Publications

Found 10 results
Filters: Author is B.E. Staveley  [Clear All Filters]
2016
E. M. Merzetti, Staveley, B. E., Merzetti, E. M., and Staveley, B. E., Altered expression of CG5961, a putative Drosophila melanogaster homologue of FBXO9, provides a new model of Parkinson disease, vol. 15, p. -, 2016.
E. M. Merzetti, Staveley, B. E., Merzetti, E. M., and Staveley, B. E., Altered expression of CG5961, a putative Drosophila melanogaster homologue of FBXO9, provides a new model of Parkinson disease, vol. 15, p. -, 2016.
E. M. Merzetti and Staveley, B. E., Identifying potential PARIS homologs in D. melanogaster, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSE.M. Merzetti received a Department of Biology Teaching Assistantship and a School of Graduate Studies Fellowship from the Memorial University of Newfoundland. B.E. Staveley received research support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, the Parkinson Society Canada Pilot Project Regional Partnership Program with the Parkinson Society Quebec via Fond Saucier-Van Berkom-Parkinson Quebec, and the Parkinson Society Newfoundland and Labrador. Stocks obtained from the Vienna Drosophila Resource Center were used in this study. REFERENCESAltschul SF, Gish W, Miller W, Myers EW, et al (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403-410. http://dx.doi.org/10.1016/S0022-2836(05)80360-2 Beckstead R, Ortiz JA, Sanchez C, Prokopenko SN, et al (2001). Bonus, a Drosophila homolog of TIF1 proteins, interacts with nuclear receptors and can inhibit betaFTZ-F1-dependent transcription. Mol. Cell 7: 753-765. http://dx.doi.org/10.1016/S1097-2765(01)00220-9 Beitz JM, et al (2014). Parkinson’s disease: a review. Front. Biosci. (Schol. Ed.) 6: 65-74. http://dx.doi.org/10.2741/S415 Chung HR, Schäfer U, Jäckle H, Böhm S, et al (2002). Genomic expansion and clustering of ZAD-containing C2H2 zinc-finger genes in Drosophila. EMBO Rep. 3: 1158-1162. http://dx.doi.org/10.1093/embo-reports/kvf243 Chung HR, Löhr U, Jäckle H, et al (2007). Lineage-specific expansion of the zinc finger associated domain ZAD. Mol. Biol. Evol. 24: 1934-1943. http://dx.doi.org/10.1093/molbev/msm121 Clark IE, Dodson MW, Jiang C, Cao JH, et al (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162-1166. http://dx.doi.org/10.1038/nature04779 D’Avino PP, Thummel CS, et al (1998). crooked legs encodes a family of zinc finger proteins required for leg morphogenesis and ecdysone-regulated gene expression during Drosophila metamorphosis. Development 125: 1733-1745. De Castro ESC, Gattiker A, Falquet L, Pagni M, et al. (2006). ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34 (Web Server issue): W362-365. Eiyama A, Okamoto K, et al (2015). PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol. 33: 95-101. http://dx.doi.org/10.1016/j.ceb.2015.01.002 Finn RD, Bateman A, Clements J, Coggill P, et al (2014). Pfam: the protein families database. Nucleic Acids Res. 42: D222-D230. http://dx.doi.org/10.1093/nar/gkt1223 Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, et al (1996). KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10: 2067-2078. http://dx.doi.org/10.1101/gad.10.16.2067 Gleyzer N, Scarpulla RC, et al (2011). PGC-1-related coactivator (PRC), a sensor of metabolic stress, orchestrates a redox-sensitive program of inflammatory gene expression. J. Biol. Chem. 286: 39715-39725. http://dx.doi.org/10.1074/jbc.M111.291575 Greene JC, Whitworth AJ, Kuo I, Andrews LA, et al (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 100: 4078-4083. http://dx.doi.org/10.1073/pnas.0737556100 Greene JC, Whitworth AJ, Andrews LA, Parker TJ, et al (2005). Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum. Mol. Genet. 