Publications

Found 11 results
Filters: Author is Y. Luo  [Clear All Filters]
2012
Y. Lv, Cao, L. H., Pang, H., Lu, L. N., Li, J. L., Fu, Y., Qi, S. L., Luo, Y., and Li-Ling, J., Combined genetic and imaging diagnosis for two large Chinese families affected with Pelizaeus-Merzbacher disease, vol. 11, pp. 2035-2044, 2012.
Bonnet-Dupeyron MN, Combes P, Santander P, Cailloux F, et al. (2008). PLP1 splicing abnormalities identified in Pelizaeus-Merzbacher disease and SPG2 fibroblasts are associated with different types of mutations. Hum. Mutat. 29: 1028-1036. http://dx.doi.org/10.1002/humu.20758 PMid:18470932   Edgar JM, McLaughlin M, Barrie JA, McCulloch MC, et al. (2004). Age-related axonal and myelin changes in the rumpshaker mutation of the PLP gene. Acta Neuropathol. 107: 331-335. http://dx.doi.org/10.1007/s00401-003-0808-9 PMid:14745569   Inoue K (2005). PLP1-related inherited dysmyelinating disorders: Pelizaeus-Merzbacher disease and spastic paraplegia type 2. Neurogenetics 6: 1-16. http://dx.doi.org/10.1007/s10048-004-0207-y PMid:15627202   Inoue K, Kanai M, Tanabe Y, Kubota T, et al. (2001). Prenatal interphase FISH diagnosis of PLP1 duplication associated with Pelizaeus-Merzbacher disease. Prenat. Diagn. 21: 1133-1136. http://dx.doi.org/10.1002/pd.186 PMid:11787038   Inoue K, Osaka H, Thurston VC, Clarke JT, et al. (2002). Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females. Am. J. Hum. Genet. 71: 838-853. http://dx.doi.org/10.1086/342728 PMid:12297985 PMCid:378540   Krämer-Albers EM, Gehrig-Burger K, Thiele C, Trotter J, et al. (2006). Perturbed interactions of mutant proteolipid protein/DM20 with cholesterol and lipid rafts in oligodendroglia: implications for dysmyelination in spastic paraplegia. J. Neurosci. 26: 11743-11752. http://dx.doi.org/10.1523/JNEUROSCI.3581-06.2006 PMid:17093095   Mattei MG, Alliel PM, Dautigny A, Passage E, et al. (1986). The gene encoding for the major brain proteolipid (PLP) maps on the q-22 band of the human X chromosome. Hum. Genet. 72: 352-353. http://dx.doi.org/10.1007/BF00290964 PMid:3457761   Willard HF and Riordan JR (1985). Assignment of the gene for myelin proteolipid protein to the X chromosome: implications for X-linked myelin disorders. Science 230: 940-942. http://dx.doi.org/10.1126/science.3840606 PMid:3840606
Y. Hu, Wen, W., Yu, J. - G., Qu, S. - Q., Wang, S. - S., Liu, J., Li, B. - S., and Luo, Y., Genetic association of UBE2B variants with susceptibility to male infertility in a Northeast Chinese population, vol. 11, pp. 4226-4234, 2012.
