Found 4 results
Filters: Author is I. Fonseca  [Clear All Filters]
C. C. M. Otenio, Fonseca, I., Martins, M. F., Ribeiro, L. C., Assis, N. M. S. P., Ferreira, A. P., and Ribeiro, R. A., Expression of IL-1, IL-6, TNF-α, and iNOS in pregnant women with periodontal disease, vol. 11, pp. 4468-4478, 2012.
Agueda A, Ramon JM, Manau C, Guerrero A, et al. (2008). Periodontal disease as a risk factor for adverse pregnancy outcomes: a prospective cohort study. J. Clin. Periodontol. 35: 16-22. PMid:18034850   Albandar JM and Rams TE (2002). Global epidemiology of periodontal diseases: an overview. Periodontol. 2000 29: 7-10. PMid:12102700   Andrukhov O, Ulm C, Reischl H, Nguyen PQ, et al. (2011). Serum cytokine levels in periodontitis patients in relation to the bacterial load. J. Periodontol. 82: 885-892. PMid:21138356   Armitage GC (1999). Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 4: 1-6. PMid:10863370   Associação Brasileira de Empresas de Pesquisa - ABEP (2003). Critério de Classificação Econômica Brasil. Available at [http//]. Accessed September, 2011.   Assuma R, Oates T, Cochran D, Amar S, et al. (1998). IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J. Immunol. 160: 403-409. PMid:9551997   Beharka AA, Meydani M, Wu D, Leka LS, et al. (2001). Interleukin-6 production does not increase with age. J. Gerontol. A Biol. Sci. Med. Sci. 56: B81-B88. PMid:11213271   Bickel M, Axtelius B, Solioz C and Attstrom R (2001). Cytokine gene expression in chronic periodontitis. J. Clin. Periodontol. 28: 840-847. PMid:11493353   Carrillo-de-Albornoz A, Figuero E, Herrera D, Cuesta P, et al. (2012). Gingival changes during pregnancy: III. Impact of clinical, microbiological, immunological and socio-demographic factors on gingival inflammation. J. Clin. Periodontol. 39: 272-283. PMid:22092526   Chen YW, Umeda M, Nagasawa T, Takeuchi Y, et al. (2008). Periodontitis may increase the risk of peripheral arterial disease. Eur. J. Vasc. Endovasc. Surg. 35: 153-158. PMid:17964192   Douglas SD, Lynch KG and Lai JP (2008). Neurokinin-1 receptor mRNA expression differences in brains of HIV-infected individuals. J. Neurol. Sci. 272: 174-177. PMid:18572194 PMCid:2551749   Ejeil AL, Gaultier F, Igondjo-Tchen S, Senni K, et al. (2003). Are cytokines linked to collagen breakdown during periodontal disease progression? J. Periodontol. 74: 196-201. PMid:12666708   Faizuddin M, Bharathi SH and Rohini NV (2003). Estimation of interleukin-1beta levels in the gingival crevicular fluid in health and in inflammatory periodontal disease. J. Periodontal Res. 38: 111-114. PMid:12608903   Figuero E, Carrillo-de-Albornoz A, Herrera D and Bascones-Martinez A (2010). Gingival changes during pregnancy: I. Influence of hormonal variations on clinical and immunological parameters. J. Clin. Periodontol. 37: 220-229. PMid:20070862   Giulietti A, Overbergh L, Valckx D, Decallonne B, et al. (2001). An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25: 386-401. PMid:11846608   Górska R, Gregorek H, Kowalski J, Laskus-Perendyk A, et al. (2003). Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis. J. Clin. Periodontol. 30: 1046-1052. PMid:15002890   Gürsoy M, Pajukanta R, Sorsa T and Kononen E (2008). Clinical changes in periodontium during pregnancy and post-partum. J. Clin. Periodontol. 35: 576-583. PMid:18430046   Hirose M, Ishihara K, Saito A, Nakagawa T, et al. (2001). Expression of cytokines and inducible nitric oxide synthase in inflamed gingival tissue. J. Periodontol. 72: 590-597. PMid:11394393   Katz Y, Nadiv O and Beer Y (2001). Interleukin-17 enhances tumor necrosis factor alpha-induced synthesis of interleukins 1,6, and 8 in skin and synovial fibroblasts: a possible role as a "fine-tuning cytokine" in inflammation processes. Arthritis Rheum. 44: 2176-2184.