14: 799-811. http://dx.doi.org/10.1093/hmg/ddi074 Guo M, et al (2012). Drosophila as a model to study mitochondrial dysfunction in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2: 1-17. http://dx.doi.org/10.1101/cshperspect.a009944 Jauch R, Bourenkov GP, Chung HR, Urlaub H, et al (2003). The zinc finger-associated domain of the Drosophila transcription factor grauzone is a novel zinc-coordinating protein-protein interaction module. Structure 11: 1393-1402. http://dx.doi.org/10.1016/j.str.2003.09.015 Khetchoumian K, Teletin M, Mark M, Lerouge T, et al (2004). TIF1delta, a novel HP1-interacting member of the transcriptional intermediary factor 1 (TIF1) family expressed by elongating spermatids. J. Biol. Chem. 279: 48329-48341. http://dx.doi.org/10.1074/jbc.M404779200 Klockgether T, et al (2004). Parkinson’s disease: clinical aspects. Cell Tissue Res. 318: 115-120. http://dx.doi.org/10.1007/s00441-004-0975-6 Koh H, Chung J, et al (2010). PINK1 and Parkin to control mitochondria remodeling. Anat. Cell Biol. 43: 179-184. http://dx.doi.org/10.5115/acb.2010.43.3.179 Larkin MA, Blackshields G, Brown NP, Chenna R, et al (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. http://dx.doi.org/10.1093/bioinformatics/btm404 Le Douarin B, Zechel C, Garnier JM, Lutz Y, et al (1995). The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 14: 2020-2033. Lee S, Bang SM, Lee JW and Cho KS (2014). Evaluation of traditional medicines for neurodegenerative diseases using Drosophila models. J. Evid. Based Compl. Altern. Med. doi:http://dx.doi.org/10.1155/2014/967462. Lin JY, Yen SH, Shieh KR, Liang SL, et al (2000). Dopamine and 7-OH-DPAT may act on D(3) receptors to inhibit tuberoinfundibular dopaminergic neurons. Brain Res. Bull. 52: 567-572. http://dx.doi.org/10.1016/S0361-9230(00)00298-7 Merzetti EM, Staveley BE, et al (2015). spargel, the PGC-1α homologue, in models of Parkinson disease in Drosophila melanogaster. BMC Neurosci. 16: 70. http://dx.doi.org/10.1186/s12868-015-0210-2 Mishra M, Knust E, et al (2013). Analysis of the Drosophila compound eye with light and electron microscopy. Methods Mol. Biol. 935: 161-182. http://dx.doi.org/10.1007/978-1-62703-080-9_11 Mitchell N, Cranna N, Richardson H, Quinn L, et al (2008). The Ecdysone-inducible zinc-finger transcription factor Crol regulates Wg transcription and cell cycle progression in Drosophila. Development 135: 2707-2716. http://dx.doi.org/10.1242/dev.021766 Mitsui J, et al (2013). [Toward identification of susceptible genes for sporadic neurodegenerative disease]. Rinsho Shinkeigaku 53: 1336-1338. http://dx.doi.org/10.5692/clinicalneurol.53.1336 Narendra D, Tanaka A, Suen DF, Youle RJ, et al (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183: 795-803. http://dx.doi.org/10.1083/jcb.200809125 Palikaras K, Tavernarakis N, et al (2014). Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56: 182-188. http://dx.doi.org/10.1016/j.exger.2014.01.021 Rowe GC, El-Khoury R, Patten IS, Rustin P, et al (2012). PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle. PLoS One 7: e41817. http://dx.doi.org/10.1371/journal.pone.0041817 Russell AP, Hesselink MK, Lo SK, Schrauwen P, et al (2005). Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J. 19: 986-988. Ryan BJ, Hoek S, Fon EA, Wade-Martins R, et al (2015). Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem. Sci. 40: 200-210. http://dx.doi.org/10.1016/j.tibs.2015.02.003 Scarpulla RC, et al (2011). Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta 1813: 1269-1278. http://dx.doi.org/10.1016/j.bbamcr.2010.09.019 Shin JH, Ko HS, Kang H, Lee Y, et al (2011). PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144: 689-702. http://dx.doi.org/10.1016/j.cell.2011.02.010 Tiefenböck SK, Baltzer C, Egli NA, Frei C, et al (2010). The Drosophila PGC-1 homologue Spargel coordinates mitochondrial activity to insulin signalling. EMBO J. 29: 171-183. http://dx.doi.org/10.1038/emboj.2009.330 Urrutia R, et al (2003). KRAB-containing zinc-finger repressor proteins. Genome Biol. 4: 231. http://dx.doi.org/10.1186/gb-2003-4-10-231 Watson PA, Reusch JE, McCune SA, Leinwand LA, et al (2007). Restoration of CREB function is linked to completion and stabilization of adaptive cardiac hypertrophy in response to exercise. Am. J. Physiol. Heart Circ. Physiol. 