Publications

Found 2 results
Filters: Author is M. Lobo Júnior  [Clear All Filters]
2012
E. A. Bueno, Oliveira, M. B., Andrade, R. V., M. Júnior, L., and Petrofeza, S., Effect of different carbon sources on proteases secreted by the fungal pathogen Sclerotinia sclerotiorum during Phaseolus vulgaris infection, vol. 11, pp. 2171-2181, 2012.
Billon-Grand G, Poussereau N and Fevre M (2002). The extracellular proteases secreted in vitro and in planta by the phytopathogenic fungus Sclerotinia sclerotiorum. J. Phytopathol. 150: 507-511. http://dx.doi.org/10.1046/j.1439-0434.2002.00782.x   Boland GJ and Hall R (1994). Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 16: 93-108. http://dx.doi.org/10.1080/07060669409500766   Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3   Clark SJ, Templeton MD and Sullivan PA (1997). A secreted aspartic proteinase from Glomerella cingulata: purification of the enzyme and molecular cloning of the cDNA. Microbiology 143: 1395-1403. http://dx.doi.org/10.1099/00221287-143-4-1395 PMid:9141702   Cotton P, Rascle C and Fevre M (2002). Characterization of PG2, an early endoPG produced by Sclerotinia sclerotiorum, expressed in yeast. FEMS Microbiol. Lett 213: 239-244. http://dx.doi.org/10.1111/j.1574-6968.2002.tb11312.x PMid:12167544   Farley PC and Sullivan PA (1998). The Rhizopus oryzae secreted aspartic proteinase gene family: an analysis of gene expression. Microbiology 144: 2355-2366. http://dx.doi.org/10.1099/00221287-144-8-2355 PMid:9720058   Hegedus DD and Rimmer SR (2005). Sclerotinia sclerotiorum: when "to be or not to be" a pathogen? FEMS Microbiol. Lett. 251: 177-184. http://dx.doi.org/10.1016/j.femsle.2005.07.040 PMid:16112822   Jarai G and Buxton F (1994). Nitrogen, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Curr. Genet. 26: 238-244. http://dx.doi.org/10.1007/BF00309554 PMid:7532112   Kim YT, Prusky D and Rollins JA (2007). An activating mutation of the Sclerotinia sclerotiorum pac1 gene increases oxalic acid production at low pH but decreases virulence. Mol. Plant. Pathol. 8: 611-622. http://dx.doi.org/10.1111/j.1364-3703.2007.00423.x PMid:20507525   Li R, Rimmer R, Buchwaldt L, Sharpe AG, et al. (2004). Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fungal. Genet. Biol. 41: 735-753. http://dx.doi.org/10.1016/j.fgb.2004.03.001 PMid:15219559   MacDonald F and Odds FC (1980). Inducible proteinase of Candida albicans in diagnostic serology and in the pathogenesis of systemic candidosis. J. Med. Microbiol. 13: 423-435. http://dx.doi.org/10.1099/00222615-13-3-423 PMid:6997486   Magro P, Marciano P and Di Lenna P (1984). Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum. FEMS Microbiol. Lett. 24: 9-12. http://dx.doi.org/10.1111/j.1574-6968.1984.tb01234.x   Marciano P, Di Lenna P and Magro P (1983). Oxalic acid, cell wall degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol. Plant Pathol. 22: 339- 345.   Mathieu M and Felenbok B (1994). The Aspergillus nidulans CREA protein mediates glucose repression of the ethanol regulon at various levels through competition with the ALCR-specific transactivator. EMBO J. 13: 4022-4027. PMid:8076597 PMCid:395322   Movahedi S and Heale JB (1990). Purification and characterization of an aspartic proteinase secreted by Botrytis cinerea Pers ex. Pers in culture and in infected carrots. Physiol. Mol. Plant Pathol. 36: 289-302. http://dx.doi.org/10.1016/0885-5765(90)90060-B   Murphy JM and Walton JD (1996). Three extracellular proteases from Cochliobolus carbonum: cloning and targeted disruption of ALP1. Mol. Plant Microbe Interact. 9: 290-297. http://dx.doi.org/10.1094/MPMI-9-0290 PMid:8634479   Panozzo C, Cornillot E and Felenbok B (1998). The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. J. Biol. Chem. 273: 6367-6372. http://dx.doi.org/10.1074/jbc.273.11.6367 PMid:9497366   Paris R and Lamattina L (1999). Phytophthora infestans secretes extracellular proteases with necrosis inducing activity on potato. Eur. J. Plant Pathol. 