<2176::AID-ART371>3.0.CO;2-4   Kendall HK, Haase HR, Li H, Xiao Y, et al. (2000). Nitric oxide synthase type-II is synthesized by human gingival tissue and cultured human gingival fibroblasts. J. Periodontal Res. 35: 194-200. PMid:10983879   Kornman KS and Loesche WJ (1980). The subgingival microbial flora during pregnancy. J. Periodontal Res. 15: 111-122. PMid:6103927   Laine MA (2002). Effect of pregnancy on periodontal and dental health. Acta Odontol. Scand. 60: 257-264. PMid:12418714   Lapp CA, Thomas ME and Lewis JB (1995). Modulation by progesterone of interleukin-6 production by gingival fibroblasts. J. Periodontol. 66: 279-284. PMid:7782982   Lappin DF, Kjeldsen M, Sander L and Kinane DF (2000). Inducible nitric oxide synthase expression in periodontitis. J. Periodontal Res. 35: 369-373. PMid:11144410   Lö YJ, Liu CM, Wong MY, Hou LT, et al. (1999). Interleukin 1beta-secreting cells in inflamed gingival tissue of adult periodontitis patients. Cytokine 11: 626-633. PMid:10433811   Lopatin DE, Kornman KS and Loesche WJ (1980). Modulation of immunoreactivity to periodontal disease-associated microorganisms during pregnancy. Infect. Immun. 28: 713-718. PMid:7399691 PMCid:551009   López NJ, Smith PC and Gutierrez J (2002). Higher risk of preterm birth and low birth weight in women with periodontal disease. J. Dent. Res. 81: 58-63. PMid:11820369   Miyagi M, Morishita M and Iwamoto Y (1993). Effects of sex hormones on production of prostaglandin E2 by human peripheral monocytes. J. Periodontol. 64: 1075-1078. PMid:8295094   Moreira PR, Lima PM, Sathler KO, Imanishi SA, et al. (2007). Interleukin-6 expression and gene polymorphism are associated with severity of periodontal disease in a sample of Brazilian individuals. Clin. Exp. Immunol. 148: 119-126. PMid:17286759 PMCid:1868861   Morishita M, Miyagi M and Iwamoto Y (1999). Effects of sex hormones on production of interleukin-1 by human peripheral monocytes. J. Periodontol. 70: 757-760. PMid:10440637   Mysliwska J, Bryl E, Foerster J and Mysliwski A (1998). Increase of interleukin 6 and decrease of interleukin 2 production during the ageing process are influenced by the health status. Mech. Ageing Dev. 100: 313-328.   Overbergh L, Giulietti A, Valckx D, Decallonne R, et al. (2003). The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression. J. Biomol. Tech. 14: 33-43. PMid:12901609 PMCid:2279895   Pan Z, Guzeldemir E, Toygar HU, Bal N, et al. (2010). Nitric oxide synthase in gingival tissues of patients with chronic periodontitis and with and without diabetes. J. Periodontol. 81: 109-120. PMid:20059423   Parwani SR, Chitnis PJ and Parwani RN (2012). Salivary nitric oxide levels in inflammatory periodontal disease - a case-control and interventional study. Int. J. Dent. Hyg. 10: 67-73. PMid:21564536   Rausch-Fan X and Matejka M (2001). From plaque formation to periodontal disease, is there a role for nitric oxide? Eur. J. Clin. Invest. 31: 833-835. PMid:11737219   Reher VG, Zenobio EG, Costa FO, Reher P, et al. (2007). Nitric oxide levels in saliva increase with severity of chronic periodontitis. J. Oral Sci. 49: 271-276. PMid:18195509   Teng YT (2006). Protective and destructive immunity in the periodontium: Part 1 - innate and humoral immunity and the periodontium. J. Dent. Res. 85: 198-208. PMid:16498065   Tobón-Arroyave SI, Jaramillo-Gonzalez PE and Isaza-Guzman DM (2008). Correlation between salivary IL-1beta levels and periodontal clinical status. Arch. Oral Biol. 53: 346-352. PMid:18155182   Vettore MV, Leal M, Leao AT, da Silva AM, et al. (2008). The relationship between periodontitis and preterm low birthweight. J. Dent. Res. 87: 73-78. PMid:18096898   Yamazaki K, Honda T, Oda T, Ueki-Maruyama K, et al. (2005). Effect of periodontal treatment on the C-reactive protein and proinflammatory cytokine levels in Japanese periodontitis patients. J. Periodontal Res. 40: 53-58. PMid:15613080
A. M. Auad, Martins, M. F., Fonseca, I., Paula-Moraes, S. V., Kopp, M. M., and Cordeiro, M. C., Spittle protein profile of Mahanarva spectabilis (Hemiptera: Cercopidae) fed various elephant grass genotypes, vol. 11, pp. 3601-3606, 2012.
