Publications

Found 15 results
Filters: Author is Y.H. Zhang  [Clear All Filters]
2013
Y. H. Zhang, Dai, L. S., Ma, T. H., Wang, S. Z., Guo, J., Li, F. J., Zhang, S. M., Sun, B. X., Liu, D. F., Gao, Y., and Zhang, J. B., Association of T1740C polymorphism of L-FABP with meat quality traits in Junmu No. 1 white swine, vol. 12, pp. 235-241, 2013.
Atshaves BP, McIntosh AM, Lyuksyutova OI, Zipfel W, et al. (2004). Liver fatty acid-binding protein gene ablation inhibits branched-chain fatty acid metabolism in cultured primary hepatocytes. J. Biol. Chem. 279: 30954-30965. http://dx.doi.org/10.1074/jbc.M313571200 PMid:15155724   Curi RA, Chardulo LA, Mason MC, Arrigoni MD, et al. (2009). Effect of single nucleotide polymorphisms of CAPN1 241 and CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim. Genet. 40: 456-462. http://dx.doi.org/10.1111/j.1365-2052.2009.01859.x PMid:19392828   Di Pietro SM and Santomé JA (1996). Presence of two new fatty acid binding proteins in catfish liver. Biochem. Cell Biol. 74: 675-680. http://dx.doi.org/10.1139/o96-073 PMid:9018375   Di Pietro SM, Veerkamp JH and Santomé JA (1999). Isolation, amino acid sequence determination and binding properties of two fatty-acid-binding proteins from axolotl (Ambistoma mexicanum) liver. Evolutionary relationship. Eur. J. Biochem. 259: 127-134. http://dx.doi.org/10.1046/j.1432-1327.1999.00015.x PMid:9914484   Geay Y, Bauchart D, Hocquette JF and Culioli J (2001). Effect of nutritional factors on biochemical, structural and metabolic characteristics of muscles in ruminants, consequences on dietetic value and sensorial qualities of meat. Reprod. Nutr. Dev. 41: 1-26. http://dx.doi.org/10.1051/rnd:2001108 PMid:11368241   Gertow K, Bellanda M, Eriksson P, Boquist S, et al. (2004). Genetic and structural evaluation of fatty acid transport protein-4 in relation to markers of the insulin resistance syndrome. J. Clin. Endocrinol. Metab. 89: 392-399. http://dx.doi.org/10.1210/jc.2003-030682 PMid:14715877   Glatz JF and van der Vusse GJ (1996). Cellular fatty acid-binding proteins: their function and physiological significance. Prog. Lipid Res. 35: 243-282. http://dx.doi.org/10.1016/S0163-7827(96)00006-9   Gomez LC, Real SM, Ojeda MS, Gimenez S, et al. (2007). Polymorphism of the FABP2 gene: a population frequency analysis and an association study with cardiovascular risk markers in Argentina. BMC Med. Genet. 8: 39. http://dx.doi.org/10.1186/1471-2350-8-39 PMid:17594477 PMCid:1925061   Heyer A and Lebret B (2007). Compensatory growth response in pigs: effects on growth performance, composition of weight gain at carcass and muscle levels, and meat quality. J. Anim. Sci. 85: 769-778. http://dx.doi.org/10.2527/jas.2006-164 PMid:17296780   Jiang YZ, Li XW and Yang GX (2006). Sequence characterization, tissue-specific expression and polymorphism of the porcine (Sus scrofa) liver-type fatty acid binding protein gene. Yi Chuan Xue Bao 33: 598-606. PMid:16875317   Jurie C, Cassar-Malek I, Bonnet M, Leroux C, et al. (2007). Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. J. Anim. Sci. 85: 2660-2669. http://dx.doi.org/10.2527/jas.2006-837 PMid:17565066   Kamalakar RB, Chiba LI, Divakala KC, Rodning SP, et al. (2009). Effect of the degree and duration of early dietary amino acid restrictions on subsequent and overall pig performance and physical and sensory characteristics of pork. J. Anim. Sci. 87: 3596-3606. http://dx.doi.org/10.2527/jas.2008-1609 PMid:19574567   Li X, Kim SW, Choi JS, Lee YM, et al. (2010). Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content. Mol. Biol. Rep. 37: 3931-3939. http://dx.doi.org/10.1007/s11033-010-0050-1 PMid:20300864   Liu K, Wang G, Zhao SH, Liu B, et al. (2010). Molecular characterization, chromosomal location, alternative splicing and polymorphism of porcine GFAT1 gene. Mol. Biol. Rep. 37: 2711-2717. http://dx.doi.org/10.1007/s11033-009-9805-y PMid:19757168   Nemecz G, Jefferson JR and Schroeder F (1991). Polyene fatty acid interactions with recombinant intestinal and liver fatty acid-binding proteins. Spectroscopic studies. J. Biol. Chem. 266: 17112-17123. PMid:1894608   Richieri GV, Ogata RT and Kleinfeld AM (1994). Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J. Biol. Chem. 269: 23918-23930. PMid:7929039   Rolf B, Oudenampsen-Krüger E, Börchers T, Faergeman NJ, et al. (1995). Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein. Biochim. Biophys. Acta 1259: 245-253. http://dx.doi.org/10.1016/0005-2760(95)00170-0   Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York.   Switonski M, Stachowiak M, Cieslak J, Bartz M, et al. (2010). Genetics of fat tissue accumulation in pigs: a comparative approach. J. Appl. Genet. 51: 153-168. http://dx.doi.org/10.1007/BF03195724 PMid:20453303   Thompson J, Winter N, Terwey D, Bratt J, et al. (1997). The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates. J. Biol. Chem. 272: 7140-7150. http://dx.doi.org/10.1074/jbc.272.11.7140 PMid:9054409
Y. H. Ling, Ding, J. P., Zhang, X. D., Wang, L. J., Zhang, Y. H., Li, Y. S., Zhang, Z. J., and Zhang, X. R., Characterization of microRNAs from goat (Capra hircus) by Solexa deep-sequencing technology, vol. 12, pp. 1951-1961, 2013.
C. Y. Zhang, Wang, N. N., Zhang, Y. H., Feng, Q. Z., Yang, C. W., and Liu, B., DNA methylation involved in proline accumulation in response to osmotic stress in rice (Oryza sativa), vol. 12, pp. 1269-1277, 2013.
Boyko A, Kathiria P, Zemp FJ, Yao Y, et al. (2007). Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Res. 35: 1714-1725. http://dx.doi.org/10.1093/nar/gkm029 PMid:17311811 PMCid:1865051   Chan SW, Henderson IR and Jacobsen SE (2005). Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 6: 351-360. http://dx.doi.org/10.1038/nrg1601 PMid:15861207   Chinnusamy V and Zhu JK (2009). Epigenetic regulation of stress responses in plants. Curr. Opin. Plant Biol. 12: 133-139. http://dx.doi.org/10.1016/j.pbi.2008.12.006 PMid:19179104 PMCid:3139470   Delauney AJ and Verma DPS (1993). Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215-223. http://dx.doi.org/10.1046/j.1365-313X.1993.04020215.x   Dong ZY, Wang YM, Zhang ZJ, Shen Y, et al. (2006). Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theor. Appl. Genet. 113: 196-205. http://dx.doi.org/10.1007/s00122-006-0286-2 PMid:16791687   Hare P and Cress W (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21: 79-102. http://dx.doi.org/10.1023/A:1005703923347   Hu CA, Delauney AJ and Verma DP (1992). A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc. Natl. Acad. Sci. U. S. A. 89: 9354-9358. http://dx.doi.org/10.1073/pnas.89.19.9354 PMid:1384052 PMCid:50125   Jain M, Nijhawan A, Tyagi AK and Khurana JP (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345: 646-651. http://dx.doi.org/10.1016/j.bbrc.2006.04.140 PMid:16690022   Karan R, DeLeon T, Biradar H and Subudhi PK (2012). Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 7: e40203. http://dx.doi.org/10.1371/journal.pone.0040203 PMid:22761959 PMCid:3386172   Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K and Shinozaki K (1996). A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8: 1323-1335. PMid:8776899 PMCid:161248   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Lutts S, Majerus V and Kinet JM (1999). NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 105: 450-458. http://dx.doi.org/10.1034/j.1399-3054.1999.105309.x   Mattioli R, Costantino P and Trovato M (2009). Proline accumulation in plants: not only stress. Plant Signal. Behav. 4: 1016-1018. http://dx.doi.org/10.4161/psb.4.11.9797 PMid:20009553 PMCid:2819507   Molinier J, Ries G, Zipfel C and Hohn B (2006). Transgeneration memory of stress in plants. Nature 442: 1046-1049. http://dx.doi.org/10.1038/nature05022 PMid:16892047   Nanjo T, Fujita M, Seki M, Kato T, et al. (2003). Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol. 44: 541-548. http://dx.doi.org/10.1093/pcp/pcg066 PMid:12773641   Peng Z, Lu Q and Verma DP (1996). Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol. Gen. Genet. 253: 334-341. http://dx.doi.org/10.1007/PL00008600 PMid:9003320   Rangwala SH and Richards EJ (2004). The value-added genome: building and maintaining genomic cytosine methylation landscapes. Curr. Opin. Genet. Dev. 14: 686-691. http://dx.doi.org/10.1016/j.gde.2004.09.009 PMid:15531165   Richards EJ (2006). Inherited epigenetic variation - revisiting soft inheritance. Nat. Rev. Genet. 7: 395-401. http://dx.doi.org/10.1038/nrg1834 PMid:16534512   Roosens NH, Thu TT, Iskandar HM and Jacobs M (1998). Isolation of the ornithine-delta-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol. 117: 263-271. http://dx.doi.org/10.1104/pp.117.1.263 PMid:9576796 PMCid:35011   Saradhi PP, Alia, Arora S and Prasad KV (1995). Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem. Biophys. Res. Commun. 209: 1-5. http://dx.doi.org/10.1006/bbrc.1995.1461 PMid:7726821   Siripornadulsil S, Traina S, Verma DP and Sayre RT (2002). Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14: 2837-2847. http://dx.doi.org/10.1105/tpc.004853 PMid:12417705 PMCid:152731   Tariq M and Paszkowski J (2004). DNA and histone methylation in plants. Trends Genet. 20: 244-251. http://dx.doi.org/10.1016/j.tig.2004.04.005 PMid:15145577   Verbruggen N and Hermans C (2008). Proline accumulation in plants: a review. Amino Acids 35: 753-759. http://dx.doi.org/10.1007/s00726-008-0061-6 PMid:18379856   Verbruggen N, Hua XJ, May M and Van Montagu M (1996). Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proc. Natl. Acad. Sci. U. S. A. 93: 8787-8791. http://dx.doi.org/10.1073/pnas.93.16.8787 PMid:8710950 PMCid:38752   Verslues PE and Sharma S (2010). Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8: e0140. PMid:22303265 PMCid:3244962   Zang A, Xu X, Neill S and Cai W (2010). Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress. J. Exp. Bot. 61: 777-789. http://dx.doi.org/10.1093/jxb/erp341 PMid:20018899 PMCid:2814108
Z. J. Zhang, Ling, Y. H., Wang, L. J., Hang, Y. F., Guo, X. F., Zhang, Y. H., Ding, J. P., and Zhang, X. R., Polymorphisms of the myostatin gene (MSTN) and its relationship with growth traits in goat breeds, vol. 12. pp. 965-971, 2013.