105: 753-760. http://dx.doi.org/10.1023/A:1008734527651   Pereira JL, Franco OL and Noronha EF (2006). Production and biochemical characterization of insecticidal enzymes from Aspergillus fumigatus toward Callosobruchus maculatus. Curr. Microbiol. 52: 430-434. http://dx.doi.org/10.1007/s00284-005-0192-x PMid:16732450   Poussereau N, Creton S, Billon-Grand G, Rascle C, et al. (2001a). Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology 147: 717-726. PMid:11238979   Poussereau N, Gente S, Rascle C, Billon-Grand G, et al. (2001b). aspS encoding an unusual aspartyl protease from Sclerotinia sclerotiorum is expressed during phytopathogenesis. FEMS Microbiol. Lett. 194: 27-32. http://dx.doi.org/10.1111/j.1574-6968.2001.tb09441.x PMid:11150661   Riou C, Freyssinet G and Fevre M (1992). Purification and Characterization of Extracellular Pectinolytic Enzymes Produced by Sclerotinia sclerotiorum. Appl. Environ. Microbiol. 58: 578-583. PMid:16348646 PMCid:195287   Rolland SG and Bruel CA (2008). Sulphur and nitrogen regulation of the protease-encoding ACP1 gene in the fungus Botrytis cinerea: correlation with a phospholipase D activity. Microbiology 154: 1464-1473. http://dx.doi.org/10.1099/mic.0.2007/012005-0 PMid:18451055   Rolland S, Bruel C, Rascle C, Girard V, et al. (2009). pH controls both transcription and post-translational processing of the protease BcACP1 in the phytopathogenic fungus Botrytis cinerea. Microbiology 155: 2097-2105. http://dx.doi.org/10.1099/mic.0.025999-0 PMid:19359322   Rollins JA (2003). The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol. Plant Microbe Interact. 16: 785-795. http://dx.doi.org/10.1094/MPMI.2003.16.9.785 PMid:12971602   Rollins JA and Dickman MB (2001). pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Appl. Environ. Microbiol. 67: 75-81. http://dx.doi.org/10.1128/AEM.67.1.75-81.2001 PMid:11133430 PMCid:92519   Sexton AC, Cozijnsen AJ, Keniry A, Jewell E, et al. (2006). Comparison of transcription of multiple genes at three developmental stages of the plant pathogen Sclerotinia sclerotiorum. FEMS Microbiol. Lett. 258: 150-160. http://dx.doi.org/10.1111/j.1574-6968.2006.00212.x PMid:16630270   ten Have A, Dekkers E, Kay J, Phylip LH, et al. (2004). An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology 150: 2475-2489. http://dx.doi.org/10.1099/mic.0.27058-0 PMid:15256589   Vautard-Mey G and Fevre M (2003). Carbon and pH modulate the expression of the fungal glucose repressor encoding genes. Curr. Microbiol. 46: 146-150. http://dx.doi.org/10.1007/s00284-002-3838-y PMid:12520371
2011
C. G. Litholdo Júnior, Gomes, E. V., M. Júnior, L., Nasser, L. C. B., and Petrofeza, S., Genetic diversity and mycelial compatibility groups of the plant-pathogenic fungus Sclerotinia sclerotiorum in Brazil, vol. 10, pp. 868-877, 2011.
Arbaoui M, Kraic J and Huszár J (2008). Genetic variation of Sclerotinia sclerotiorum isolates from different conditions. Agriculture (Pol’nohospodárstvo) 54: 36-39. Atallah ZK, Larget B, Chen X and Johnson DA (2004). High genetic diversity, phenotypic uniformity, and evidence of outcrossing in Sclerotinia sclerotiorum in the Columbia basin of Washington state. Phytopathology 94: 737-742. doi:10.1094/PHYTO.2004.94.7.737 PMid:18943906 Auclair J, Boland GJ, Kohn LM and Rajcan I (2004). Genetic interactions between Glycine max and Sclerotinia sclerotiorum using a straw inoculation method. Plant Dis. 88: 891-895. doi:10.1094/PDIS.2004.88.8.891 Boland GJ and Hall R (1994). Numbers and distribution of apothecia of Sclerotinia sclerotiorum in relation to white mold of white bean (Phaseolus vulgaris). Can. J. Bot. 66: 247-252. doi:10.1139/b88-042 Carbone I, Anderson JB and Kohn LM (1999). Patterns of descent in clonal lineages and their multilocus fingerprints are resolved with combined gene genealogies. Evolution 53: 11-21. doi:10.2307/2640916 Carpenter MA, Frampton C and Stewart A (1999). Genetic variation in New Zealand populations of the plant pathogen Sclerotinia sclerotiorum. New Zealand J. Crop Hortic. Sci. 27: 13-21. doi:10.1080/01140671.1999.9514075 Cubeta MA, Cody BR, Kohli Y and Kohn LM (1997). Clonality in Sclerotinia sclerotiorum on infected cabbage in Eastern North Carolina. Phytopathology 87: 1000-1004. doi:10.1094/PHYTO.1997.87.10.1000 PMid:18945032 Excoffier L, Laval G and Schneider S (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1: 47-50. PMid:19325852 Hambleton S, Walker C and Kohn LM (2002). Clonal lineages of Sclerotinia sclerotiorum previously known from other crops predominate in 1999-2000 samples from Ontario and Quebec soybean. Can. J. Plant Pathol. 