Auad AM, Simões AD, Pereira AV, Braga ALF, et al. (2007). Seleção de genótipos de capim-elefante quanto à resistência à cigarrinha-das-pastagens. Pesq. Agropec. Bras. 42: 1077-1081.   Cardona C, Miles JW and Sotelo G (1999). An Improved Methodology for massive screening of Brachiaria spp. Genotypes for resistance to Aeneolamia varia (Homoptera: Cercopidae). J. Econ. Entomol. 92: 490-496.   Cardona C, Fory P, Sotelo G, Pabon A, et al. (2004). Antibiosis and tolerance to five species of spittlebug (Homoptera: Cercopidae) in Brachiaria spp.: implications for breeding for resistance. J. Econ. Entomol. 97: 635-645. PMid:15154493   Kato K (1958). Origin and composition of spittle made by spittlebugs. Sci. Rep. Saitama Univ. Ser. B. 3: 33-53.   Marshall AT (1965). Batelli glands of cercopoid nymphs (Homoptera). Nature 205: 925.   Miles JW, Cardona C and Sotelo G (2006). Recurrent selection in a synthetic brachiariagrass population improves resistance to three spittlebug species. Crop Sci. 46: 1088-1093.   Rohlf FJ (2000). NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Version 2.1. Exeter Software, New York.   Rossignol M, Peltier JB, Mock HP, Matros A, et al. (2006). Plant proteome analysis: a 2004-2006 update. Proteomics 6: 5529-5548. PMid:16991197   Sokal RR and Michener C (1958). A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 38: 1409-1438.   Sokal RR and Rohlf FJ (1962). The comparison of dendrograms by objective methods. Taxon 11: 30-40.   Sotelo PA, Miller MF, Cardona C, Miles JW, et al. (2008). Sublethal effects of antibiosis resistance on the reproductive biology of two spittlebug (Hemiptera: Cercopidae) species affecting Brachiaria spp. J. Econ. Entomol. 101: 564-568.[564:SEOARO]2.0.CO;2   Souza Sobrinho F, Auad AM and Lédo FJS (2010). Genetic variability in Brachiaria ruziziensis for resistance to spittlebugs. Crop Breed. Appl. Biotechnol. 10: 83-88.   Valério JR (2009). Cigarrinhas-das-pastagens. Vol.1. Embrapa Gado de Corte, Campo Grade.   Valério JR, Jeller H and Peixer J (1997). Seleção de introduções do gênero Brachiaria (Griseb) resistentes à cigarrinha Zulia entreriana (Berg) (Homoptera: Cercopidae). An. Soc. Entomol. Bras. 2: 383-387.
I. Fonseca, Antunes, G. R., Paiva, D. S., Lange, C. C., Guimarães, S. E. F., and Martins, M. F., Differential expression of genes during mastitis in Holstein-Zebu crossbreed dairy cows, vol. 10, pp. 1295-1303, 2011.
