Publications

Found 57 results
Filters: Author is X. Wang  [Clear All Filters]
2016
T. Usman, Yu, Y., Zhai, L., Liu, C., Wang, X., Wang, Y., Usman, T., Yu, Y., Zhai, L., Liu, C., Wang, X., and Wang, Y., Association of CD4 SNPs with fat percentage of Holstein cattle, vol. 15, p. -, 2016.
T. Usman, Yu, Y., Zhai, L., Liu, C., Wang, X., Wang, Y., Usman, T., Yu, Y., Zhai, L., Liu, C., Wang, X., and Wang, Y., Association of CD4 SNPs with fat percentage of Holstein cattle, vol. 15, p. -, 2016.
S. Han, Wu, Z., Wang, X., Huang, K., Jin, Y., Yang, W., Shi, H., Han, S., Wu, Z., Wang, X., Huang, K., Jin, Y., Yang, W., Shi, H., Han, S., Wu, Z., Wang, X., Huang, K., Jin, Y., Yang, W., and Shi, H., De novo assembly and characterization of Gleditsia sinensis transcriptome and subsequent gene identification and SSR mining, vol. 15, p. -, 2016.
S. Han, Wu, Z., Wang, X., Huang, K., Jin, Y., Yang, W., Shi, H., Han, S., Wu, Z., Wang, X., Huang, K., Jin, Y., Yang, W., Shi, H., Han, S., Wu, Z., Wang, X., Huang, K., Jin, Y., Yang, W., and Shi, H., De novo assembly and characterization of Gleditsia sinensis transcriptome and subsequent gene identification and SSR mining, vol. 15, p. -, 2016.
S. Han, Wu, Z., Wang, X., Huang, K., Jin, Y., Yang, W., Shi, H., Han, S., Wu, Z., Wang, X., Huang, K., Jin, Y., Yang, W., Shi, H., Han, S., Wu, Z., Wang, X., Huang, K., Jin, Y., Yang, W., and Shi, H., De novo assembly and characterization of Gleditsia sinensis transcriptome and subsequent gene identification and SSR mining, vol. 15, p. -, 2016.
X. Wang, Yang, H. A., Wang, X. N., Du, Y. F., Wang, X., Yang, H. A., Wang, X. N., and Du, Y. F., Effect of siRNA-induced silencing of cellular prion protein on tyrosine hydroxylase expression in the substantia nigra of a rat model of Parkinson’s disease, vol. 15, p. -, 2016.
X. Wang, Yang, H. A., Wang, X. N., Du, Y. F., Wang, X., Yang, H. A., Wang, X. N., and Du, Y. F., Effect of siRNA-induced silencing of cellular prion protein on tyrosine hydroxylase expression in the substantia nigra of a rat model of Parkinson’s disease, vol. 15, p. -, 2016.
P. Zheng, Huang, H., Tian, Y. G., Zeng, Y., Adegoke, E. O., Wang, X., Zhang, G. X., Zheng, P., Huang, H., Tian, Y. G., Zeng, Y., Adegoke, E. O., Wang, X., and Zhang, G. X., Effects of glial cell line-derived neurotrophic factor and leukemia-inhibitory factor on the behavior of two calf testis germline stem cell colony types, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by the National International Scientific and Technological Cooperation Project (#2011DFA30760-2-1) and the Open Projects of Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Heilongjiang Province, China (#GXZDSYS-2012-07). REFERENCES Aponte PM, Soda T, Teerds KJ, Mizrak SC, et al (2008). Propagation of bovine spermatogonial stem cells in vitro. Reproduction 136: 543-557. http://dx.doi.org/10.1530/REP-07-0419 Bain G, Kitchens D, Yao M, Huettner JE, et al (1995). Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168: 342-357. http://dx.doi.org/10.1006/dbio.1995.1085 Goel S, Fujihara M, Tsuchiya K, Takagi Y, et al (2009). Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro. Reprod. Fertil. Dev. 21: 696-708. http://dx.doi.org/10.1071/RD08176 Guan K, Nayernia K, Maier LS, Wagner S, et al (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440: 1199-1203. http://dx.doi.org/10.1038/nature04697 Herrid M, Vignarajan S, Davey R, Dobrinski I, et al (2006). Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction 132: 617-624. http://dx.doi.org/10.1530/rep.1.01125 Herrid M, Davey RJ, Hutton K, Colditz IG, et al (2009). A comparison of methods for preparing enriched populations of bovine spermatogonia. Reprod. Fertil. Dev. 21: 393-399. http://dx.doi.org/10.1071/RD08129 Honaramooz A, Megee SO, Rathi R, Dobrinski I, et al (2007). Building a testis: formation of functional testis tissue after transplantation of isolated porcine (Sus scrofa) testis cells. Biol. Reprod. 76: 43-47. http://dx.doi.org/10.1095/biolreprod.106.054999 Honaramooz A, Megee S, Zeng W, Destrempes MM, et al (2008). Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB J. 22: 374-382. http://dx.doi.org/10.1096/fj.07-8935com Izadyar F, Matthijs-Rijsenbilt JJ, den Ouden K, Creemers LB, et al (2002a). Development of a cryopreservation protocol for type A spermatogonia. J. Androl. 