24: 309-315. doi:10.1080/07060660209507014 Kohli Y and Kohn LM (1998). Random association among alleles in clonal populations of Sclerotinia sclerotiorum. Fungal Genet. Biol. 23: 139-149. doi:10.1006/fgbi.1997.1026 PMid:9578627 Kohli Y, Brunner LJ, Yoell H, Milgroom MG, et al. (1995). Clonal dispersal and spatial mixing in populations of the plant pathogenic fungus, Sclerotinia sclerotiorum. Mol. Ecol. 4: 69-77. doi:10.1111/j.1365-294X.1995.tb00193.x Kohn LM, Carbone I and Anderson JB (1990). Mycelial interactions in Sclerotinia sclerotiorum. Exp. Mycol. 14: 255-267. doi:10.1016/0147-5975(90)90023-M Kohn LM, Stasoviski E, Carbone I, Royer J, et al. (1991). Mycelial incompatibility and molecular markers identify genetic variability in field populations of Sclerotinia sclerotiorum. Phytopathology 81: 480-485. doi:10.1094/Phyto-81-480 Kull LS, Pedersen WL, Palmquist D and Hartman GL (2004). Mycelial compatibility grouping and aggressiveness of Sclerotinia sclerotiorum. Plant Dis. 88: 325-332. doi:10.1094/PDIS.2004.88.4.325 Malvárez G, Carbone I, Grunwald NJ, Subbarao KV, et al. (2007). New populations of Sclerotinia sclerotiorum from lettuce in California and peas and lentils in Washington. Phytopathology 97: 470-483. doi:10.1094/PHYTO-97-4-0470 PMid:18943288 Meinhardt LW, Wulff NA, Bellato CM and Tsai SM (2002). Telomere and microsatellite primers reveal diversity among Sclerotinia sclerotiorum isolates from Brazil. Fitopatol. Bras. 27: 211-215. doi:10.1590/S0100-41582002000200015 Mert-Türk F, Ipek M, Mermer D and Nicholson P (2007). Microsatellite and morphological markers reveal genetic variation within a population of Sclerotinia sclerotiorum from oilseed rape in the Çanakkale Province of Turkey. J. Phytopathol. 155: 182-187. Phillips DV, Carbone I, Gold SE and Kohn LM (2002). Phylogeography and genotype-symptom associations in early and late season infections of canola by Sclerotinia sclerotiorum. Phytopathology 92: 785-793. doi:10.1094/PHYTO.2002.92.7.785 PMid:18943276 Rohlf FJ (1993). NTSYS-PC: Numerical Taxonomy and Multivariate Analysis System, Version 1.80. State University of New York, Stony Brook, New York. Sambrook K, Fritsch EF and Maniatis T (1989). Molecular Cloning: a Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York. Sexton AC and Howlett BJ (2004). Microsatellite markers reveal genetic differentiation among populations of Sclerotinia sclerotiorum from Australian canola fields. Curr. Genet. 46: 357-365. doi:10.1007/s00294-004-0543-3 PMid:15549318 Sexton AC, Whitten AR and Howlett BJ (2006). Population structure of Sclerotinia sclerotiorum in an Australian canola field at flowering and stem-infection stages of the disease cycle. Genome 49: 1408-1415. doi:10.1139/g06-101 PMid:17426756 Sirjusingh C and Kohn LM (2001). Characterization of microsatellites in the fungal plant pathogen, Sclerotinia sclerotiorum. Mol. Ecol. Notes 1: 267-269. doi:10.1046/j.1471-8278.2001.00102.x Sun JM, Irzykowski W, Jedryczka M and Han FX (2005). Analysis of the genetic structure of Sclerotinia sclerotiorum (Lib.) de Bary populations from different regions and host plants by random amplified polymorphic DNA markers. J. Integr. Plant Biol. 47: 385-395. doi:10.1111/j.1744-7909.2005.00077.x Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. doi:10.1093/nar/18.22.6531 PMid:1979162    PMCid:332606 Yap IV and Nelson RJ (1996). Winboot: a Program for Performing Bootstrap Analysis of Binary Data to Determine the Confidence Limits of UPGMA-Based Dendrograms. IRRI, Manila. Zolan ME and Pukkila PJ (1986). Inheritance of DNA methylation in Coprinus cinereus. Mol. Cell Biol. 6: 195-200. PMid:3785146    PMCid:367498