Bellinge RH, Liberles DA, Iaschi SP, O'Brien PA, et al. (2005). Myostatin and its implications on animal breeding: a review. Anim. Genet. 36: 1-6. http://dx.doi.org/10.1111/j.1365-2052.2004.01229.x PMid:15670124   Boman IA, Klemetsdal G, Blichfeldt T, Nafstad O, et al. (2009). A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian White Sheep (Ovis aries). Anim. Genet. 40: 418-422. http://dx.doi.org/10.1111/j.1365-2052.2009.01855.x PMid:19392824   Chen HQ, Qin J, Zhu YJ and Pan ZT (2012). The polymorphisms of goat thrsp gene associated with ecological factors in Chinese indigenous goat breeds with different lipogenesis ability. Asian J. Anim. Vet. Adv. 7: 802-811. http://dx.doi.org/10.3923/ajava.2012.802.811   Chen TT (2008). Polymorphisms of MSTN, IGFBP-3 Gene and the Related Research with Growth Performance of Tianfu Goat, Sichuan Agricultural University, Ya'an.   Fan B, Lkhagvadorj S, Cai W, Young J, et al. (2010). Identification of genetic markers associated with residual feed intake and meat quality traits in the pig. Meat Sci. 84: 645-650. http://dx.doi.org/10.1016/j.meatsci.2009.10.025 PMid:20374837   Grisolia AB, D'Angelo GT, Porto Neto LR, Siqueira F, et al. (2009). Myostatin (GDF8) single nucleotide polymorphisms in Nellore cattle. Genet. Mol. Res. 8: 822-830. http://dx.doi.org/10.4238/vol8-3gmr548 PMid:19731204   Hadjipavlou G, Matika O, Clop A and Bishop SC (2008). Two single nucleotide polymorphisms in the myostatin (GDF8) gene have significant association with muscle depth of commercial Charollais sheep. Anim. Genet. 39: 346-353. http://dx.doi.org/10.1111/j.1365-2052.2008.01734.x PMid:18462481   Jin H, Chen HQ, Q J and Zhu YJ (2012). The polymorphism in 5' regulatory region and exon 13 of PRKAG3 gene and its distribution pattern in different goat breeds. Asian J. Anim. Vet. Adv. 7: 568-577. http://dx.doi.org/10.3923/ajava.2012.568.577   Jin XY (2011). Cloning and bioinformatics analysis on Myostatin (MSTN) gene of goat. China Anim. Husbandry Vet. Med. 38: 111-114.   Li XL, Liu ZZ, Zhou RY and Zheng GR (2008). Deletion of TTTTA in 5'UTR of goat MSTN gene and its distribution in different population groups and genetic effect on bodyweight at different ages. Front. Agric. China 2: 109. http://dx.doi.org/10.1007/s11703-008-0004-8   Li YL, Zhang H, Zhang Q and Wang QL (2009). Research on the efficiency of marker-assisted selection in pig breeding system. China Anim. Husbandry Vet. Med. 36: 67-71.   Liu ZT, Li XL, Gong YF and Jin XM (2006). Relationship between polymorphism of goat MSTN gene intron 2 and body weight. Acta Vet. Zootech. Sin. 37: 745-748.   Thomas M, Langley B, Berry C, Sharma M, et al. (2000). Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 275: 40235-40243. http://dx.doi.org/10.1074/jbc.M004356200 PMid:10976104   Walsh FS and Celeste AJ (2005). Myostatin: a modulator of skeletal-muscle stem cells. Biochem. Soc. Trans. 33: 1513- 1517. http://dx.doi.org/10.1042/BST20051513 PMid:16246158   Wiener P, Woolliams JA, Frank-Lawale A, Ryan M, et al. (2009). The effects of a mutation in the myostatin gene on meat and carcass quality. Meat Sci. 83: 127-134. http://dx.doi.org/10.1016/j.meatsci.2009.04.010 PMid:20416780   Zhang C, Liu Y, Xu D, Wen Q, et al. (2012). Polymorphisms of myostatin gene (MSTN) in four goat breeds and their effects on Boer goat growth performance. Mol. Biol. Rep. 39: 3081-3087. http://dx.doi.org/10.1007/s11033-011-1071-0 PMid:21710248
2011
Y. Gao, Zhang, Y. H., Jiang, H., Xiao, S. Q., Wang, S., Ma, Q., Sun, G. J., Li, F. J., Deng, Q., Dai, L. S., Zhao, Z. H., Cui, X. S., Zhang, S. M., Liu, D. F., and Zhang, J. B., Detection of differentially expressed genes in the longissimus dorsi of Northeastern Indigenous and Large White pigs, vol. 10, pp. 779-791, 2011.