Baarends WM, Wassenaar E, Hoogerbrugge JW, van Cappellen G, et al. (2003). Loss of HR6B ubiquitin-conjugating activity results in damaged synaptonemal complex structure and increased crossing-over frequency during the male meiotic prophase. Mol. Cell. Biol. 23: 1151-1162. http://dx.doi.org/10.1128/MCB.23.4.1151-1162.2003 PMid:12556476 PMCid:141135   Ciechanover A (1996). Ubiquitin-mediated proteolysis and male sterility. Nat. Med. 2: 1188-1190. http://dx.doi.org/10.1038/nm1196-1188 PMid:8898739   Escalier D and Serres C (1985). Aberrant distribution of the peri-axonemal structures in the human spermatozoon: possible role of the axoneme in the spatial organization of the flagellar components. Biol. Cell 53: 239-250. http://dx.doi.org/10.1111/j.1768-322X.1985.tb00372.x PMid:3160418   Escalier D, Bai XY, Silvius D, Xu PX, et al. (2003). Spermatid nuclear and sperm periaxonemal anomalies in the mouse Ube2b null mutant. Mol. Reprod. Dev. 65: 298-308. http://dx.doi.org/10.1002/mrd.10290 PMid:12784252   Grootegoed JA, Siep M and Baarends WM (2000). Molecular and cellular mechanisms in spermatogenesis. Baillieres Best Pract. Res. Clin. Endocrinol. Metab. 14: 331-343. http://dx.doi.org/10.1053/beem.2000.0083 PMid:11097779   Huang I, Emery BR, Christensen GL, Griffin J, et al. (2008). Novel UBE2B-associated polymorphisms in an azoospermic/ oligozoospermic population. Asian J. Androl. 10: 461-466. http://dx.doi.org/10.1111/j.1745-7262.2008.00386.x PMid:18385908   Li Z, Zhang Z, He Z, Tang W, et al. (2009). A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res. 19: 519-523. http://dx.doi.org/10.1038/cr.2009.33 PMid:19290020   Nishimune Y and Tanaka H (2006). Infertility caused by polymorphisms or mutations in spermatogenesis-specific genes. J. Androl. 27: 326-334. http://dx.doi.org/10.2164/jandrol.05162 PMid:16474012   Pengo M, Ferlin A, Arredi B, Ganz F, et al. (2006). FSH receptor gene polymorphisms in fertile and infertile Italian men. Reprod. Biomed. Online 13: 795-800. http://dx.doi.org/10.1016/S1472-6483(10)61026-7   Rajapurohitam V, Morales CR, El-Alfy M, Lefrancois S, et al. (1999). Activation of a UBC4-dependent pathway of ubiquitin conjugation during postnatal development of the rat testis. Dev. Biol. 212: 217-228. http://dx.doi.org/10.1006/dbio.1999.9342 PMid:10419697   Rajapurohitam V, Bedard N and Wing SS (2002). Control of ubiquitination of proteins in rat tissues by ubiquitin conjugating enzymes and isopeptidases. Am. J. Physiol. Endocrinol. Metab. 282: E739-E745. PMid:11882492   Roest HP, van Klaveren J, de Wit J, van Gurp CG, et al. (1996). Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 86: 799-810. http://dx.doi.org/10.1016/S0092-8674(00)80154-3   Serres C, Feneux D and Jouannet P (1986). Abnormal distribution of the periaxonemal structures in a human sperm flagellar dyskinesia. Cell Motil. Cytoskeleton 6: 68-76. http://dx.doi.org/10.1002/cm.970060109 PMid:3698108   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Suryavathi V, Khattri A, Gopal K, Rani DS, et al. (2008). Novel variants in UBE2B gene and idiopathic male infertility. J. Androl. 29: 564-571. http://dx.doi.org/10.2164/jandrol.107.004580 PMid:18497339   World Health Organization (1999). WHO Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction. 4th edn. Cambridge University Press, Cambridge.
L. H. Cao, Wang, L., Ji, C. Y., Wang, L. B., Ma, H. W., and Luo, Y., Novel and recurrent COL2A1 mutations in Chinese patients with spondyloepiphyseal dysplasia, vol. 11, pp. 4130-4137, 2012.