23: 537-545. Izadyar F, Spierenberg GT, Creemers LB, den Ouden K, et al (2002b). Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 124: 85-94. http://dx.doi.org/10.1530/rep.0.1240085 Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, et al (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell 119: 1001-1012. http://dx.doi.org/10.1016/j.cell.2004.11.011 Kanatsu-Shinohara M, Lee J, Inoue K, Ogonuki N, et al (2008). Pluripotency of a single spermatogonial stem cell in mice. Biol. Reprod. 78: 681-687. http://dx.doi.org/10.1095/biolreprod.107.066068 Kim KJ, Lee YA, Kim BJ, Kim YH, et al (2015). Cryopreservation of putative pre-pubertal bovine spermatogonial stem cells by slow freezing. Cryobiology 70: 175-183. http://dx.doi.org/10.1016/j.cryobiol.2015.02.007 Kossack N, Meneses J, Shefi S, Nguyen HN, et al (2009). Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 27: 138-149. http://dx.doi.org/10.1634/stemcells.2008-0439 Kubota H, Brinster RL, et al (2006). Technology insight: In vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nat. Clin. Pract. Endocrinol. Metab. 2: 99-108. http://dx.doi.org/10.1038/ncpendmet0098 Kubota H, Avarbock MR, Brinster RL, et al (2004). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 101: 16489-16494. http://dx.doi.org/10.1073/pnas.0407063101 Olive V, Cuzin F, et al (2005). The spermatogonial stem cell: from basic knowledge to transgenic technology. Int. J. Biochem. Cell Biol. 37: 246-250. http://dx.doi.org/10.1016/j.biocel.2004.07.017 Seandel M, James D, Shmelkov SV, Falciatori I, et al (2007). Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449: 346-350. http://dx.doi.org/10.1038/nature06129 Simon L, Ekman GC, Kostereva N, Zhang Z, et al (2009). Direct transdifferentiation of stem/progenitor spermatogonia into reproductive and nonreproductive tissues of all germ layers. Stem Cells 27: 1666-1675. http://dx.doi.org/10.1002/stem.93 Wrobel KH, Bickel D, Kujat R, Schimmel M, et al (1995). Evolution and ultrastructure of the bovine spermatogonia precursor cell line. Cell Tissue Res. 281: 249-259. http://dx.doi.org/10.1007/BF00583394 Zhang P, Huang ZJ, Lv ZH, Li DX, et al (2009). Study of several factors affecting on preparation of mouse embryonic stem cells. Life Sci. J. 6: 1-4. Zhao Q, Wang J, Zhang Y, Kou Z, et al (2010). Generation of histocompatible androgenetic embryonic stem cells using spermatogenic cells. Stem Cells 28: 229-239. Zheng P, Li DX, Tian YG, Huang H, et al (2013). Isolation, purification and cryopreservation of cells from neonatal bovine testis. J. Northeast Agric. Univ. 20: 37-42. http://dx.doi.org/10.1016/S1006-8104(13)60006-9 Zheng P, Zhao XW, Zheng XM, Khalid A, et al (2015). In vitro differentiation of sperm from male germline stem cell. Genet. Mol. Res. 14: 2964-2969. http://dx.doi.org/10.4238/2015.April.10.5
P. Zheng, Huang, H., Tian, Y. G., Zeng, Y., Adegoke, E. O., Wang, X., Zhang, G. X., Zheng, P., Huang, H., Tian, Y. G., Zeng, Y., Adegoke, E. O., Wang, X., and Zhang, G. X., Effects of glial cell line-derived neurotrophic factor and leukemia-inhibitory factor on the behavior of two calf testis germline stem cell colony types, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by the National International Scientific and Technological Cooperation Project (#2011DFA30760-2-1) and the Open Projects of Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Heilongjiang Province, China (#GXZDSYS-2012-07). REFERENCES Aponte PM, Soda T, Teerds KJ, Mizrak SC, et al (2008). Propagation of bovine spermatogonial stem cells in vitro. Reproduction 136: 543-557. http://dx.doi.org/10.1530/REP-07-0419 Bain G, Kitchens D, Yao M, Huettner JE, et al (1995). Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168: 342-357. http://dx.doi.org/10.1006/dbio.1995.1085 Goel S, Fujihara M, Tsuchiya K, Takagi Y, et al (2009). Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro. Reprod. Fertil. Dev. 21: 696-708. http://dx.doi.org/10.1071/RD08176 Guan K, Nayernia K, Maier LS, Wagner S, et al (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440: 1199-1203. http://dx.doi.org/10.1038/nature04697 Herrid M, Vignarajan S, Davey R, Dobrinski I, et al (2006). Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction 132: 617-624. http://dx.doi.org/10.1530/rep.1.01125 Herrid M, Davey RJ, Hutton K, Colditz IG, et al (2009). A comparison of methods for preparing enriched populations of bovine spermatogonia. Reprod. Fertil. Dev. 21: 393-399. http://dx.doi.org/10.1071/RD08129 Honaramooz A, Megee SO, Rathi R, Dobrinski I, et al (2007). Building a testis: formation of functional testis tissue after transplantation of isolated porcine (Sus scrofa) testis cells. Biol. Reprod. 76: 43-47. http://dx.doi.org/10.1095/biolreprod.106.054999 Honaramooz A, Megee S, Zeng W, Destrempes MM, et al (2008). Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB J. 22: 374-382. http://dx.doi.org/10.1096/fj.07-8935com Izadyar F, Matthijs-Rijsenbilt JJ, den Ouden K, Creemers LB, et al (2002a). Development of a cryopreservation protocol for type A spermatogonia. J. Androl. 23: 537-545. Izadyar F, Spierenberg GT, Creemers LB, den Ouden K, et al (2002b). Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 124: 85-94. http://dx.doi.org/10.1530/rep.0.1240085 Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, et al (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell 119: 1001-1012. http://dx.doi.org/10.1016/j.cell.2004.11.011 Kanatsu-Shinohara M, Lee J, Inoue K, Ogonuki N, et al (2008). Pluripotency of a single spermatogonial stem cell in mice. Biol. Reprod. 78: 681-687. http://dx.doi.org/10.1095/biolreprod.107.066068 Kim KJ, Lee YA, Kim BJ, Kim YH, et al (2015). Cryopreservation of putative pre-pubertal bovine spermatogonial stem cells by slow freezing. Cryobiology 70: 175-183. http://dx.doi.org/10.1016/j.cryobiol.2015.02.007 Kossack N, Meneses J, Shefi S, Nguyen HN, et al (2009). Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 27: 138-149. http://dx.doi.org/10.1634/stemcells.2008-0439 Kubota H, Brinster RL, et al (2006). Technology insight: In vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nat. Clin. Pract. Endocrinol. Metab. 2: 99-108. http://dx.doi.org/10.1038/ncpendmet0098 Kubota H, Avarbock MR, Brinster RL, et al (2004). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 101: 16489-16494. http://dx.doi.org/10.1073/pnas.0407063101 Olive V, Cuzin F, et al (2005). The spermatogonial stem cell: from basic knowledge to transgenic technology. Int. J. Biochem. Cell Biol. 37: 246-250. http://dx.doi.org/10.1016/j.biocel.2004.07.017 Seandel M, James D, Shmelkov SV, Falciatori I, et al (2007). Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449: 346-350. http://dx.doi.org/10.1038/nature06129 Simon L, Ekman GC, Kostereva N, Zhang Z, et al (2009). Direct transdifferentiation of stem/progenitor spermatogonia into reproductive and nonreproductive tissues of all germ layers. Stem Cells 27: 1666-1675. http://dx.doi.org/10.1002/stem.93 Wrobel KH, Bickel D, Kujat R, Schimmel M, et al (1995). Evolution and ultrastructure of the bovine spermatogonia precursor cell line. Cell Tissue Res. 281: 249-259. http://dx.doi.org/10.1007/BF00583394 Zhang P, Huang ZJ, Lv ZH, Li DX, et al (2009). Study of several factors affecting on preparation of mouse embryonic stem cells. Life Sci. J. 6: 1-4. Zhao Q, Wang J, Zhang Y, Kou Z, et al (2010). Generation of histocompatible androgenetic embryonic stem cells using spermatogenic cells. Stem Cells 28: 229-239. Zheng P, Li DX, Tian YG, Huang H, et al (2013). Isolation, purification and cryopreservation of cells from neonatal bovine testis. J. Northeast Agric. Univ. 20: 37-42. http://dx.doi.org/10.1016/S1006-8104(13)60006-9 Zheng P, Zhao XW, Zheng XM, Khalid A, et al (2015). In vitro differentiation of sperm from male germline stem cell. Genet. Mol. Res. 14: 2964-2969. http://dx.doi.org/10.4238/2015.April.10.5
T. F. Huang, Wu, X. H., Wang, X., Lu, I. J., Huang, T. F., Wu, X. H., Wang, X., and Lu, I. J., Fas-FasL expression and myocardial cell apoptosis in patients with viral myocarditis, vol. 15, p. -, 2016.
T. F. Huang, Wu, X. H., Wang, X., Lu, I. J., Huang, T. F., Wu, X. H., Wang, X., and Lu, I. J., Fas-FasL expression and myocardial cell apoptosis in patients with viral myocarditis, vol. 15, p. -, 2016.