Alluwaimi AM, Leutenegger CM, Farver TB, Rossitto PV, et al. (2003). The cytokine markers in Staphylococcus aureus mastitis of bovine mammary gland. J. Vet. Med. B. Infect. Dis. Vet. Public Health 50: 105-111. doi:10.1046/j.1439-0450.2003.00628.x Bannerman DD, Paape MJ, Lee JW, Zhao X, et al. (2004a). Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diagn. Lab. Immunol. 11: 463-472. PMid:15138171    PMCid:404560 Bannerman DD, Paape MJ, Hare WR and Hope JC (2004b). Characterization of the bovine innate immune response to intramammary infection with Klebsiella pneumoniae. J. Dairy Sci. 87: 2420-2432. doi:10.3168/jds.S0022-0302(04)73365-2 Bannerman DD, Chockalingam A, Paape MJ and Hope JC (2005). The bovine innate immune response during experimentally-induced Pseudomonas aeruginosa mastitis. Vet. Immunol. Immunopathol. 107: 201-215. doi:10.1016/j.vetimm.2005.04.012 PMid:15970335 Bannerman DD, Rinaldi M, Vinyard BT, Laihia J, et al. (2009). Effects of intramammary infusion of cis-urocanic acid on mastitis-associated inflammation and tissue injury in dairy cows. Am. J. Vet. Res. 70: 373-382. doi:10.2460/ajvr.70.3.373 PMid:19254150 Bradley A (2002). Bovine mastitis: an evolving disease. Vet. J. 164: 116-128. doi:10.1053/tvjl.2002.0724 PMid:12359466 Burvenich C, Van M, V, Mehrzad J, Diez-Fraile A, et al. (2003). Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 34: 521-564. doi:10.1051/vetres:2003023 PMid:14556694 Cates EA, Connor EE, Mosser DM and Bannerman DD (2009). Functional characterization of bovine TIRAP and MyD88 in mediating bacterial lipopolysaccharide-induced endothelial NF-kappaB activation and apoptosis. Comp. Immunol. Microbiol. Infect. Dis. 32: 477-490. doi:10.1016/j.cimid.2008.06.001 PMid:18760477    PMCid:2821575 Corl CM, Gandy JC and Sordillo LM (2008). Platelet activating factor production and proinflammatory gene expression in endotoxin-challenged bovine mammary endothelial cells. J. Dairy Sci. 91: 3067-3078. doi:10.3168/jds.2008-1066 PMid:18650283 Detilleux JC, Koehler KJ, Freeman AE, Kehrli ME Jr, et al. (1994). Immunological parameters of periparturient Holstein cattle: genetic variation. J. Dairy Sci. 77: 2640-2650. doi:10.3168/jds.S0022-0302(94)77205-2 Embrapa Gado de Leite (2003). Sistema de Produção de Leite (Zona da Mata Atlântica). Available at []. Accessed October 5, 2009. Embrapa Gado de Leite (2008). Estatística do Leite. Available at []. Accessed October 5, 2009. Ferens WA, Goff WL, Davis WC, Fox LK, et al. (1998). Induction of type 2 cytokines by a staphylococcal enterotoxin superantigen. J. Nat. Toxins. 7: 193-213. PMid:9783259 Fonseca I, Silva PV, Lange CC and Guimarães MFM (2009). Expression profile of genes associated with mastitis in dairy cattle. Genet. Mol. Biol. 32: 776-781. doi:10.1590/S1415-47572009005000074 PMid:21637453    PMCid:3036910 Goldammer T, Zerbe H, Molenaar A, Schuberth HJ, et al. (2004). Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clin. Diagn. Lab. Immunol. 11: 174-185. PMid:14715566    PMCid:321333 Griesbeck-Zilch B, Meyer HH, Kuhn CH, Schwerin M, et al. (2008). Staphylococcus aureus and Escherichia coli cause deviating expression profiles of cytokines and lactoferrin messenger ribonucleic acid in mammary epithelial cells. J. Dairy Sci. 91: 2215-2224. doi:10.3168/jds.2007-0752 PMid:18487644 Hirschfeld M, Ma Y, Weis JH, Vogel SN, et al. (2000). Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J. Immunol. 165: 618-622. PMid:10878331 Ibeagha-Awemu EM, Lee JW, Ibeagha AE, Bannerman DD, et al. (2008). Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells. Vet. Res. 39: 11. doi:10.1051/vetres:2007047 PMid:18096120 Janeway CA, Tavers P, Walport M and Sholmchik MJ (2002). Imunologia: o Sistema Imune na Saúde e na Doença. Artmed, Porto Alegre. Lahouassa H, Moussay E, Rainard P and Riollet C (2007). Differential cytokine and chemokine responses of bovine mammary epithelial cells to Staphylococcus aureus and Escherichia coli. Cytokine 38: 12-21. doi:10.1016/j.cyto.2007.04.006 PMid:17532224 Leutenegger CM, Alluwaimi AM, Smith WL, Perani L, et al. (2000). Quantitation of bovine cytokine mRNA in milk cells of healthy cattle by real-time TaqMan polymerase chain reaction. Vet. Immunol. Immunopathol. 77: 275-287. doi:10.1016/S0165-2427(00)00243-9 Mount JA, Karrow NA, Caswell JL, Boermans HJ, et al. (2009). Assessment of bovine mammary chemokine gene expression in response to lipopolysaccharide, lipotechoic acid + peptidoglycan, and CpG oligodeoxynucleotide 2135. Can. J. Vet. Res. 73: 49-57. PMid:19337396    PMCid:2613597 NMC (1987). Laboratory and Field Handbook on Bovine Mastitis. NMC (National Mastitis Council), Arlington. Oviedo-Boyso J, Valdez-Alarcon JJ, Cajero-Juarez M, Ochoa-Zarzosa A, et al. (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Infect. 54: 399-409. doi:10.1016/j.jinf.2006.06.010 PMid:16882453 Petrovski KR, Trajcev M and Buneski G (2006). A review of the factors affecting the costs of bovine mastitis. J. S. Afr. Vet. Assoc. 77: 52-60. PMid:17120619 Rainard P and Riollet C (2006). Innate immunity of the bovine mammary gland. Vet. Res. 37: 369-400. doi:10.1051/vetres:2006007 PMid:16611554 Rambeaud M, Almeida RA, Pighetti GM and Oliver SP (2003). Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet. Immunol. Immunopathol. 96: 193-205. doi:10.1016/j.vetimm.2003.08.008 PMid:14592732 REST (Relative Expression Software Tool) (2009). Available at []. Accessed July 19, 2010. Riollet C, Rainard P and Poutrel B (2000). Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus. Clin. Diagn. Lab. Immunol. 7: 161-167. PMid:10702487    PMCid:95843 Shuster DE, Kehrli ME Jr and Stevens MG (1993). Cytokine production during endotoxin-induced mastitis in lactating dairy cows. Am. J. Vet. Res. 54: 80-85. PMid:8427476 Shuster DE, Kehrli ME Jr, Rainard P and Paape M (1997). Complement fragment C5a and inflammatory cytokines in neutrophil recruitment during intramammary infection with Escherichia coli. Infect. Immun. 65: 3286-3292. PMid:9234788    PMCid:175465 Singh K, Davis SR, Dobson JM, Molenaar AJ, et al. (2008). cDNA microarray analysis reveals that antioxidant and immune genes are upregulated during involution of the bovine mammary gland. J. Dairy Sci. 91: 2236-2246. doi:10.3168/jds.2007-0900 PMid:18487646 Strandberg Y, Gray C, Vuocolo T, Donaldson L, et al. (2005). Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine 31: 72-86. doi:10.1016/j.cyto.2005.02.010 PMid:15882946 Sugimoto M, Fujikawa A, Womack JE and Sugimoto Y (2006). Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance. Proc. Natl. Acad. Sci. U. S. A. 103: 6454-6459. doi:10.1073/pnas.0601015103 PMid:16611727    PMCid:1458905 Swanson KM, Stelwagen K, Dobson J, Henderson HV, et al. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci. 92: 117-129. doi:10.3168/jds.2008-1382 PMid:19109270 Takeuchi O, Hoshino K and Akira S (2000). Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 165: 5392-5396. PMid:11067888 Tao W, Mallard B, Karrow N and Bridle B (2004). Construction and application of a bovine immune-endocrine cDNA microarray. Vet. Immunol. Immunopathol. 101: 1-17. doi:10.1016/j.vetimm.2003.10.011 PMid:15261689 Vandesompele J, De Preter K, Pattyn F, Poppe B, et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: RESEARCH0034. Wang YH, Byrne KA, Reverter A, Harper GS, et al. (2005). Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm. Genome 16: 201-210. doi:10.1007/s00335-004-2419-8 PMid:15834637 Yang W, Zerbe H, Petzl W, Brunner RM, et al. (2008). Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder. Mol. Immunol. 45: 1385-1397. doi:10.1016/j.molimm.2007.09.004 PMid:17936907