Bar-Yosef U, Ohana E, Hershkovitz E, Perlmuter S, et al. (2004). X-linked spondyloepiphyseal dysplasia tarda: a novel SEDL mutation in a Jewish Ashkenazi family and clinical intervention considerations. Am. J. Med. Genet. A 125A: 45-48. http://dx.doi.org/10.1002/ajmg.a.20435 PMid:14755465   Borochowitz ZU, Scheffer D, Adir V, Dagoneau N, et al. (2004). Spondylo-epi-metaphyseal dysplasia (SEMD) matrilin 3 type: homozygote matrilin 3 mutation in a novel form of SEMD. J. Med. Genet. 41: 366-372. http://dx.doi.org/10.1136/jmg.2003.013342 PMid:15121775 PMCid:1735768   Byers PH, Wallis GA and Willing MC (1991). Osteogenesis imperfecta: translation of mutation to phenotype. J. Med. Genet. 28: 433-442. http://dx.doi.org/10.1136/jmg.28.7.433 PMid:1895312 PMCid:1016951   Faiyaz ul Haque M, King LM, Krakow D, Cantor RM, et al. (1998). Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nat. Genet. 20: 157-162.   Fiedler J, Bergmann C and Brenner RE (2003). X-linked spondyloepiphyseal dysplasia tarda: molecular cause of a heritable disorder associated with early degenerative joint disease. Acta Orthop. Scand. 74: 737-741. http://dx.doi.org/10.1080/00016470310018298 PMid:14763708   Freisinger P, Ala-Kokko L, LeGuellec D, Franc S, et al. (1994). Mutation in the COL2A1 gene in a patient with hypochondrogenesis. Expression of mutated COL2A1 gene is accompanied by expression of genes for type I procollagen in chondrocytes. J. Biol. Chem. 269: 13663-13669. PMid:8175802   Gleghorn L, Ramesar R, Beighton P and Wallis G (2005). A mutation in the variable repeat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe, premature osteoarthritis. Am. J. Hum. Genet. 77: 484-490. http://dx.doi.org/10.1086/444401 PMid:16080123 PMCid:1226213   Jung SC, Mathew S, Li QW, Lee YJ, et al. (2004). Spondyloepiphyseal dysplasia congenita with absent femoral head. J. Pediatr. Orthop. B 13: 63-69. PMid:15076581   Kannu P, Bateman J and Savarirayan R (2012). Clinical phenotypes associated with type II collagen mutations. J. Paediatr. Child Health 48: E38-E43. http://dx.doi.org/10.1111/j.1440-1754.2010.01979.x PMid:21332586   Körkkö J, Cohn DH, Ala-Kokko L, Krakow D, et al. (2000). Widely distributed mutations in the COL2A1 gene produce achondrogenesis type II/hypochondrogenesis. Am. J. Med. Genet. 92: 95-100. http://dx.doi.org/10.1002/(SICI)1096-8628(20000515)92:2<95::AID-AJMG3>3.0.CO;2-9   Liao EY, Peng YQ, Zhou HD, Mackie EJ, et al. (2004). Gene symbol: WISP3. Disease: spondyloepihyseal dysplasia tarda with progressive arthropathy. Hum. Genet. 115: 174. PMid:15300987   Nishimura G, Haga N, Kitoh H, Tanaka Y, et al. (2005). The phenotypic spectrum of COL2A1 mutations. Hum. Mutat. 26: 36-43. http://dx.doi.org/10.1002/humu.20179 PMid:15895462   Nishimura G, Dai J, Lausch E, Unger S, et al. (2010). Spondylo-epiphyseal dysplasia, Maroteaux type (pseudo-Morquio syndrome type 2), and parastremmatic dysplasia are caused by TRPV4 mutations. Am. J. Med. Genet. A 152A: 1443-1449. PMid:20503319   Spranger J, Winterpacht A and Zabel B (1994). The type II collagenopathies: a spectrum of chondrodysplasias. Eur. J. Pediatr. 153: 56-65. PMid:8157027   Thiele H, Sakano M, Kitagawa H, Sugahara K, et al. (2004). Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. Proc. Natl. Acad. Sci. U. S. A. 101: 10155- 10160. http://dx.doi.org/10.1073/pnas.0400334101 PMid:15215498 PMCid:454181   Tiller GE, Polumbo PA, Weis MA, Bogaert R, et al. (1995). Dominant mutations in the type II collagen gene, COL2A1, produce spondyloepimetaphyseal dysplasia, Strudwick type. Nat. Genet. 11: 87-89. http://dx.doi.org/10.1038/ng0995-87 PMid:7550321   Unger S, Lausch E, Rossi A, Megarbane A, et al. (2010). Phenotypic features of carbohydrate sulfotransferase 3 (CHST3) deficiency in 24 patients: congenital dislocations and vertebral changes as principal diagnostic features. Am. J. Med. Genet. A 152A: 2543-2549. http://dx.doi.org/10.1002/ajmg.a.33641 PMid:20830804   Williams CJ, Rock M, Considine E, McCarron S, et al. (1995). Three new point mutations in type II procollagen (COL2A1) and identification of a fourth family with the COL2A1 Arg519→Cys base substitution using conformation sensitive gel electrophoresis. Hum. Mol. Genet. 4: 309-312. http://dx.doi.org/10.1093/hmg/4.2.309 PMid:7757086   Xia X, Cui Y, Huang Y, Pan L, et al. (2007). A first familial G504S mutation of COL2A1 gene results in distinctive spondyloepiphyseal dysplasia congenita. Clin. Chim. Acta 382: 148-150. http://dx.doi.org/10.1016/j.cca.2007.04.005 PMid:17509551   Zhang Z, He JW, Fu WZ, Zhang CQ, et al. (2011). Identification of three novel mutations in the COL2A1 gene in four unrelated Chinese families with spondyloepiphyseal dysplasia congenita. Biochem. Biophys. Res. Commun. 413: 504-508. http://dx.doi.org/10.1016/j.bbrc.2011.08.090 PMid:21924244
2011
L. H. Cao, Wang, L. B., Wang, S. S., Ma, H. W., Ji, C. Y., and Luo, Y., Identification of novel and recurrent mutations in the calcium binding type III repeats of cartilage oligomeric matrix protein in patients with pseudoachondroplasia, vol. 10, pp. 955-963, 2011.