293: H246-H259. http://dx.doi.org/10.1152/ajpheart.00734.2006 West RJ, Furmston R, Williams CA, Elliott CJ, et al (2015). Neurophysiology of Drosophila models of Parkinson’s disease. Parkinsons Dis. 2015: 381281. http://dx.doi.org/10.1155/2015/381281 Whitworth AJ, Lee JR, Ho VM, Flick R, et al (2008). Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Dis. Model. Mech. 1: 168-174, discussion 173. http://dx.doi.org/10.1242/dmm.000109 Yang Y, Gehrke S, Imai Y, Huang Z, et al (2006). Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. USA 103: 10793-10798. http://dx.doi.org/10.1073/pnas.0602493103  
P. G. M’Angale, Staveley, B. E., M’Angale, P. G., and Staveley, B. E., Inhibition of Atg6 and Pi3K59F autophagy genes in neurons decreases lifespan and locomotor ability in Drosophila melanogaster, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS P.G. M’Angale was partially funded by Department of Biology Teaching Assistantships and a School of Graduate Studies Fellowship from Memorial University of Newfoundland. B.E. Staveley was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant. REFERENCES Auluck PK, Chan HY, Trojanowski JQ, Lee VM, et al (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295: 865-868. http://dx.doi.org/10.1126/science.1067389 Chang YY, Neufeld TP, et al (2010). Autophagy takes flight in Drosophila. FEBS Lett. 584: 1342-1349. http://dx.doi.org/10.1016/j.febslet.2010.01.006 Chinta SJ, Mallajosyula JK, Rane A, Andersen JK, et al (2010). Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci. Lett. 486: 235-239. http://dx.doi.org/10.1016/j.neulet.2010.09.061 Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, et al (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305: 1292-1295. http://dx.doi.org/10.1126/science.1101738 Dehay B, Vila M, Bezard E, Brundin P, et al (2016). Alpha-synuclein propagation: New insights from animal models. Mov. Disord. 31: 161-168. http://dx.doi.org/10.1002/mds.26370 Dinkel H, Van Roey K, Michael S, Kumar M, et al (2016). ELM 2016--data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Res. 44 (D1): D294-D300. http://dx.doi.org/10.1093/nar/gkv1291 Esteves AR, Arduíno DM, Silva DF, Oliveira CR, et al (2011). Mitochondrial dysfunction: the road to alpha-synuclein oligomerization in PD. Parkinsons Dis. 2011: 693761. http://dx.doi.org/10.4061/2011/693761 Feany MB, Bender WW, et al (2000). A Drosophila model of Parkinson’s disease. Nature 404: 394-398. http://dx.doi.org/10.1038/35006074 Forno LS, et al (1996). Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55: 259-272. http://dx.doi.org/10.1097/00005072-199603000-00001 Freeman M, et al (1996). Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87: 651-660. http://dx.doi.org/10.1016/S0092-8674(00)81385-9 Furuya N, Yu J, Byfield M, Pattingre S, et al (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1: 46-52. http://dx.doi.org/10.4161/auto.1.1.1542 Goujon M, McWilliam H, Li W, Valentin F, et al (2010). A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 38: W695-9. http://dx.doi.org/10.1093/nar/gkq313 Jiang P, Mizushima N, et al (2014). Autophagy and human diseases. Cell Res. 24: 69-79. http://dx.doi.org/10.1038/cr.2013.161 Juhász G, Hill JH, Yan Y, Sass M, et al (2008). The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181: 655-666. http://dx.doi.org/10.1083/jcb.200712051 la Cour T, Kiemer L, Mølgaard A, Gupta R, et al (2004). Analysis and prediction of leucine-rich nuclear export signals. Protein Eng. Des. Sel. 17: 527-536. http://dx.doi.org/10.1093/protein/gzh062 Levine B, Kroemer G, et al (2008). Autophagy in the pathogenesis of disease. Cell 132: 27-42. http://dx.doi.org/10.1016/j.cell.2007.12.018 Li H, Chaney S, Roberts IJ, Forte M, et al (2000). Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr. Biol. 10: 211-214. http://dx.doi.org/10.1016/S0960-9822(00)00340-7 Lindqvist LM, Heinlein M, Huang DC, Vaux DL, et al (2014). Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc. Natl. Acad. Sci. USA 111: 8512-8517. http://dx.doi.org/10.1073/pnas.1406425111 M’Angale PG, Staveley BE, et al (2012). Effects of α-synuclein expression in the developing Drosophila eye. Drosoph. Inf. Serv. 95: 85-89. M’Angale PG, Staveley BE, et al (2016). The Bcl-2 homologue Buffy rescues α-synuclein-induced Parkinson disease-like phenotypes in Drosophila. BMC Neurosci. 17: 24. http://dx.doi.org/10.1186/s12868-016-0261-z Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, et al (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43: D222-D226. http://dx.doi.org/10.1093/nar/gku1221 Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, et al (2008). Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118: 777-788. McPhee CK, Baehrecke EH, et al (2009). Autophagy in Drosophila melanogaster. Biochim. Biophys. Acta 1793: 1452-1460. http://dx.doi.org/10.1016/j.bbamcr.2009.02.009 Pattingre S, Tassa A, Qu X, Garuti R, et al (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927-939. http://dx.doi.org/10.1016/j.cell.2005.07.002 Perrett RM, Alexopoulou Z, Tofaris GK, et al (2015). The endosomal pathway in Parkinson’s disease. Mol. Cell. Neurosci. 66 (Pt A): 21-28. http://dx.doi.org/10.1016/j.mcn.2015.02.009 Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, et al (1997). Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045-2047. http://dx.doi.org/10.1126/science.276.5321.2045 Quinn L, Coombe M, Mills K, Daish T, et al (2003). Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J. 22: 3568-3579. http://dx.doi.org/10.1093/emboj/cdg355 Schneider CA, Rasband WS, Eliceiri KW, et al (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671-675. http://dx.doi.org/10.1038/nmeth.2089 Sievers F, Wilm A, Dineen D, Gibson TJ, et al (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539. http://dx.doi.org/10.1038/msb.2011.75 Sinha S, Levine B, et al (2008). The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27 (Suppl 1): S137-S148. http://dx.doi.org/10.1038/onc.2009.51 Staveley BE (2014). Drosophila models of Parkinson disease. In: Movement disorders: genetics and models (LeDoux MS, ed.). Academic Press, Cambridge, 345-354. Staveley BE, Phillips JP, Hilliker AJ, et al (1990). Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster. Genome 33: 867-872. http://dx.doi.org/10.1139/g90-130 Todd AM, Staveley BE, et al (2004). Novel assay and analysis for measuring climbing ability in Drosophila. Drosoph. Inf. Serv. 87: 101-107. Todd AM, Staveley BE, et al (2012). Expression of Pink1 with α-synuclein in the dopaminergic neurons of Drosophila leads to increases in both lifespan and healthspan. Genet. Mol. Res. 11: 1497-1502. http://dx.doi.org/10.4238/2012.May.21.6 Webb JL, Ravikumar B, Atkins J, Skepper JN, et al (2003). α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278: 25009-25013. http://dx.doi.org/10.1074/jbc.M300227200 Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, et al (2010). α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J. Cell Biol. 190: 1023-1037. http://dx.doi.org/10.1083/jcb.201003122 Xilouri M, Stefanis L, et al (2011). Autophagic pathways in Parkinson disease and related disorders. Expert Rev. Mol. Med. 13: e8. http://dx.doi.org/10.1017/S1462399411001803 Xilouri M, Stefanis L, et al (2015). Chaperone mediated autophagy to the rescue: A new-fangled target for the treatment of neurodegenerative diseases. Mol. Cell. Neurosci. 66 (Pt A): 29-36. http://dx.doi.org/10.1016/j.mcn.2015.01.003 Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, et al (2009). DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10: 285-292. http://dx.doi.org/10.1038/embor.2008.246 Zirin J, Perrimon N, et al (2010). Drosophila as a model system to study autophagy. Semin. Immunopathol. 32: 363-372. http://dx.doi.org/10.1007/s00281-010-0223-y
