). Genotypic variability in maize cultivars (Zea mays L.) for resistance to drought and salinity. J. Plant Physiol. 148: 741-744. Mano Y and Takeda K (2001). Genetic resources of salt tolerance at germination and the seedling stage in wheat. Jpn. J. Crop Sci. 70: 215-220. McNeilly T (1990). Selection and breeding for salinity tolerance in crop species: a case for optimism? Acta Ecol. 11: 595-610. Munns R (2002). The impact of salinity stress. Available at [http:www.plantstress.com/articles/salinity_i/salinity_ihtm]. Accessed November 17, 2004. Munns R, Schachtman DP and Condon AG (1995). The significance of a two-phase growth response to salinity in wheat and barley. Aust. J. Plant Physiol. 22: 561-569. doi:10.1071/PP9950561 Muralia S and Sastry EVD (1994). Stability analysis in wheat (Triticum aestivum) for seedling emergence and establishment characters at different salinity levels. Indian J. Genet. Plant Breed. 54: 351-356. Noor E, Azhar FM and Khan AA (2001). Differences in responses of Gossypium hirsutum L. varieties to NaCl salinity at seedling stage. Int. J. Agric. Biol. 3: 345-347. Noori SAS and McNeilly T (1999). Assessment of variability in salt tolerance in diploid Aegilops ssp. J. Genet. Breed. 53: 183-188. Noori SAS and McNeilly T (2000). Assessment of variability in salt tolerance based on seedling growth in Triticum durum Desf. Genet. Res. Crop Evol. 47: 285-291. doi:10.1023/A:1008749312148 Okusanya OT and Ungar IA (1984). The growth and mineral composition of three species of Spergularia as affected by salinity and nutrients at high salinity. Am. J. Bot. 71: 439-447. doi:10.2307/2443501 Qureshi RH (1993). Alternative Strategies for Tackling the Soil Salinity Problem. Department of Soil Science, University of Agricultutre, Faisalabad, 117. Qureshi RH, Aslam M, Nawaz S and Mehmood T (1990). Saline Agriculture Research in Pakistan. Proceedings Indo-Pak Workshop on Soil Salinity and Water Management. PARC, Islamabad. Rausch T, Kirsch M, Low R, Lehr A, et al. (1996). Salt stress responses of higher plants: the role of proton pumps and Na+/ H+ antiporters. J. Plant Physiol. 148: 425-433. Rodriguez HG, Roberts J, Jordan WR and Drew MC (1997). Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress. Plant Physiol. 113: 881-893. PMid:12223650    PMCid:158208 Rosielle AA and Hamblin J (1981). Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci. 21: 943-946. doi:10.2135/cropsci1981.0011183X002100060033x Rush DW and Epstein E (1981). Comparative studies on the sodium, potassium and chloride relations of a wild halophytic and a domestic salt sensitive tomato species. Plant Physiol. 68: 1308-1313. doi:10.1104/pp.68.6.1308 PMid:16662098    PMCid:426093 Salam A, Hollington PA, Gorham J, Wyn Jones RG, et al. (1999). Physiological genetics of salt tolerance in (Triticum aestivum L): performance of wheat varieties, inbred lines and reciprocal F1 hybrids under saline conditions. J. Agron. Crop Sci. 183: 145-156. doi:10.1046/j.1439-037x.1999.00361.x Saqib M, Akhtar J, Qureshi RH and Aslam M (2002). Performance of two wheat (Triticum aestivum) genotypes in response to waterlogging at different growth stages under non-saline and saline soil conditions. Pak. J. Agric. Sci. 39: 171-176. Sarwar G, Ashraf MY and Naeem M (2003). Genetic variability of some primitive bread wheat varieties to salt tolerance. Pak. J. Bot. 35: 771-777. Sastry EVD and Sharma H (2000). Effect of temperature and salinity on the germination seedling growth in wheat (Triticum aestivum L.). Indian J. Agri. Sci. 70: 117-118. Serrano R, Culianz-Macia FA and Moreno V (1998). Genetic engineering of salt and drought tolerance with yeast regulatory genes. Sci. Hortic. 78: 261-269. doi:10.1016/S0304-4238(98)00196-4 Shaaban MM, El-Fouly MM, El-Zanaty and El-Nour AAA (2004). Halophytes and foliar fertilization as a useful technique for growing processing tomatoes in the saline affected soils. Pak. J. Biol. Sci. 7: 504-507. Shannon MC and McCreight C (1984). Salt tolerance of lettuce introductions. HortScience 19: 673-675. Shannon MC and Grieve CM (1999). Tolerance of vegetable crops to salinity. Sci. Hortic. 78: 5-38. doi:10.1016/S0304-4238(98)00189-7 Shannon MC, Rhoades JD, Draper JH, Scardaci SC, et al. (1998). Assessment of salt tolerance in rice cultivars in response to salinity problems in California. Crop Sci. 38: 394-398. doi:10.2135/cropsci1998.0011183X003800020021x SPSS (1994). Repeated Analysis of Variance. In: SPSS Advanced Statistics Release, 107-143. Tal M and Shannon MC (1983). Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, L. cheesmanii, L. peruvianum, Solanum pennellii and F1 hybrids to high salinity. Aust. J. Plant Physiol. 10: 109-117. doi:10.1071/PP9830109 Vespasiani C, Arias C and Taleisnik E (1995). Effect of salinity in the early stages of tomato fruit growth. Acta Phytopathol. Entomol. Hung. 30: 21-25. Xing X, Zheng G, Deng Z, Xu Z, et al. (2002). Comparative study of drought and salt resistance of different Tricacae genotypes. Acta Bot. Boreali-Occidentalia Sin. 22: 1122-1135. Zhao GQ, Ma BL and Ren CZ (2007). Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Crop Sci. 47: 123-131. doi:10.2135/cropsci2006.06.0371
2010
S. Nawaz, Khan, F. A., Tabasum, S., Zakria, M., Saeed, A., and Iqbal, M. Z., Phylogenetic relationships among Saccharum clones in Pakistan revealed by RAPD markers, vol. 9, pp. 1673-1682, 2010.