Ballo R, Briggs MD, Cohn DH, Knowlton RG, et al. (1997). Multiple epiphyseal dysplasia, ribbing type: a novel point mutation in the COMP gene in a South African family. Am. J. Med. Genet. 68: 396-400. doi:10.1002/(SICI)1096-8628(19970211)68:4<396::AID-AJMG4>3.0.CO;2-K Briggs MD and Chapman KL (2002). Pseudoachondroplasia and multiple epiphyseal dysplasia: mutation review, molecular interactions, and genotype to phenotype correlations. Hum. Mutat. 19: 465-478. doi:10.1002/humu.10066 PMid:11968079 Briggs MD, Mortier GR, Cole WG, King LM, et al. (1998). Diverse mutations in the gene for cartilage oligomeric matrix protein in the pseudoachondroplasia-multiple epiphyseal dysplasia disease spectrum. Am. J. Hum. Genet. 62: 311- 319. doi:10.1086/301713 PMid:9463320 Budde B, Blumbach K, Ylostalo J, Zaucke F, et al. (2005). Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX. Mol. Cell Biol. 25: 10465-10478. doi:10.1128/MCB.25.23.10465-10478.2005 PMid:16287859    PMCid:1291247 Chen FH, Herndon ME, Patel N, Hecht JT, et al. (2007). Interaction of cartilage oligomeric matrix protein/thrombospondin 5 with aggrecan. J. Biol. Chem. 282: 24591-24598. doi:10.1074/jbc.M611390200 PMid:17588949    PMCid:2905148 Chen H, Deere M, Hecht JT and Lawler J (2000). Cartilage oligomeric matrix protein is a calcium-binding protein, and a mutation in its type 3 repeats causes conformational changes. J. Biol. Chem. 275: 26538-26544. doi:10.1074/jbc.M909780199 PMid:10852928 Chen TLL, Posey KL, Hecht JT and Vertel BM (2008). COMP mutations: domain-dependent relationship between abnormal chondrocyte trafficking and clinical PSACH and MED phenotypes. J. Cell Biochem. 103: 778-787. doi:10.1002/jcb.21445 PMid:17570134 Deere M, Sanford T, Ferguson HL, Daniels K, et al. (1998). Identification of twelve mutations in cartilage oligomeric matrix protein (COMP) in patients with pseudoachondroplasia. Am. J. Med. Genet. 80: 510-513. doi:10.1002/(SICI)1096-8628(19981228)80:5<510::AID-AJMG14>3.0.CO;2-F Deere M, Sanford T, Francomano CA, Daniels K, et al. (1999). Identification of nine novel mutations in cartilage oligomeric matrix protein in patients with pseudoachondroplasia and multiple epiphyseal dysplasia. Am. J. Med. Genet. 85: 486-490. doi:10.1002/(SICI)1096-8628(19990827)85:5<486::AID-AJMG10>3.0.CO;2-O Fairbank HA (1946). Dysplasia epiphysealis multiplex. Proc. R. Soc. Med. 39: 315-317. PMCid:2181808 Hashimoto Y, Tomiyama T, Yamano Y and Mori H (2003). Mutation (D472Y) in the type 3 repeat domain of cartilage oligomeric matrix protein affects its early vesicle trafficking in endoplasmic reticulum and induces apoptosis. Am. J. Pathol. 163: 101-110. doi:10.1016/S0002-9440(10)63634-6 Hecht JT, Makitie O, Hayes E, Haynes R, et al. (2004). Chondrocyte cell death and intracellular distribution of COMP and type IX collagen in the pseudoachondroplasia growth plate. J. Orthop. Res. 22: 759-767. doi:10.1016/j.orthres.2003.11.010 PMid:15183431 Hecht JT, Hayes E, Haynes R and Cole WG (2005). COMP mutations, chondrocyte function and cartilage matrix. Matrix Biol. 23: 525-533. doi:10.1016/j.matbio.2004.09.006 PMid:15694129 Hedbom E, Antonsson P, Hjerpe A, Aeschlimann D, et al. (1992). Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J. Biol. Chem. 267: 6132-6136. PMid:1556121 Hou J, Putkey JA and Hecht JT (2000). Delta 469 mutation in the type 3 repeat calcium binding domain of cartilage oligomeric matrix protein (COMP) disrupts calcium binding. Cell Calcium 27: 309-314. doi:10.1054/ceca.2000.0125 PMid:11013461 Ikegawa S, Ohashi H, Nishimura G, Kim KC, et al. (1998). Novel and recurrent COMP (cartilage oligomeric matrix protein) mutations in pseudoachondroplasia and multiple epiphyseal dysplasia. Hum. Genet. 103: 633-638. doi:10.1007/s004390050883 PMid:9921895 Kennedy J, Jackson G, Ramsden S, Taylor J, et al. (2005a). COMP mutation screening as an aid for the clinical diagnosis and counselling of patients with a suspected diagnosis of pseudoachondroplasia or multiple epiphyseal dysplasia. Eur. J. Hum. Genet. 13: 547-555. doi:10.1038/sj.ejhg.5201374 PMid:15756302    PMCid:2673054 Kennedy J, Jackson GC, Barker FS, Nundlall S, et al. (2005b). Novel and recurrent mutations in the C-terminal domain of COMP cluster in two distinct regions and result in a spectrum of phenotypes within the pseudoachondroplasia - multiple epiphyseal dysplasia disease group. Hum. Mutat. 25: 593-594. doi:10.1002/humu.9342 PMid:15880723 Kleerekoper Q, Hecht JT and Putkey JA (2002). Disease-causing mutations in cartilage oligomeric matrix protein cause an unstructured Ca2+ binding domain. J. Biol. Chem. 277: 10581-10589. doi:10.1074/jbc.M109944200 PMid:11782471 Kozlowski K (1976). Pseudoachondroplastic dysplasia (Maroteaux-Lamy): a critical analysis. Australas. Radiol. 20: 255-269. doi:10.1111/j.1440-1673.1976.tb02033.x PMid:828853 Kwak YH, Roh JY, Lee KS, Park HW, et al. (2009). Altered synthesis of cartilage-specific proteoglycans by mutant human cartilage oligomeric matrix protein. Clin. Orthop. Surg. 1: 181-187. doi:10.4055/cios.2009.1.4.181 PMid:19956474    PMCid:2784957 Loughlin J, Irven C, Mustafa Z, Briggs MD, et al. (1998). Identification of five novel mutations in cartilage oligomeric matrix protein gene in pseudoachondroplasia and multiple epiphyseal dysplasia. Hum. Mutat. (Suppl 1): S10-S17. doi:10.1002/humu.1380110105 Mabuchi A, Haga N, Ikeda T, Manabe N, et al. (2001). Novel mutation in exon 18 of the cartilage oligomeric matrix protein gene causes a severe pseudoachondroplasia. Am. J. Med. Genet. 104: 135-139. doi:10.1002/ajmg.10067 PMid:11746044 Mabuchi A, Manabe N, Haga N, Kitoh H, et al. (2003). Novel types of COMP mutations and genotype-phenotype association in pseudoachondroplasia and multiple epiphyseal dysplasia. Hum. Genet. 112: 84-90. doi:10.1007/s00439-002-0845-9 PMid:12483304 Mabuchi A, Momohara S, Ohashi H, Takatori Y, et al. (2004). Circulating COMP is decreased in pseudoachondroplasia and multiple epiphyseal dysplasia patients carrying COMP mutations. Am. J. Med. Genet. A 129A: 35-38. doi:10.1002/ajmg.a.30164 PMid:15266613 Maddox BK, Mokashi A, Keene DR and Bachinger HP (2000). A cartilage oligomeric matrix protein mutation associated with pseudoachondroplasia changes the structural and functional