Amri EZ, Bertrand B, Ailhaud G and Grimaldi P (1991). Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J. Lipid Res. 32: 1449-1456. PMid:1753215 Arber S, Barbayannis FA, Hanser H, Schneider C, et al. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393: 805-809. doi:10.1038/31729 PMid:9655397 Ball SG, Shuttleworth CA and Kielty CM (2007). Platelet-derived growth factor receptor-alpha is a key determinant of smooth muscle alpha-actin filaments in bone marrow-derived mesenchymal stem cells. Int. J. Biochem. Cell Biol. 39: 379-391. doi:10.1016/j.biocel.2006.09.005 Britton CH, Mackey DW, Esser V, Foster DW, et al. (1997). Fine chromosome mapping of the genes for human liver and muscle carnitine palmitoyltransferase I (CPT1A and CPT1B). Genomics 40: 209-211. doi:10.1006/geno.1996.4539 PMid:9070950 Brouns F and van der Vusse GJ (1998). Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. Br. J. Nutr. 79: 117-128. doi:10.1079/BJN19980022 Chmurzynska A (2006). The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47: 39-48. doi:10.1007/BF03194597 PMid:16424607 Clement S, Hinz B, Dugina V, Gabbiani G, et al. (2005). The N-terminal Ac-EEED sequence plays a role in alpha-smooth-muscle actin incorporation into stress fibers. J. Cell Sci. 118: 1395-1404. doi:10.1242/jcs.01732 PMid:15769852 Douaire M, Le Fur N, el Khadir-Mounier C, Langlois P, et al. (1992). Identifying genes involved in the variability of genetic fatness in the growing chicken. Poult. Sci. 71: 1911-1920. PMid:1437978 Fu Y, Luo N, Klein RL and Garvey WT (2005). Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 46: 1369-1379. doi:10.1194/jlr.M400373-JLR200 PMid:15834118 Gardan D, Louveau I and Gondret F (2007). Adipocyte- and heart-type fatty acid binding proteins are both expressed in subcutaneous and intramuscular porcine (Sus scrofa) adipocytes. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 148: 14-19. doi:10.1016/j.cbpb.2007.03.017 PMid:17600747 Gregoire FM, Smas CM and Sul HS (1998). Understanding adipocyte differentiation. Physiol. Rev. 78: 783-809. PMid:9674695 Hamilton DN, Miller KD, Ellis M, McKeith FK, et al. (2003). Relationships between longissimus glycolytic potential and swine growth performance, carcass traits, and pork quality. J. Anim. Sci. 81: 2206-2212. PMid:12968695 Kadowaki T and Yamauchi T (2005). Adiponectin and adiponectin receptors. Endocr. Rev. 26: 439-451. doi:10.1210/er.2005-0005 PMid:15897298 Kadowaki T, Yamauchi T, Kubota N, Hara K, et al. (2007). Adiponectin and adiponectin receptors in obesity-linked insulin resistance. Novartis Found. Symp. 286: 164-176. doi:10.1002/9780470985571.ch15 Malmstrom J, Lindberg H, Lindberg C, Bratt C, et al. (2004). Transforming growth factor-beta 1 specifically induce proteins involved in the myofibroblast contractile apparatus. Mol. Cell Proteomics 3: 466-477. doi:10.1074/mcp.M300108-MCP200 Marrube G, Rozen F, Pinto GB, Pacienza N, et al. (2004). New polymorphism of FASN gene in chicken. J. Appl. Genet. 45: 453-455. PMid:15523156 Morris CA, Cullen NG, Glass BC, Hyndman DL, et al. (2007). Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm. Genome 18: 64-74. doi:10.1007/s00335-006-0102-y PMid:17242864 Muñoz G, Óvilo C, Noguera JL, Sanchez A, et al. (2003). Assignment of the fatty acid synthase (FASN) gene to pig chromosome 12 by physical and linkage mapping. Anim. Genet. 34: 234-235. doi:10.1046/j.1365-2052.2003.00987.x PMid:12755829 Nowacka-Woszuk J, Szczerbal I, Fijak-Nowak H and Switonski M (2008). Chromosomal localization of 13 candidate genes for human obesity in the pig genome. J. Appl. Genet. 