P. G. M’Angale, Staveley, B. E., M’Angale, P. G., and Staveley, B. E., Inhibition of Atg6 and Pi3K59F autophagy genes in neurons decreases lifespan and locomotor ability in Drosophila melanogaster, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS P.G. M’Angale was partially funded by Department of Biology Teaching Assistantships and a School of Graduate Studies Fellowship from Memorial University of Newfoundland. B.E. Staveley was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant. REFERENCES Auluck PK, Chan HY, Trojanowski JQ, Lee VM, et al (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295: 865-868. http://dx.doi.org/10.1126/science.1067389 Chang YY, Neufeld TP, et al (2010). Autophagy takes flight in Drosophila. FEBS Lett. 584: 1342-1349. http://dx.doi.org/10.1016/j.febslet.2010.01.006 Chinta SJ, Mallajosyula JK, Rane A, Andersen JK, et al (2010). Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci. Lett. 486: 235-239. http://dx.doi.org/10.1016/j.neulet.2010.09.061 Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, et al (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305: 1292-1295. http://dx.doi.org/10.1126/science.1101738 Dehay B, Vila M, Bezard E, Brundin P, et al (2016). Alpha-synuclein propagation: New insights from animal models. Mov. Disord. 31: 161-168. http://dx.doi.org/10.1002/mds.26370 Dinkel H, Van Roey K, Michael S, Kumar M, et al (2016). ELM 2016--data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Res. 44 (D1): D294-D300. http://dx.doi.org/10.1093/nar/gkv1291 Esteves AR, Arduíno DM, Silva DF, Oliveira CR, et al (2011). Mitochondrial dysfunction: the road to alpha-synuclein oligomerization in PD. Parkinsons Dis. 2011: 693761. http://dx.doi.org/10.4061/2011/693761 Feany MB, Bender WW, et al (2000). A Drosophila model of Parkinson’s disease. Nature 404: 394-398. http://dx.doi.org/10.1038/35006074 Forno LS, et al (1996). Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55: 259-272. http://dx.doi.org/10.1097/00005072-199603000-00001 Freeman M, et al (1996). Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87: 651-660. http://dx.doi.org/10.1016/S0092-8674(00)81385-9 Furuya N, Yu J, Byfield M, Pattingre S, et al (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1: 46-52. http://dx.doi.org/10.4161/auto.1.1.1542 Goujon M, McWilliam H, Li W, Valentin F, et al (2010). A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 38: W695-9. http://dx.doi.org/10.1093/nar/gkq313 Jiang P, Mizushima N, et al (2014). Autophagy and human diseases. Cell Res. 24: 69-79. http://dx.doi.org/10.1038/cr.2013.161 Juhász G, Hill JH, Yan Y, Sass M, et al (2008). The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181: 655-666. http://dx.doi.org/10.1083/jcb.200712051 la Cour T, Kiemer L, Mølgaard A, Gupta R, et al (2004). Analysis and prediction of leucine-rich nuclear export signals. Protein Eng. Des. Sel. 17: 527-536. http://dx.doi.org/10.1093/protein/gzh062 Levine B, Kroemer G, et al (2008). Autophagy in the pathogenesis of disease. Cell 132: 27-42. http://dx.doi.org/10.1016/j.cell.2007.12.018 Li H, Chaney S, Roberts IJ, Forte M, et al (2000). Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr. Biol. 10: 211-214. http://dx.doi.org/10.1016/S0960-9822(00)00340-7 Lindqvist LM, Heinlein M, Huang DC, Vaux DL, et al (2014). Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc. Natl. Acad. Sci. USA 111: 8512-8517. http://dx.doi.org/10.1073/pnas.1406425111 M’Angale PG, Staveley BE, et al (2012). Effects of α-synuclein expression in the developing Drosophila eye. Drosoph. Inf. Serv. 95: 85-89. M’Angale PG, Staveley BE, et al (2016). The Bcl-2 homologue Buffy rescues α-synuclein-induced Parkinson disease-like phenotypes in Drosophila. BMC Neurosci. 17: 24. http://dx.doi.org/10.1186/s12868-016-0261-z Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, et al (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43: D222-D226. http://dx.doi.org/10.1093/nar/gku1221 Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, et al (2008). Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118: 777-788. McPhee CK, Baehrecke EH, et al (2009). Autophagy in Drosophila melanogaster. Biochim. Biophys. Acta 1793: 1452-1460. http://dx.doi.org/10.1016/j.bbamcr.2009.02.009 Pattingre S, Tassa A, Qu X, Garuti R, et al (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927-939. http://dx.doi.org/10.1016/j.cell.2005.07.002 Perrett RM, Alexopoulou Z, Tofaris GK, et al (2015). The endosomal pathway in Parkinson’s disease. Mol. Cell. Neurosci. 66 (Pt A): 21-28. http://dx.doi.org/10.1016/j.mcn.2015.02.009 Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, et al (1997). Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045-2047. http://dx.doi.org/10.1126/science.276.5321.2045 Quinn L, Coombe M, Mills K, Daish T, et al (2003). Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J. 22: 3568-3579. http://dx.doi.org/10.1093/emboj/cdg355 Schneider CA, Rasband WS, Eliceiri KW, et al (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671-675. http://dx.doi.org/10.1038/nmeth.2089 Sievers F, Wilm A, Dineen D, Gibson TJ, et al (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539. http://dx.doi.org/10.1038/msb.2011.75 Sinha S, Levine B, et al (2008). The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27 (Suppl 1): S137-S148. http://dx.doi.org/10.1038/onc.2009.51 Staveley BE (2014). Drosophila models of Parkinson disease. In: Movement disorders: genetics and models (LeDoux MS, ed.). Academic Press, Cambridge, 345-354. Staveley BE, Phillips JP, Hilliker AJ, et al (1990). Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster. Genome 33: 867-872. http://dx.doi.org/10.1139/g90-130 Todd AM, Staveley BE, et al (2004). Novel assay and analysis for measuring climbing ability in Drosophila. Drosoph. Inf. Serv. 87: 101-107. Todd AM, Staveley BE, et al (2012). Expression of Pink1 with α-synuclein in the dopaminergic neurons of Drosophila leads to increases in both lifespan and healthspan. Genet. Mol. Res. 11: 1497-1502. http://dx.doi.org/10.4238/2012.May.21.6 Webb JL, Ravikumar B, Atkins J, Skepper JN, et al (2003). α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278: 25009-25013. http://dx.doi.org/10.1074/jbc.M300227200 Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, et al (2010). α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J. Cell Biol. 190: 1023-1037. http://dx.doi.org/10.1083/jcb.201003122 Xilouri M, Stefanis L, et al (2011). Autophagic pathways in Parkinson disease and related disorders. Expert Rev. Mol. Med. 13: e8. http://dx.doi.org/10.1017/S1462399411001803 Xilouri M, Stefanis L, et al (2015). Chaperone mediated autophagy to the rescue: A new-fangled target for the treatment of neurodegenerative diseases. Mol. Cell. Neurosci. 66 (Pt A): 29-36. http://dx.doi.org/10.1016/j.mcn.2015.01.003 Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, et al (2009). DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10: 285-292. http://dx.doi.org/10.1038/embor.2008.246 Zirin J, Perrimon N, et al (2010). Drosophila as a model system to study autophagy. Semin. Immunopathol. 32: 363-372. http://dx.doi.org/10.1007/s00281-010-0223-y
J. D. Slade, Staveley, B. E., Slade, J. D., and Staveley, B. E., Manipulation of components that control feeding behavior in Drosophila melanogaster increases sensitivity to amino acid starvation, vol. 15, p. -, 2016.
J. D. Slade, Staveley, B. E., Slade, J. D., and Staveley, B. E., Manipulation of components that control feeding behavior in Drosophila melanogaster increases sensitivity to amino acid starvation, vol. 15, p. -, 2016.
2012
A. M. Todd and Staveley, B. E., Expression of Pink1 with α-synuclein in the dopaminergic neurons of Drosophila leads to increases in both lifespan and healthspan, vol. 11, pp. 1497-1502, 2012.