Aggarwal RK, Brar DS, Nandi S, Huang N, et al. (1999). Phylogenetic relationships among Oryza species revealed by AFLP markers. Theor. Appl. Genet. 98: 1320-1328. http://dx.doi.org/10.1007/s001220051198   Al-Janabi SM, McClelland M, Petersen C and Sobral BWS (1944). Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theor. Appl. Genet. 88: 933-944.   Angiolillo A, Mencuccini M and Baldoni L (1999). Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor. Appl. Genet. 98: 411-421. http://dx.doi.org/10.1007/s001220051087   Arceneaux G (1967). Cultivated sugarcane of the world and their botanical derivation. Proc. Int. Soc. Sugar Cane Technol. 12: 844-845.   Barker JH, Matthes M, Arnold GM, Edwards KJ, et al. (1999). Characterisation of genetic diversity in potential biomass willows (Salix spp.) by RAPD and AFLP analyses. Genome 42: 173-183. PMid:10231956   Burner DM, Pan YB and Webster RD (1997). Genetic diversity of North American and Old World Saccharum assessed by RAPD analysis. Genet. Resour. Crop Evol. 44: 235-240. http://dx.doi.org/10.1023/A:1008631731506   Burnquist WL, Sorrelles ME and Tanksley S (1995). Characterization of genetic variability in Saccharum germplasm by means of restriction fragment length polymorphism (RFLP) analysis. Proc. Int. Soc. Sugar Cane Technol. 21: 355-365.   D'Hont A, Lu YH, Feldmann P and Glaszmann JC (1993). Cytoplasmic diversity in sugar cane revealed by heterologous probes. Sugar Cane 1: 12-15.   Harvey H, Huckett BI and Botha FC (1994). Use of polymerase chain reaction and random amplification of polymorphic DNAs for the determination of genetic distances between 21 sugarcane varieties. Proc. S. Afr. Sugar Technol. Assoc. 68: 36-40.   Harvey M and Botha FC (1996). Use of PCR-based methodologies for the determination of DNA diversity between Saccharum varieties. Euphytica 89: 257-265. http://dx.doi.org/10.1007/BF00034614   Hoisington D, Khairallah M and González D (1994). Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory. CIMMYT, Mexico.   Hokanson SC, Szewc-McFadden AK, Lamboy WF and McFerson JR (1998). Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus x domestica borkh. core subset collection. Theor. Appl. Genet. 97: 671-683. http://dx.doi.org/10.1007/s001220050943   Lande R and Thompson R (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756. PMid:1968875 PMCid:1203965   Lu YH, D'Hont A, Walker DIT, Rao PS, et al. (1994). Relationships among ancestral species of sugarcane revealed with RFLP using single-copy maize nuclear probes. Euphytica 78: 7-18.   Mukherjee SK (1957). Origin and distribution of Saccharum. Bot. Gaz. 119: 55-61. http://dx.doi.org/10.1086/335962   Nair NV, Nair S, Sreenivasan TV and Mohan M (1999). Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet. Resour. Crop Evol. 46: 73-79. http://dx.doi.org/10.1023/A:1008696808645   Nair NV, Selvi A, Sreenivasan TV and Pushpalatha KN (2002). Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms. Euphytica 127: 219-225. http://dx.doi.org/10.1023/A:1020234428681   Nakajima Y, Oeda K and Yamamoto T (1998). Characterization of genetic diversity of nuclear and mitochondrial genomes in Daucus varieties by RAPD and AFLP. Plant Cell Rep. 17: 848-853. http://dx.doi.org/10.1007/s002990050496   Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. PMid:17248844 PMCid:1213855   Orozco-Castillo C, Chalmers KJ, Waugh R and Powell W (1994). Detection of genetic diversity and selective gene introgression in coffee using RAPD markers. Theor. Appl. Genet. 87: 934-940. http://dx.doi.org/10.1007/BF00225787   Pan Y, Miller JD, Schnell Ii RJ, Richard EP Jr, et al. (2003). Application of Microsatellite and RAPD Fingerprints in the Florida Sugarcane Variety Program. In: Plant and Animal Genome Conference, Town & Country Convention Center, January 13-17, San Diego, 43.   Sobral BWS, Braga DPV, LaHood ES and Keim P (1994). Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb. subtribe of the Andropogoneae Dumort. tribe. Theor. Appl. Genet. 87: 843-853. http://dx.doi.org/10.1007/BF00221137   Stiles JI, Lemme C, Sondur S, Morshid MB, et al. (1993). Using randomly amplified polymorphic DNA for evaluating genetic relationships among papaya cultivars. Theor. Appl. Genet. 85: 697-701.   Stuber CW, Polacco M and Senior ML (1999). Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop. Sci. 39: 1571-1583. http://dx.doi.org/10.2135/cropsci1999.3961571x   Wang ZY, Second G and Tanksley SD (1992). Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs. Theor. Appl. Genet. 83: 565-581. http://dx.doi.org/10.1007/BF00226900   Weir BS (1990). Genetic Data Analysis: Methods for Discrete Population Genetic Data. Sinauer Associates Inc., Sunderland.   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606