49: 373-377. doi:10.1007/BF03195636 PMid:19029685 Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. doi:10.1093/nar/29.9.e45 Picard B, Lefaucheur L, Berri C and Duclos MJ (2002). Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev. 42: 415-431. doi:10.1051/rnd:2002035 Ponsuksili S, Murani E, Walz C, Schwerin M, et al. (2007). Pre- and postnatal hepatic gene expression profiles of two pig breeds differing in body composition: insight into pathways of metabolic regulation. Physiol. Genomics 29: 267-279. doi:10.1152/physiolgenomics.00178.2006 PMid:17264241 Price NT, Jackson VN, van der Leij FR, Cameron JM, et al. (2003). Cloning and expression of the liver and muscle isoforms of ovine carnitine palmitoyltransferase 1: residues within the N-terminus of the muscle isoform influence the kinetic properties of the enzyme. Biochem. J. 372: 871-879. doi:10.1042/BJ20030086 PMid:12662154    PMCid:1223454 Roy R, Gautier M, Hayes H, Laurent P, et al. (2001). Assignment of the fatty acid synthase (FASN) gene to bovine chromosome 19 (19q22) by in situ hybridization and confirmation by somatic cell hybrid mapping. Cytogenet. Cell Genet. 93: 141-142. doi:10.1159/000056970 Roy R, Ordovas L, Zaragoza P, Romero A, et al. (2006). Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim. Genet. 37: 215-218. doi:10.1111/j.1365-2052.2006.01434.x PMid:16734679 Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Woodbury. Sourdioux M, Brevelet C, Delabrosse Y and Douaire M (1999). Association of fatty acid synthase gene and malic enzyme gene polymorphisms with fatness in turkeys. Poult. Sci. 78: 1651-1657. PMid:10626637 Spiegelman BM, Frank M and Green H (1983). Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J. Biol. Chem. 258: 10083-10089. PMid:6411703 Tichopad A, Dilger M, Schwarz G and Pfaffl MW (2003). Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res. 31: e122. doi:10.1093/nar/gng122 PMCid:219490 van der Leij FR, Takens J, van der Veen AY, Terpstra P, et al. (1997). Localization and intron usage analysis of the human CPT1B gene for muscle type carnitine palmitoyltransferase I. Biochim. Biophys. Acta 1352: 123-128. PMid:9199240 van der Leij FR, Cox KB, Jackson VN, Huijkman NC, et al. (2002). Structural and functional genomics of the CPT1B gene for muscle-type carnitine palmitoyltransferase I in mammals. J. Biol. Chem. 277: 26994-27005. doi:10.1074/jbc.M203189200 PMid:12015320 Wang D, Harrison W, Buja LM, Elder FF, et al. (1998). Genomic DNA sequence, promoter expression, and chromosomal mapping of rat muscle carnitine palmitoyltransferase I. Genomics 48: 314-323. doi:10.1006/geno.1997.5184 PMid:9545636 Yamazaki N, Yamanaka Y, Hashimoto Y, Shinohara Y, et al. (1997). Structural features of the gene encoding human muscle type carnitine palmitoyltransferase I. FEBS Lett. 409: 401-406. doi:10.1016/S0014-5793(97)00561-9 Yang YA, Morin PJ, Han WF, Chen T, et al. (2003). Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp. Cell Res. 282: 132-137. doi:10.1016/S0014-4827(02)00023-X Yu GS, Lu YC and Gulick T (1998). Co-regulation of tissue-specific alternative human carnitine palmitoyltransferase Ibeta gene promoters by fatty acid enzyme substrate. J. Biol. Chem. 273: 32901-32909. doi:10.1074/jbc.273.49.32901 PMid:9830040 Zhao S, Wang J, Song X, Zhang X, et al. (2010). Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue. Nutr. Metab. 7: 6. doi:10.1186/1743-7075-7-6 Zhao SH, Recknor J, Lunney JK, Nettleton D, et al. (2005). Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig. Genomics 86: 618-625. doi:10.1016/j.ygeno.2005.08.001 PMid:16216716