Clark IE, Dodson MW, Jiang C, Cao JH, et al. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162-1166. http://dx.doi.org/10.1038/nature04779 PMid:16672981   Deas E, Plun-Favreau H and Wood NW (2009). PINK1 function in health and disease. EMBO Mol. Med. 1: 152-165. http://dx.doi.org/10.1002/emmm.200900024 PMid:20049715 PMCid:3378127   Devi L, Raghavendran V, Prabhu BM, Avadhani NG, et al. (2008). Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 283: 9089-9100. http://dx.doi.org/10.1074/jbc.M710012200 PMid:18245082 PMCid:2431021   Exner N, Treske B, Paquet D, Holmström K, et al. (2007). Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci. 27: 12413-12418. http://dx.doi.org/10.1523/JNEUROSCI.0719-07.2007 PMid:17989306   Feany MB and Bender WW (2000). A Drosophila model of Parkinson's disease. Nature 404: 394-398. http://dx.doi.org/10.1038/35006074 PMid:10746727   Friggi-Grelin F, Coulom H, Meller M, Gomez D, et al. (2003). Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J. Neurobiol. 54: 618-627. http://dx.doi.org/10.1002/neu.10185 PMid:12555273   Haywood AF and Staveley BE (2004). Parkin counteracts symptoms in a Drosophila model of Parkinson's disease. BMC Neurosci. 5: 14. http://dx.doi.org/10.1186/1471-2202-5-14 PMid:15090075 PMCid:419346   Lees AJ, Hardy J and Revesz T (2009). Parkinson's disease. Lancet 373: 2055-2066. http://dx.doi.org/10.1016/S0140-6736(09)60492-X   Li H, Chaney S, Forte M and Hirsh J (2000). Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr. Biol. 10: 211-214. http://dx.doi.org/10.1016/S0960-9822(00)00340-7   Liu G, Zhang C, Yin J, Li X, et al. (2009). alpha-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neurosci. Lett. 454: 187-192. http://dx.doi.org/10.1016/j.neulet.2009.02.056 PMid:19429081   Park J, Lee SB, Lee S, Kim Y, et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441: 1157-1161. http://dx.doi.org/10.1038/nature04788 PMid:16672980   Schapira AH and Gegg M (2011). Mitochondrial contribution to Parkinson's disease pathogenesis. Parkinsons Dis. 2011: 159160. http://dx.doi.org/10.4061/2011/159160 PMid:21687805 PMCid:3109314   Scherz-Shouval R and Elazar Z (2007). ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 17: 422- 427. http://dx.doi.org/10.1016/j.tcb.2007.07.009 PMid:17804237   Staveley BE, Phillips JP and Hilliker AJ (1990). Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster. Genome 33: 867-872. http://dx.doi.org/10.1139/g90-130 PMid:1964925   Surmeier DJ, Guzman JN and Sanchez-Padilla J (2010). Calcium, cellular aging, and selective neuronal vulnerability in Parkinson's disease. Cell Calcium 47: 175-182. http://dx.doi.org/10.1016/j.ceca.2009.12.003 PMid:20053445 PMCid:3235732   Todd AM and Staveley BE (2004). Novel assay and analysis for measuring climbing ability in Drosophila. Drosoph. Inf. Serv. 87: 101-107.   Todd AM and Staveley BE (2008). Pink1 suppresses alpha-synuclein-induced phenotypes in a Drosophila model of Parkinson's disease. Genome 51: 1040-1046. http://dx.doi.org/10.1139/G08-085 PMid:19088817   Wang HL, Chou AH, Yeh TH, Li AH, et al. (2007). PINK1 mutants associated with recessive Parkinson's disease are defective in inhibiting mitochondrial release of cytochrome c. Neurobiol. Dis. 28: 216-226. http://dx.doi.org/10.1016/j.nbd.2007.07.010 PMid:17707122   Weber TA and Reichert AS (2010). Impaired quality control of mitochondria: aging from a new perspective. Exp. Gerontol. 45: 503-511. http://dx.doi.org/10.1016/j.exger.2010.03.018 PMid:20451598   Whitworth AJ, Wes PD and Pallanck LJ (2006). Drosophila models pioneer a new approach to drug discovery for Parkinson's disease. Drug Discov. Today 11: 119-126. http://dx.doi.org/10.1016/S1359-6446(05)03693-7   Yang Y, Gehrke S, Imai Y, Huang Z, et al. (2006). Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. U. S. A. 103: 10793-10798. http://dx.doi.org/10.1073/pnas.0602493103 PMid:16818890 PMCid:1502310   Yarali A and Gerber B (2010). A Neurogenetic Dissociation between Punishment-, Reward-, and Relief-Learning in Drosophila. Front. Behav. Neurosci. 4: 189. PMid:21206762 PMCid:3013555
2011
R. M. S. Mawhinney and Staveley, B. E., Expression of GFP can influence aging and climbing ability in Drosophila, vol. 10, pp. 494-505, 2011.
