Publications

Found 4 results
Filters: Author is A. Chalfun-Júnior  [Clear All Filters]
2013
C. P. Coelho, Netto, A. P. Costa, Colasanti, J., and Chalfun-Júnior, A., A proposed model for the flowering signaling pathway of sugarcane under photoperiodic control, vol. 12, pp. 1347-1359, 2013.
Baurle I and Dean C (2006). The timing of developmental transitions in plants. Cell 125: 655-664. http://dx.doi.org/10.1016/j.cell.2006.05.005 PMid:16713560   Bernier G and Perilleux C (2005). A physiological overview of the genetics of flowering time control. Plant Biotechnol. J. 3: 3-16. http://dx.doi.org/10.1111/j.1467-7652.2004.00114.x PMid:17168895   Chardon F and Damerval C (2005). Phylogenomic analysis of the PEBP gene family in cereals. J. Mol. Evol. 61: 579-590. http://dx.doi.org/10.1007/s00239-004-0179-4 PMid:16170456   Colasanti J and Coneva V (2009). Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiol. 149: 56-62. http://dx.doi.org/10.1104/pp.108.130500 PMid:19126695 PMCid:2613702   Corbesier L, Vincent C, Jang S, Fornara F, et al. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316: 1030-1033. http://dx.doi.org/10.1126/science.1141752 PMid:17446353   Danilevskaya ON, Meng X, Hou Z, Ananiev EV, et al. (2008). A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol. 146: 250-264. http://dx.doi.org/10.1104/pp.107.109538 PMid:17993543 PMCid:2230559   Danilevskaya ON, Meng X and Ananiev EV (2010). Concerted modification of flowering time and inflorescence architecture by ectopic expression of TFL1-like genes in maize. Plant Physiol. 153: 238-251. http://dx.doi.org/10.1104/pp.110.154211 PMid:20200067 PMCid:2862429   Doi K, Izawa T, Fuse T, Yamanouchi U, et al. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 18: 926-936. http://dx.doi.org/10.1101/gad.1189604 PMid:15078816 PMCid:395851   Eisen MB, Spellman PT, Brown PO and Botstein D (1999). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U. S. A. 95: 14863-14868. http://dx.doi.org/10.1073/pnas.95.25.14863   Endo-Higashi N and Isawa T (2011). Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol. 52: 1083-1094. http://dx.doi.org/10.1093/pcp/pcr059 PMid:21565907 PMCid:3110884   Figueiredo RC, Brito MS, Figueiredo LHM, Quiapin AC, et al. (2001). Dissecting the sugarcane expressed sequence tag (SUCEST) database: unraveling flower-specific genes. Genet. Mol. Biol. 24: 77-84. http://dx.doi.org/10.1590/S1415-47572001000100012   Greenup A, Peacock WJ, Dennis ES and Trevaskis B (2009). The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann. Bot. 103: 1165-1172. http://dx.doi.org/10.1093/aob/mcp063 PMid:19304997 PMCid:2685306   Griffiths S, Dunford RP, Coupland G and Laurie DA (2003). The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol. 131: 1855-1867. http://dx.doi.org/10.1104/pp.102.016188 PMid:12692345 PMCid:166942   Hayama R and Coupland G (2003). Shedding light on the circadian clock and the photoperiodic control of flowering. Curr. Opin. Plant Biol. 6: 13-19. http://dx.doi.org/10.1016/S1369-5266(02)00011-0   Hayama R, Izawa T and Shimamoto K (2002). Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol. 43: 494-504. http://dx.doi.org/10.1093/pcp/pcf059 PMid:12040096   Higuchi Y, Sage-Ono K, Sasaki R, Ohtsuki N, et al. (2011). Constitutive expression of the GIGANTEA ortholog affects circadian rhythms and suppresses one-shot induction of flowering in Pharbitis nil, a typical short-day plant. Plant Cell Physiol. 52: 638-650. http://dx.doi.org/10.1093/pcp/pcr023 PMid:21382978   Huang X and Madan A (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 PMid:10508846 PMCid:310812   Huq E, Tepperman JM and Quail PH (2000). GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 97: 9789-9794. http://dx.doi.org/10.1073/pnas.170283997 PMid:10920210 PMCid:16943   Itoh H, Nonoue Y, Yano M and Izawa T (2010). A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat. Genet. 42: 635-638. http://dx.doi.org/10.1038/ng.606 PMid:20543848   Izawa T, Takahashi Y and Yano M (2003). Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr. Opin. Plant Biol. 6: 113-120. http://dx.doi.org/10.1016/S1369-5266(03)00014-1   Kobayashi Y, Kaya H, Goto K, Iwabuchi M, et al. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960-1962. http://dx.doi.org/10.1126/science.286.5446.1960 PMid:10583960   Lazakis CM, Coneva V and Colasanti J (2011). ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize. J. Exp. Bot. 62: 4833-4842. http://dx.doi.org/10.1093/jxb/err129 PMid:21730358 PMCid:3192997   Meng X, Muszynski MG and Danilevskaya ON (2011). The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell 23: 942-960. http://dx.doi.org/10.1105/tpc.110.081406 PMid:21441432 PMCid:3082274   Mizoguchi T, Wright L, Fujiwara S, Cremer F, et al. (2005). Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17: 2255-2270. http://dx.doi.org/10.1105/tpc.105.033464 PMid:16006578 PMCid:1182487   Mouradov A, Cremer F and Coupland G (2002). Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14 (Suppl): S111-S130. PMid:12045273 PMCid:151251   Parcy F (2005). Flowering: a time for integration. Int. J. Dev. Biol. 49: 585-593. http://dx.doi.org/10.1387/ijdb.041930fp PMid:16096967   Putterill J (2001). Flowering in time: genes controlling photoperiodic flowering in Arabidopsis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356: 1761-1767. http://dx.doi.org/10.1098/rstb.2001.0963 PMid:11710983 PMCid:1088552   Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. PMid:3447015   Samach A and Coupland G (2000). Time measurement and the control of flowering in plants. Bioessays 22: 38-47. http://dx.doi.org/10.1002/(SICI)1521-1878(200001)22:1<38::AID-BIES8>3.0.CO;2-L   Simpson GG and Dean C (2002). Arabidopsis, the Rosetta stone of flowering time? Science 296: 285-289. http://dx.doi.org/10.1126/science.296.5566.285 PMid:11951029   Tahery H, Abdullah MP, Norlia B, Kafilzadeh F, et al. (2009). Terminal flower 1 (TFL1) homolog genes in monocots. Eur. J. Sci. Res. 38: 26-37.   Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738   Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 PMid:7984417 PMCid:308517   Torok M and Etkin LD (2001). Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation 67: 63-71. http://dx.doi.org/10.1046/j.1432-0436.2001.067003063.x PMid:11428128   Valverde F (2011). CONSTANS and the evolutionary origin of photoperiodic timing of flowering. J. Exp. Bot. 62: 2453-2463. http://dx.doi.org/10.1093/jxb/erq449 PMid:21239381   Vettore AL, Silva FR da, Kemper EL and Arruda P (2001). The libraries that made SUCEST. Genet. Mol. Biol. 24: 1-7. http://dx.doi.org/10.1590/S1415-47572001000100002   Wenkel S, Turck F, Singer K, Gissot L, et al. (2006). CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18: 2971-2984. http://dx.doi.org/10.1105/tpc.106.043299 PMid:17138697 PMCid:1693937   Xue W, Xing Y, Weng X, Zhao Y, et al. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40: 761-767. http://dx.doi.org/10.1038/ng.143 PMid:18454147
2011
A. A. Lima, Ságio, S. A., Chalfun-Júnior, A., and Paiva, L. V., In silico characterization of putative members of the coffee (Coffea arabica) ethylene signaling pathway, vol. 10, pp. 1277-1289, 2011.
Alexander L and Grierson D (2003). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53: 2039-2055. doi:10.1093/jxb/erf072 PMid:12324528 Alonso JM and Ecker JR (2001). The ethylene pathway: a paradigm for plant hormone signaling and interaction. Sci. STKE. 2001: re1. doi:10.1126/stke.2001.70.re1 PMid:11752640 Alonso JM, Hirayama T, Roman G, Nourizadeh S, et al. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284: 2148-2152. doi:10.1126/science.284.5423.2148 PMid:10381874 Bapat VA, Trivedi PK, Ghosh A, Sane VA, et al. (2010). Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnol. Adv. 28: 94-107. doi:10.1016/j.biotechadv.2009.10.002 PMid:19850118 Broekaert WF, Delaure SL, De Bolle MF and Cammue BP (2006). The role of ethylene in host-pathogen interactions. Annu. Rev. Phytopathol. 44: 393-416. doi:10.1146/annurev.phyto.44.070505.143440 PMid:16602950 Bustamante-Porras J, Campa C, Poncet V, Noirot M, et al. (2007). Molecular characterization of an ethylene receptor gene (CcETR1) in coffee trees, its relationship with fruit development and caffeine content. Mol. Genet. Genomics 277: 701-712. doi:10.1007/s00438-007-0219-z PMid:17318584 Davies PJ (2004). Plant Hormones: Biosynthesis, Signal Transduction, Action! 3rd edn. Kluwer Academic Publishers, New York. Eisen MB, Spellman PT, Brown PO and Botstein D (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U. S. A. 95: 14863-14868. doi:10.1073/pnas.95.25.14863 Farnezi MMM, Silva EB, Guimarães PTG and Pinto NAVD (2010). Levantamento da qualidade da bebida do café e avaliação do estado nutricional dos cafeeiros do Alto Jequitinhonha, Minas Gerais, através do DRIS. Cienc. Agrotec. 34: 1191-1198. doi:10.1590/S1413-70542010000500016 Fujimoto SY, Ohta M, Usui A, Shinshi H, et al. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant. Cell 12: 393-404. PMid:10715325    PMCid:139839 Gao Z, Wen CK, Binder BM, Chen YF, et al. (2008). Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J. Biol. Chem. 283: 23801-23810. doi:10.1074/jbc.M800641200 PMid:18577522    PMCid:2527101 Guzzo SD, Castro RM, Kida K and Martins EMF (2001). Protection of coffee plants against coffee leaf rusty by Acibenzolar-S-Methyl. Arq. Inst. Biol. 68: 89-94. Hua J, Sakai H, Nourizadeh S, Chen QG, et al. (1998). EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10: 1321-1332. PMid:9707532    PMCid:144061 Huang X and Madan A (1999). CAP3: a DNA sequence assembly program. Genome Res. 9: 868-877. doi:10.1101/gr.9.9.868 PMid:10508846    PMCid:310812 Lee JH, Kim DM, Lee JH, Kim J, et al. (2005). Functional characterization of NtCEF1, an AP2/EREBP-type transcriptional activator highly expressed in tobacco callus. Planta 222: 211-224. doi:10.1007/s00425-005-1525-5 PMid:15918028 Li Y, Zhu B, Xu W, Zhu H, et al. (2007). LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep. 26: 1999-2008. doi:10.1007/s00299-007-0394-8 PMid:17639404 Mbéguié AM, Hubert O, Fils-Lycaon B, Chillet M, et al. (2008). EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Grande naine). Physiol. Plant 133: 435-448. doi:10.1111/j.1399-3054.2008.01083.x PMid:18346078 Meng X, Li F, Liu C, Zhang C, et al. (2010). Isolation and characterization of an ERF transcription factor gene from cotton (Gossypium barbadense L.). Plant Mol. Biol. Rep. 28: 176-183. doi:10.1007/s11105-009-0136-x Nakano T, Suzuki K, Fujimura T and Shinshi H (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140: 411-432. doi:10.1104/pp.105.073783 PMid:16407444    PMCid:1361313 Ohta M, Matsui K, Hiratsu K, Shinshi H, et al. (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13: 1959-1968. PMid:11487705    PMCid:139139 Pearson RB and Kemp BE (1991). Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol. 200: 62-81. doi:10.1016/0076-6879(91)00127-I Pereira LFP, Galvão RM, Kobayashi AK, Cação SMB, et al. (2005). Ethylene production and ACC oxidase gene expression during fruit ripening of Coffea arabica L. Braz. J. Plant Physiol. 17: 283-289. doi:10.1590/S1677-04202005000300002 Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, et al. (2006). Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol. 47: 1195-1205. doi:10.1093/pcp/pcj084 PMid:16857696 Riechmann JL, Heard J, Martin G, Reuber L, et al. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110. doi:10.1126/science.290.5499.2105 PMid:11118137 Rzewuski G and Sauter M (2008). Ethylene biosynthesis and signaling in rice. Plant Sci. 175: 32-42. doi:10.1016/j.plantsci.2008.01.012 Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. PMid:3447015 Sakuma Y, Liu Q, Dubouzet JG, Abe H, et al. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290: 998-1009. doi:10.1006/bbrc.2001.6299 PMid:11798174 Salmona J, Dussert S, Descroix F, Kochko A, et al. (2008). Deciphering transcriptional networks that govern Coffea arabica seed development using combined cDNA array and real-time RT-PCR approaches. Plant Mol. Biol. 66: 105-124. doi:10.1007/s11103-007-9256-6 PMid:18026845 Sobeih WY, Dodd IC, Bacon MA, Grierson D, et al. (2004). Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying. J. Exp. Bot. 55: 2353-2363. doi:10.1093/jxb/erh204 PMid:15310826 Solano R, Stepanova A, Chao Q and Ecker JR (1998). Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 12: 3703-3714. doi:10.1101/gad.12.23.3703 Sun P, Tian QY, Zhao MG, Dai XY, et al. (2007). Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicus L. Plant Cell Physiol. 48: 1229-1235. doi:10.1093/pcp/pcm077 PMid:17573361 Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. doi:10.1093/molbev/msm092 PMid:17488738 Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. doi:10.1093/nar/22.22.4673 PMid:7984417    PMCid:308517 Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, et al. (2003). New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett. 550: 149-154. doi:10.1016/S0014-5793(03)00757-9 Vieira LGE, Andrade AC, Colombo CA, Moraes AHA, et al. (2006). Brazilian coffee genome project: an EST-based genomic resourc. Braz. J. Plant Physiol. 18: 95-108. doi:10.1590/S1677-04202006000100008 Wang W, Esch JJ, Shiu SH, Agula H, et al. (2006). Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell 18: 3429-3442. doi:10.1105/tpc.106.044537 PMid:17189345    PMCid:1785413 Yin XR, Allan AC, Chen KS and Ferguson IB (2010). Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol. 153: 1280-1292. doi:10.1104/pp.110.157081 PMid:20457803    PMCid:2899921 Zhang Z, Zhang H, Quan R, Wang XC, et al. (2009). Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol. 150: 365-377. doi:10.1104/pp.109.135830 PMid:19261734    PMCid:2675746