X. Wang, Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., Liu, D. J., Wang, X., Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., and Liu, D. J., Histone H3K9 acetylation influences growth characteristics of goat adipose-derived stem cells in vitro, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by a High Yield Transgenic Cashmere Goats Breeding grant (#2014ZX08008-002). REFERENCES Ahmadi N, Razavi S, Kazemi M, Oryan S, et al (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44: 87-94. http://dx.doi.org/10.1016/j.tice.2011.11.006 Ali A, Bluteau O, Messaoudi K, Palazzo A, et al (2013). Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis. 4: e738. http://dx.doi.org/10.1038/cddis.2013.260 Baltus GA, Kowalski MP, Tutter AV, Kadam S, et al (2009). A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J. Biol. Chem. 284: 6998-7006. http://dx.doi.org/10.1074/jbc.M807670200 Collas P, et al (2010). Programming differentiation potential in mesenchymal stem cells. Epigenetics 5: 476-482. http://dx.doi.org/10.4161/epi.5.6.12517 Culmes M, Eckstein HH, Burgkart R, Nüssler AK, et al (2013). Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur. J. Cell Biol. 92: 70-79. http://dx.doi.org/10.1016/j.ejcb.2012.11.001 Dudakovic A, Camilleri ET, Lewallen EA, McGee-Lawrence ME, et al (2015). Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells. J. Cell. Physiol. 230: 52-62. http://dx.doi.org/10.1002/jcp.24680 Fan QD, Wu G, Liu ZR, et al (2014). Dynamics of posttranslational modifications of p53. Comput. Math. Methods Med. 2014: 245610. http://dx.doi.org/10.1155/2014/245610 Ge W, Liu Y, Chen T, Zhang X, et al (2014). The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials 35: 6015-6025. http://dx.doi.org/10.1016/j.biomaterials.2014.04.055 Huang Y, Liang P, Liu D, Huang J, et al (2014). Telomere regulation in pluripotent stem cells. Protein Cell 5: 194-202. http://dx.doi.org/10.1007/s13238-014-0028-1 Kwon MJ, Kang SJ, Park YI, Yang YH, et al (2015). Hepatic differentiation of human adipose tissue-derived mesenchymal stem cells and adverse effects of arsanilic acid and acetaminophen during in vitro hepatic developmental stage. Cell Biol. Toxicol. 31: 149-159. http://dx.doi.org/10.1007/s10565-015-9300-2 Lagutina I, Fulka H, Lazzari G, Galli C, et al (2013). Interspecies somatic cell nuclear transfer: advancements and problems. Cell. Reprogram. 15: 374-384. http://dx.doi.org/10.1089/cell.2013.0036 Latella L, Palacios D, Forcales S, Puri PL, et al (2012). Epigenetic control of reprogramming and cellular differentiation. Comp. Funct. Genomics 2012: 538639. http://dx.doi.org/10.1155/2012/538639 Lee K, Kim H, Kim JM, Kim JR, et al (2011). Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J. Cell. Mol. Med. 15: 2082-2094. http://dx.doi.org/10.1111/j.1582-4934.2010.01230.x Leu S, Lin YC, Yuen CM, Yen CH, et al (2010). Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 8: 63. http://dx.doi.org/10.1186/1479-5876-8-63 Lin T, Chao C, Saito S, Mazur SJ, et al (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 7: 165-171. http://dx.doi.org/10.1038/ncb1211 Long CR, Westhusin ME, Golding MC, et al (2014). Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol. Reprod. Dev. 81: 183-193. http://dx.doi.org/10.1002/mrd.22271 Makarova AV, Burgers PM, et al (2015). Eukaryotic DNA polymerase ζ. DNA Repair (Amst.) 29: 47-55. http://dx.doi.org/10.1016/j.dnarep.2015.02.012 Mejlvang J, Feng Y, Alabert C, Neelsen KJ, et al (2014). New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol. 204: 29-43. http://dx.doi.org/10.1083/jcb.201305017 Ogura A, Inoue K, Wakayama T, et al (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20110329. http://dx.doi.org/10.1098/rstb.2011.0329 Oh ET, Park MT, Choi BH, Ro S, et al (2012). Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells. Invest. New Drugs 30: 435-442. http://dx.doi.org/10.1007/s10637-010-9568-2 Oh HJ, Park JE, Kim MJ, Hong SG, et al (2011). Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75: 1221-1231. http://dx.doi.org/10.1016/j.theriogenology.2010.11.035 Oh HJ, Park JE, Park EJ, Kim MJ, et al (2014). Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell. Dev. Growth Differ. 56: 595-604. http://dx.doi.org/10.1111/dgd.12159 Peterson DR, Mok HO, Au DW, et al (2015). Modulation of telomerase activity in fish muscle by biological and environmental factors. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 178: 51-59. Ren Y, Wu H, Zhou X, Wen J, et al (2012). Isolation, expansion, and differentiation of goat adipose-derived stem cells. Res. Vet. Sci. 93: 404-411. http://dx.doi.org/10.1016/j.rvsc.2011.08.014 Rinaldi L, Benitah SA, et al (2015). Epigenetic regulation of adult stem cell function. FEBS J. 282: 1589-1604. http://dx.doi.org/10.1111/febs.12946 Rizzino A, et al (2013). Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 31: 1033-1039. http://dx.doi.org/10.1002/stem.1352 Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, et al (2015). Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res. Ther. 6: 241. http://dx.doi.org/10.1186/s13287-015-0238-3 Saunders A, Faiola F, Wang J, et al (2013). Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells 31: 1227-1236. http://dx.doi.org/10.1002/stem.1384 Teven CM, Liu X, Hu N, Tang N, et al (2011). Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011: 201371. http://dx.doi.org/10.4061/2011/201371 Wang S, Hu C, Zhu J, et al (2007). Transcriptional silencing of a novel hTERT reporter locus during in vitro differentiation of mouse embryonic stem cells. Mol. Biol. Cell 18: 669-677. http://dx.doi.org/10.1091/mbc.E06-09-0840 Wang Z, Oron E, Nelson B, Razis S, et al (2012). Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10: 440-454. http://dx.doi.org/10.1016/j.stem.2012.02.016 Wankhade UD, Shen M, Kolhe R, Fulzele S, et al (2016). Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int. 2016: 3206807. http://dx.doi.org/10.1155/2016/3206807 Yang H, Yan B, Liao D, Huang S, et al (2015). Acetylation of HDAC1 and degradation of SIRT1 form a positive feedback loop to regulate p53 acetylation during heat-shock stress. Cell Death Dis. 6: e1747. http://dx.doi.org/10.1038/cddis.2015.106 Yannarelli G, Pacienza N, Cuniberti L, Medin J, et al (2013). Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells 31: 215-220. http://dx.doi.org/10.1002/stem.1262 Yoon DS, Choi Y, Jang Y, Lee M, et al (2014). SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells 32: 3219-3231. http://dx.doi.org/10.1002/stem.1811 Zhang C, Qu S, Wei X, Feng Y, et al (2016). HSP25 down-regulation enhanced p53 acetylation by dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. Cell Stress Chaperones 21: 251-260. http://dx.doi.org/10.1007/s12192-015-0655-3 Zhang Q, Ramlee MK, Brunmeir R, Villanueva CJ, et al (2012). Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle 11: 4310-4322. http://dx.doi.org/10.4161/cc.22224 Zhang S, Cui W, et al (2014). Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells 6: 305-311. http://dx.doi.org/10.4252/wjsc.v6.i3.305 Zhang Y, Zhang A, Shen C, Zhang B, et al (2014). E2F1 acts as a negative feedback regulator of c-Myc‑induced hTERT transcription during tumorigenesis. Oncol. Rep. 32: 1273-1280. Zhu Y, Song X, Han F, Li Y, et al (2015). Alteration of histone acetylation pattern during long-term serum-free culture conditions of human fetal placental mesenchymal stem cells. PLoS One 10: e0117068. http://dx.doi.org/10.1371/journal.pone.0117068
X. Wang, Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., Liu, D. J., Wang, X., Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., and Liu, D. J., Histone H3K9 acetylation influences growth characteristics of goat adipose-derived stem cells in vitro, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by a High Yield Transgenic Cashmere Goats Breeding grant (#2014ZX08008-002). REFERENCES Ahmadi N, Razavi S, Kazemi M, Oryan S, et al (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44: 87-94. http://dx.doi.org/10.1016/j.tice.2011.11.006 Ali A, Bluteau O, Messaoudi K, Palazzo A, et al (2013). Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis. 4: e738. http://dx.doi.org/10.1038/cddis.2013.260 Baltus GA, Kowalski MP, Tutter AV, Kadam S, et al (2009). A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J. Biol. Chem. 284: 6998-7006. http://dx.doi.org/10.1074/jbc.M807670200 Collas P, et al (2010). Programming differentiation potential in mesenchymal stem cells. Epigenetics 5: 476-482. http://dx.doi.org/10.4161/epi.5.6.12517 Culmes M, Eckstein HH, Burgkart R, Nüssler AK, et al (2013). Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur. J. Cell Biol. 92: 70-79. http://dx.doi.org/10.1016/j.ejcb.2012.11.001 Dudakovic A, Camilleri ET, Lewallen EA, McGee-Lawrence ME, et al (2015). Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells. J. Cell. Physiol. 230: 52-62. http://dx.doi.org/10.1002/jcp.24680 Fan QD, Wu G, Liu ZR, et al (2014). Dynamics of posttranslational modifications of p53. Comput. Math. Methods Med. 2014: 245610. http://dx.doi.org/10.1155/2014/245610 Ge W, Liu Y, Chen T, Zhang X, et al (2014). The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials 35: 6015-6025. http://dx.doi.org/10.1016/j.biomaterials.2014.04.055 Huang Y, Liang P, Liu D, Huang J, et al (2014). Telomere regulation in pluripotent stem cells. Protein Cell 5: 194-202. http://dx.doi.org/10.1007/s13238-014-0028-1 Kwon MJ, Kang SJ, Park YI, Yang YH, et al (2015). Hepatic differentiation of human adipose tissue-derived mesenchymal stem cells and adverse effects of arsanilic acid and acetaminophen during in vitro hepatic developmental stage. Cell Biol. Toxicol. 31: 149-159. http://dx.doi.org/10.1007/s10565-015-9300-2 Lagutina I, Fulka H, Lazzari G, Galli C, et al (2013). Interspecies somatic cell nuclear transfer: advancements and problems. Cell. Reprogram. 15: 374-384. http://dx.doi.org/10.1089/cell.2013.0036 Latella L, Palacios D, Forcales S, Puri PL, et al (2012). Epigenetic control of reprogramming and cellular differentiation. Comp. Funct. Genomics 2012: 538639. http://dx.doi.org/10.1155/2012/538639 Lee K, Kim H, Kim JM, Kim JR, et al (2011). Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J. Cell. Mol. Med. 15: 2082-2094. http://dx.doi.org/10.1111/j.1582-4934.2010.01230.x Leu S, Lin YC, Yuen CM, Yen CH, et al (2010). Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 8: 63. http://dx.doi.org/10.1186/1479-5876-8-63 Lin T, Chao C, Saito S, Mazur SJ, et al (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 7: 165-171. http://dx.doi.org/10.1038/ncb1211 Long CR, Westhusin ME, Golding MC, et al (2014). Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol. Reprod. Dev. 81: 183-193. http://dx.doi.org/10.1002/mrd.22271 Makarova AV, Burgers PM, et al (2015). Eukaryotic DNA polymerase ζ. DNA Repair (Amst.) 29: 47-55. http://dx.doi.org/10.1016/j.dnarep.2015.02.012 Mejlvang J, Feng Y, Alabert C, Neelsen KJ, et al (2014). New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol. 204: 29-43. http://dx.doi.org/10.1083/jcb.201305017 Ogura A, Inoue K, Wakayama T, et al (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20110329. http://dx.doi.org/10.1098/rstb.2011.0329 Oh ET, Park MT, Choi BH, Ro S, et al (2012). Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells. Invest. New Drugs 30: 435-442. http://dx.doi.org/10.1007/s10637-010-9568-2 Oh HJ, Park JE, Kim MJ, Hong SG, et al (2011). Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75: 1221-1231. http://dx.doi.org/10.1016/j.theriogenology.2010.11.035 Oh HJ, Park JE, Park EJ, Kim MJ, et al (2014). Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell. Dev. Growth Differ. 56: 595-604. http://dx.doi.org/10.1111/dgd.12159 Peterson DR, Mok HO, Au DW, et al (2015). Modulation of telomerase activity in fish muscle by biological and environmental factors. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 178: 51-59. Ren Y, Wu H, Zhou X, Wen J, et al (2012). Isolation, expansion, and differentiation of goat adipose-derived stem cells. Res. Vet. Sci. 93: 404-411. http://dx.doi.org/10.1016/j.rvsc.2011.08.014 Rinaldi L, Benitah SA, et al (2015). Epigenetic regulation of adult stem cell function. FEBS J. 282: 1589-1604. http://dx.doi.org/10.1111/febs.12946 Rizzino A, et al (2013). Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 31: 1033-1039. http://dx.doi.org/10.1002/stem.1352 Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, et al (2015). Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res. Ther. 6: 241. http://dx.doi.org/10.1186/s13287-015-0238-3 Saunders A, Faiola F, Wang J, et al (2013). Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells 31: 1227-1236. http://dx.doi.org/10.1002/stem.1384 Teven CM, Liu X, Hu N, Tang N, et al (2011). Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011: 201371. http://dx.doi.org/10.4061/2011/201371 Wang S, Hu C, Zhu J, et al (2007). Transcriptional silencing of a novel hTERT reporter locus during in vitro differentiation of mouse embryonic stem cells. Mol. Biol. Cell 18: 669-677. http://dx.doi.org/10.1091/mbc.E06-09-0840 Wang Z, Oron E, Nelson B, Razis S, et al (2012). Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10: 440-454. http://dx.doi.org/10.1016/j.stem.2012.02.016 Wankhade UD, Shen M, Kolhe R, Fulzele S, et al (2016). Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int. 2016: 3206807. http://dx.doi.org/10.1155/2016/3206807 Yang H, Yan B, Liao D, Huang S, et al (2015). Acetylation of HDAC1 and degradation of SIRT1 form a positive feedback loop to regulate p53 acetylation during heat-shock stress. Cell Death Dis. 6: e1747. http://dx.doi.org/10.1038/cddis.2015.106 Yannarelli G, Pacienza N, Cuniberti L, Medin J, et al (2013). Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells 31: 215-220. http://dx.doi.org/10.1002/stem.1262 Yoon DS, Choi Y, Jang Y, Lee M, et al (2014). SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells 32: 3219-3231. http://dx.doi.org/10.1002/stem.1811 Zhang C, Qu S, Wei X, Feng Y, et al (2016). HSP25 down-regulation enhanced p53 acetylation by dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. Cell Stress Chaperones 21: 251-260. http://dx.doi.org/10.1007/s12192-015-0655-3 Zhang Q, Ramlee MK, Brunmeir R, Villanueva CJ, et al (2012). Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle 11: 4310-4322. http://dx.doi.org/10.4161/cc.22224 Zhang S, Cui W, et al (2014). Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells 6: 305-311. http://dx.doi.org/10.4252/wjsc.v6.i3.305 Zhang Y, Zhang A, Shen C, Zhang B, et al (2014). E2F1 acts as a negative feedback regulator of c-Myc‑induced hTERT transcription during tumorigenesis. Oncol. Rep. 32: 1273-1280. Zhu Y, Song X, Han F, Li Y, et al (2015). Alteration of histone acetylation pattern during long-term serum-free culture conditions of human fetal placental mesenchymal stem cells. PLoS One 10: e0117068. http://dx.doi.org/10.1371/journal.pone.0117068
X. Wang, He, X. J., Xu, H. Q., Chen, Z. W., Fan, H. H., Wang, X., He, X. J., Xu, H. Q., Chen, Z. W., and Fan, H. H., Inhibition of subcutaneously implanted human pituitary tumor cells in nude mice by LRIG1, vol. 15, p. -, 2016.
X. Wang, He, X. J., Xu, H. Q., Chen, Z. W., Fan, H. H., Wang, X., He, X. J., Xu, H. Q., Chen, Z. W., and Fan, H. H., Inhibition of subcutaneously implanted human pituitary tumor cells in nude mice by LRIG1, vol. 15, p. -, 2016.