properties of the type 3 domain. J. Biol. Chem. 275: 11412-11417. doi:10.1074/jbc.275.15.11412 PMid:10753957 Malashkevich VN, Kammerer RA, Efimov VP, Schulthess T, et al. (1996). The crystal structure of a five-stranded coiled coil in COMP: a prototype ion channel? Science 274: 761-765. doi:10.1126/science.274.5288.761 PMid:8864111 Merritt TM, Bick R, Poindexter BJ, Alcorn JL, et al. (2007). Unique matrix structure in the rough endoplasmic reticulum cisternae of pseudoachondroplasia chondrocytes. Am. J. Pathol. 170: 293-300. doi:10.2353/ajpath.2007.060530 PMid:17200202    PMCid:1762700 Nakashima E, Mabuchi A, Kubota M, Ishikiriyama S, et al. (2005). Novel and recurrent exon 13 mutations of COMP in pseudoachondroplasia. Am. J. Med. Genet. A 132A: 108-109. doi:10.1002/ajmg.a.30348 PMid:15523619 Newton G, Weremowicz S, Morton CC, Copeland NG, et al. (1994). Characterization of human and mouse cartilage oligomeric matrix protein. Genomics 24: 435-439. doi:10.1006/geno.1994.1649 PMid:7713493 Oldberg A, Antonsson P, Lindblom K and Heinegard D (1992). COMP (cartilage oligomeric matrix protein) is structurally related to the thrombospondins. J. Biol. Chem. 267: 22346-22350. PMid:1429587 Piróg-Garcia KA, Meadows RS, Knowles L, Heinegard D, et al. (2007). Reduced cell proliferation and increased apoptosis are significant pathological mechanisms in a murine model of mild pseudoachondroplasia resulting from a mutation in the C-terminal domain of COMP. Hum. Mol. Genet. 16: 2072-2088. doi:10.1093/hmg/ddm155 PMid:17588960    PMCid:2674228 Schmitz M, Becker A, Schmitz A, Weirich C, et al. (2006). Disruption of extracellular matrix structure may cause pseudoachondroplasia phenotypes in the absence of impaired cartilage oligomeric matrix protein secretion. J. Biol. Chem. 281: 32587-32595. doi:10.1074/jbc.M601976200 PMid:16928687 Schmitz M, Niehoff A, Miosge N, Smyth N, et al. (2008). Transgenic mice expressing D469Delta mutated cartilage oligomeric matrix protein (COMP) show growth plate abnormalities and sternal malformations. Matrix Biol. 27: 67-85. doi:10.1016/j.matbio.2007.08.001 PMid:17889519 Tufan AC, Satiroglu-Tufan NL, Jackson GC, Semerci CN, et al. (2007). Serum or plasma cartilage oligomeric matrix protein concentration as a diagnostic marker in pseudoachondroplasia: differential diagnosis of a family. Eur. J. Hum. Genet. 15: 1023-1028. doi:10.1038/sj.ejhg.5201882 PMid:17579668 Unger S and Hecht JT (2001). Pseudoachondroplasia and multiple epiphyseal dysplasia: new etiologic developments. Am. J. Med. Genet. 106: 244-250. doi:10.1002/ajmg.10234 PMid:11891674 Vranka J, Mokashi A, Keene DR, Tufa S, et al. (2001). Selective intracellular retention of extracellular matrix proteins and chaperones associated with pseudoachondroplasia. Matrix Biol. 20: 439-450. doi:10.1016/S0945-053X(01)00148-2 Zankl A, Jackson GC, Crettol LM, Taylor J, et al. (2007). Preselection of cases through expert clinical and radiological review significantly increases mutation detection rate in multiple epiphyseal dysplasia. Eur. J. Hum. Genet. 15: 150-154. doi:10.1038/sj.ejhg.5201744 PMid:17133256    PMCid:2670452