Publications

Found 2 results
Filters: Author is K. Han  [Clear All Filters]
2011
K. Han, Effective sample selection for classification of pre-miRNAs, vol. 10, pp. 506-518, 2011.
Akbani R, Kwek S and Japkowicz N (2004). Applying Support Vector Machines to Imbalanced Datasets. In: Machine Learning: ECML 2004 (Boulicaut JF, Esposito F, Giannotti F and Pedreschi D, eds.). Springer Berlin/Heidelberg, 39-50.   Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. http://dx.doi.org/10.1016/S0092-8674(04)00045-5   Batuwita R and Palade V (2009). microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25: 989-995. http://dx.doi.org/10.1093/bioinformatics/btp107 PMid:19233894   Berezikov E, Guryev V, van de Belt J, Wienholds E, et al. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120: 21-24. http://dx.doi.org/10.1016/j.cell.2004.12.031 PMid:15652478   Bushati N and Cohen SM (2007). microRNA functions. Annu. Rev. Cell Dev. Biol. 23: 175-205. http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123406 PMid:17506695   Chang DT, Wang CC and Chen JW (2008). Using a kernel density estimation based classifier to predict species-specific microRNA precursors. BMC Bioinformatics 9 (Suppl 12): S2. http://dx.doi.org/10.1186/1471-2105-9-S12-S2 PMid:19091019 PMCid:2638167   Chatterjee S and Grosshans H (2009). Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461: 546-549. http://dx.doi.org/10.1038/nature08349 PMid:19734881   Chawla NV, Browyer KW, Hall LO and Kegelmeyer WP (2002). SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16: 321-357.   Fera D, Kim N, Shiffeldrim N, Zorn J, et al. (2004). RAG: RNA-As-Graphs web resource. BMC Bioinformatics 5: 88. http://dx.doi.org/10.1186/1471-2105-5-88 PMid:15238163 PMCid:471545   Freyhult E, Gardner PP and Moulton V (2005). A comparison of RNA folding measures. BMC Bioinformatics 6: 241. http://dx.doi.org/10.1186/1471-2105-6-241 PMid:16202126 PMCid:1274297   Gan HH, Fera D, Zorn J, Shiffeldrim N, et al. (2004). RAG: RNA-As-Graphs database - concepts, analysis, and features. Bioinformatics 20: 1285-1291. http://dx.doi.org/10.1093/bioinformatics/bth084 PMid:14962931   Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res. 36: D154-D158. http://dx.doi.org/10.1093/nar/gkm952 PMid:17991681 PMCid:2238936   Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, et al. (1994). Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125: 167-188. http://dx.doi.org/10.1007/BF00818163   Imam T, Ting K and Kamruzzaman J (2006). z-SVM: An SVM for Improved Classification of Imbalanced Data. In: Proceedings of the 19th Australian Joint Conference on Artificial Intelligence (AI 2006): Advances in Artificial Intelligence (Sattar A and Kang BH, eds.). Springer, Berlin/Heidelberg, 264-273.   Jiang P, Wu H, Wang W, Ma W, et al. (2007). MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 35: W339-W344. http://dx.doi.org/10.1093/nar/gkm368 PMid:17553836 PMCid:1933124   Molinara M, Ricamato MT and Tortorella F (2007). Facing Imbalanced Classes through Aggregation of Classifiers. In: Proceeding of the 14th International Conference on Image Analysis and Processing, 10-14 September, IEEE Computer Society, Modena, 43-48.   Moulton V, Zuker M, Steel M, Pointon R, et al. (2000). Metrics on RNA secondary structures. J. Comput. Biol. 7: 277-292. http://dx.doi.org/10.1089/10665270050081522 PMid:10890402   Nam JW, Shin KR, Han J, Lee Y, et al. (2005). Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res. 33: 3570-3581. http://dx.doi.org/10.1093/nar/gki668 PMid:15987789 PMCid:1159118   Ng KL and Mishra SK (2007). De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 23: 1321-1330. http://dx.doi.org/10.1093/bioinformatics/btm026 PMid:17267435   Quinlan JR (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Mateo. PMCid:1554917   Schultes EA, Hraber PT and LaBean TH (1999). Estimating the contributions of selection and self-organization in RNA secondary structure. J. Mol. Evol. 49: 76-83. http://dx.doi.org/10.1007/PL00006536 PMid:10368436   Seffens W and Digby D (1999). mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 27: 1578-1584. http://dx.doi.org/10.1093/nar/27.7.1578 PMid:10075987 PMCid:148359   Sewer A, Paul N, Landgraf P, Aravin A, et al. (2005). Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6: 267. http://dx.doi.org/10.1186/1471-2105-6-267 PMid:16274478 PMCid:1315341   Veropoulos K, Campbell C and Cristianini N (1999). Controlling the Sensitivity of Support Vector Machines. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99). Morgan Kaufmann, Stockholm, 55-60.   Wang J, Zou Q and Guo MZ (2010). Mining SNPs from EST sequences using filters and ensemble classifiers. Genet. Mol. Res. 9: 820-834. http://dx.doi.org/10.4238/vol9-2gmr765 PMid:20449815   Weiss GM (2004). Mining with rarity: a unifying framework. SIGKDD Explorations Newsl. 6: 7-10. http://dx.doi.org/10.1145/1007730.1007734   Xue C, Li F, He T, Liu GP, et al. (2005). Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6: 310. http://dx.doi.org/10.1186/1471-2105-6-310 PMid:16381612 PMCid:1360673   Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, et al. (2006). Combining multi-species genomic data for microRNA identification using a naive Bayes classifier. Bioinformatics 22: 1325-1334. http://dx.doi.org/10.1093/bioinformatics/btl094 PMid:16543277   Yousef M, Jung S, Showe LC and Showe MK (2008). Learning from positive examples when the negative class is undetermined - microRNA gene identification. Algorithms Mol. Biol. 3: 2. http://dx.doi.org/10.1186/1748-7188-3-2 PMid:18226233 PMCid:2248178   Zhang BH, Pan XP, Cox SB, Cobb GP, et al. (2006). Evidence that miRNAs are different from other RNAs. Cell Mol. Life Sci. 63: 246-254. http://dx.doi.org/10.1007/s00018-005-5467-7 PMid:16395542