X. C. Sun, Zhang, A. C., Tong, L. L., Wang, K., Wang, X., Sun, Z. Q., Zhang, H. Y., Sun, X. C., Zhang, A. C., Tong, L. L., Wang, K., Wang, X., Sun, Z. Q., and Zhang, H. Y., miR-146a and miR-196a2 polymorphisms in ovarian cancer risk, vol. 15, p. -, 2016.
X. C. Sun, Zhang, A. C., Tong, L. L., Wang, K., Wang, X., Sun, Z. Q., Zhang, H. Y., Sun, X. C., Zhang, A. C., Tong, L. L., Wang, K., Wang, X., Sun, Z. Q., and Zhang, H. Y., miR-146a and miR-196a2 polymorphisms in ovarian cancer risk, vol. 15, p. -, 2016.
F. Fang, Wang, S., Dang, Y. X., Wang, X., Yu, G. Q., Fang, F., Wang, S., Dang, Y. X., Wang, X., Yu, G. Q., Fang, F., Wang, S., Dang, Y. X., Wang, X., and Yu, G. Q., Molecular characterization of carbapenemase genes in Acinetobacter baumannii in China, vol. 15, p. -, 2016.
F. Fang, Wang, S., Dang, Y. X., Wang, X., Yu, G. Q., Fang, F., Wang, S., Dang, Y. X., Wang, X., Yu, G. Q., Fang, F., Wang, S., Dang, Y. X., Wang, X., and Yu, G. Q., Molecular characterization of carbapenemase genes in Acinetobacter baumannii in China, vol. 15, p. -, 2016.
F. Fang, Wang, S., Dang, Y. X., Wang, X., Yu, G. Q., Fang, F., Wang, S., Dang, Y. X., Wang, X., Yu, G. Q., Fang, F., Wang, S., Dang, Y. X., Wang, X., and Yu, G. Q., Molecular characterization of carbapenemase genes in Acinetobacter baumannii in China, vol. 15, p. -, 2016.
M. Du, Wang, X., Yue, Y. W., Zhou, P. Y., Yao, W., Li, X., Ding, X. B., Liu, X. F., Guo, H., Ma, W. Z., Du, M., Wang, X., Yue, Y. W., Zhou, P. Y., Yao, W., Li, X., Ding, X. B., Liu, X. F., Guo, H., and Ma, W. Z., Selection of reference genes in canine uterine tissues, vol. 15, p. -, 2016.
M. Du, Wang, X., Yue, Y. W., Zhou, P. Y., Yao, W., Li, X., Ding, X. B., Liu, X. F., Guo, H., Ma, W. Z., Du, M., Wang, X., Yue, Y. W., Zhou, P. Y., Yao, W., Li, X., Ding, X. B., Liu, X. F., Guo, H., and Ma, W. Z., Selection of reference genes in canine uterine tissues, vol. 15, p. -, 2016.
X. Wang, Song, Z. G., Huang, D. X., Gao, H., Wang, Q., Wang, Z. P., Wang, X., Song, Z. G., Huang, D. X., Gao, H., Wang, Q., and Wang, Z. P., A single nucleotide polymorphism in GABAA receptor isoforms is potentially responsible for isoflurane sensitivity in mice, vol. 15, p. -, 2016.
X. Wang, Song, Z. G., Huang, D. X., Gao, H., Wang, Q., Wang, Z. P., Wang, X., Song, Z. G., Huang, D. X., Gao, H., Wang, Q., and Wang, Z. P., A single nucleotide polymorphism in GABAA receptor isoforms is potentially responsible for isoflurane sensitivity in mice, vol. 15, p. -, 2016.
Y. H. Liu, Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., and Han, X. F., Toll-like receptor-4-dependence of the lipopolysaccharide-mediated inhibition of osteoblast differentiation, vol. 15, p. -, 2016.
Y. H. Liu, Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., and Han, X. F., Toll-like receptor-4-dependence of the lipopolysaccharide-mediated inhibition of osteoblast differentiation, vol. 15, p. -, 2016.
Y. H. Liu, Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., and Han, X. F., Toll-like receptor-4-dependence of the lipopolysaccharide-mediated inhibition of osteoblast differentiation, vol. 15, p. -, 2016.
2015
X. Wang, Sun, J., Dang, G. F., Gao, Y., Duan, L., and Wu, X. Y., Antioxidant content and cytological examination of aqueous fluid from patients with age-related cataracts at different stages, vol. 14, pp. 6251-6255, 2015.
Y. - Z. Pan, Wang, X., Bai, H., Wang, C. - B., Zhang, Q., and Xi, R., Autophagy in drug resistance of the multiple myeloma cell line RPMI8226 to doxorubicin, vol. 14, pp. 5621-5629, 2015.
X. Wang and He, Y., CYP2E1 PstI polymorphism increases cervical neoplasia risk: a meta-analysis, vol. 14, pp. 5203-5209, 2015.
L. Xiu, Fu, Y. B., Deng, Y., Shi, X. J., Bian, Z. Y., Ruhan, A., and Wang, X., Deep sequencing-based analysis of gene expression in bovine mammary epithelial cells after Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae infection, vol. 14, pp. 16948-16965, 2015.
S. Y. Wang, Li, Z. J., Wang, X., Li, W. F., and Lin, Z. F., Effect of ulinastatin on HMGB1 expression in rats with acute lung injury induced by sepsis, vol. 14, pp. 4344-4353, 2015.
C. Liu, Xue, G. P., Cheng, B., Wang, X., He, J., Liu, G. H., and Yang, W. J., Genetic diversity analysis of Capparis spinosa L. populations by using ISSR markers, vol. 14, pp. 16476-16483, 2015.
R. Wang, Jing, G., Lv, J., Song, H., Li, C., Wang, X., Xia, W., Wu, Y., Ren, G., and Guo, W., Interferon-α-2b as an adjuvant therapy prolongs survival of patients with previously resected oral muscosal melanoma, vol. 14, pp. 11944-11954, 2015.
S. Wang, Fang, F., Jin, W. B., Wang, X., and Zheng, X. S., Investigation into the association between NLRP3 gene polymorphisms and susceptibility to type 2 diabetes mellitus, vol. 14, pp. 17447-17452, 2015.
X. Wang, Zhang, T. L., and Chen, D., Lack of association between the vitamin D receptor polymorphism rs2228570 and chronic periodontitis in a Han Chinese population, vol. 14, pp. 12299-12305, 2015.
F. Jiang, Yang, Y., Li, J., Li, W., Luo, Y., Li, Y., Zhao, H., Wang, X., Yin, G., and Wu, G., Partial least squares-based gene expression analysis in preeclampsia, vol. 14, pp. 6598-6604, 2015.
X. Wang, Xu, Z., and Miao, C. H., Pooled analysis of association between a genetic variant in the 3'-untranslated region of Toll-like receptor 4 and cancer risk, vol. 14, pp. 17847-17855, 2015.
X. Wang and Huang, Z. H., Predictive potential role of glutathione S-transferase polymorphisms in the prognosis of breast cancer, vol. 14, pp. 10236-10241, 2015.
Y. B. Wang, Jia, N., Xu, C. M., Zhao, L., Zhao, Y., Wang, X., and Jia, T. H., Selecting key genes associated with osteosarcoma based on a differential expression network, vol. 14, pp. 17708-17717, 2015.
G. Tian, Li, X., Li, H., Wang, X., and Cheng, B., Systematic meta-analysis of the association between monocyte chemoattractant protein-1 -2518A/G polymorphism and risk of tuberculosis, vol. 14, pp. 5501-5510, 2015.
X. Wang, Ma, K. W., Zhao, Y. G., Wang, G. J., and Li, W., XRCC1 rs25487 polymorphism is associated with lung cancer risk in epidemiologically susceptible Chinese people, vol. 14, pp. 15530-15538, 2015.
2014
L. Jiang, Jiang, J., Liu, J., Yuan, J., Chen, Y., Zhang, Q., and Wang, X., Chromosome mapping of 18S rDNA and 5S rDNA by dual-color fluorescence in situ hybridization in the half-smooth tongue sole (Cynoglossus semilaevis), vol. 13, pp. 10761-10768, 2014.
X. Wang, Chen, G. Y., Yang, S. S., Tian, Y., Ge, T., Qin, H., Han, W., and Chang, H. Y., Effects of high thoracic epidural anesthesia on ischemic cardiomyopathy cardiac function and autonomic neural function, vol. 13, pp. 6813-6819, 2014.
Z. Zhang, Wang, X., Luo, F., Yang, H., Hou, T., Zhou, Q., Dai, F., He, Q., and Xu, J., Effects of rifampicin on osteogenic differentiation and proliferation of human mesenchymal stem cells in the bone marrow, vol. 13, pp. 6398-6410, 2014.
Y. P. Feng, Chen, J. F., Huang, P., Wang, X., Wang, J., Peng, X. L., and Gong, Y. Z., Expression analysis of differentially expressed miRNAs in male and female chicken embryos, vol. 13, pp. 3060-3068, 2014.
X. Wang, Liu, M., and Zhao, C. Y., Expression of ezrin and moesin related to invasion, metastasis and prognosis of laryngeal squamous cell carcinoma, vol. 13, pp. 8002-8013, 2014.
Z. Ma, Sun, W. W., and Wang, X., Hydrogen peroxide enhances the uptake of polyethylenimine/oligonucleotide complexes in A549 cells by activating CaMKII independent of [Ca2+]c elevation, vol. 13, pp. 2914-2921, 2014.
K. L. Ma, Nyamtsengel, V., Bao, W. L., Lian, M. Y., Wang, W. P., Wang, Y. F., Wang, X., and Wang, Z. G., Overexpression of protein kinase B/AKT induces phosphorylation of p70S6K and 4E-BP1 in goat fetal fibroblasts, vol. 13, pp. 9931-9938, 2014.
Y. Kong, Wu, J. B., Wang, X., Zhao, J. F., Song, H., and Yuan, L. D., Polymorphism of the OLR1 3'UTR potential microRNA binding site and risk of Alzheimer’s disease: a meta-analysis, vol. 13, pp. 10162-10172, 2014.

Pages