Abramoff MD, Magalhães PJ and Ram SJ (2004). Image processing with ImageJ. Biophotonics Int. 11: 36-42.   Baker NE (2001). Cell proliferation, survival, and death in the Drosophila eye. Semin. Cell Dev. Biol. 12: 499-507. http://dx.doi.org/10.1006/scdb.2001.0274 PMid:11735386   Bier E, Vaessin H, Shepherd S, Lee K, et al. (1989). Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 3: 1273-1287. http://dx.doi.org/10.1101/gad.3.9.1273 PMid:2558049   Brand AH and Perrimon N (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401-415. PMid:8223268   Brand AH, Manoukian AS and Perrimon N (1994). Ectopic expression in Drosophila. Methods Cell Biol. 44: 635-654. http://dx.doi.org/10.1016/S0091-679X(08)60936-X   Chalfie M, Tu Y, Euskirchen G, Ward WW, et al. (1994). Green fluorescent protein as a marker for gene expression. Science 263: 802-805. http://dx.doi.org/10.1126/science.8303295 PMid:8303295   Dickson B (1996). Transgenic lines 1010T2 and 1010T10. Personal Communication to FlyBase. Available at [http://flybase.org/reports/FBrf0086268.html]. Accessed August 10, 2010.   Duffy JB (2002). GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34: 1-15. http://dx.doi.org/10.1002/gene.10150 PMid:12324939   Freeman M (1996). Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87: 651-660. http://dx.doi.org/10.1016/S0092-8674(00)81385-9   Grover D, Yang J, Tavare S and Tower J (2008). Simultaneous tracking of fly movement and gene expression using GFP. BMC Biotechnol. 8: 93. http://dx.doi.org/10.1186/1472-6750-8-93 PMid:19087237 PMCid:2625341   Iliadi KG and Boulianne GL (2010). Age-related behavioral changes in Drosophila. Ann. N. Y. Acad. Sci. 1197: 9-18. http://dx.doi.org/10.1111/j.1749-6632.2009.05372.x PMid:20536827   Ito K, Awano W, Suzuki K, Hiromi Y, et al. (1997). The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124: 761-771. PMid:9043058   Kramer JM and Staveley BE (2003). GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genet. Mol. Res. 2: 43-47. PMid:12917801   Manseau L, Baradaran A, Brower D, Budhu A, et al. (1997). GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev. Dyn. 209: 310-322. http://dx.doi.org/10.1002/(SICI)1097-0177(199707)209:3<310::AID-AJA6>3.0.CO;2-L   Misteli T and Spector DL (1997). Applications of the green fluorescent protein in cell biology and biotechnology. Nat. Biotechnol. 15: 961-964. http://dx.doi.org/10.1038/nbt1097-961 PMid:9335045   Moores JN, Roy S, Nicholson DW and Staveley BE (2008). Huntingtin interacting protein 1 can regulate neurogenesis in Drosophila. Eur. J. Neurosci. 28: 599-609. http://dx.doi.org/10.1111/j.1460-9568.2008.06359.x PMid:18702731   Nowotschin S, Eakin GS and Hadjantonakis AK (2009). Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives. Trends Biotechnol. 27: 266-276. http://dx.doi.org/10.1016/j.tibtech.2009.02.006 PMid:19339068 PMCid:2878313   O'Kane CJ and Gehring WJ (1987). Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 84: 9123-9127. http://dx.doi.org/10.1073/pnas.84.24.9123 PMid:2827169 PMCid:299704   Phelps CB and Brand AH (1998). Ectopic gene expression in Drosophila using GAL4 system. Methods 14: 367-379. http://dx.doi.org/10.1006/meth.1998.0592 PMid:9608508   Rosochacki SJ and Matejczyk M (2002). Green fluorescent protein as a molecular marker in microbiology. Acta Microbiol. Pol. 51: 205-216. PMid:12588095   Siegmund T and Korge G (2001). Innervation of the ring gland of Drosophila melanogaster. J. Comp. Neurol. 431: 481-491. http://dx.doi.org/10.1002/1096-9861(20010319)431:4<481::AID-CNE1084>3.0.CO;2-7   Soler C, Daczewska M, Da Ponte JP, Dastugue B, et al. (2004). Coordinated development of muscles and tendons of the Drosophila leg. Development 131: 6041-6051. http://dx.doi.org/10.1242/dev.01527 PMid:15537687   Staveley BE, Phillips JP and Hilliker AJ (1990). Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster. Genome 33: 867-872. http://dx.doi.org/10.1139/g90-130 PMid:1964925   Todd AM and Staveley BE (2004). Novel assay and analysis for measuring climbing ability in Drosophila. Dros. Inf. Serv. 87: 101-107.   Wang S and Hazelrigg T (1994). Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369: 400-403. http://dx.doi.org/10.1038/369400a0 PMid:7910952   Wodarz A, Hinz U, Engelbert M and Knust E (1995). Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82: 67-76. http://dx.doi.org/10.1016/0092-8674(95)90053-5   Yeh E, Gustafson K and Boulianne GL (1995). Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 92: 7036-7040. http://dx.doi.org/10.1073/pnas.92.15.7036 PMid:7624365 PMCid:41466   Zhan H and Gong Z (2010). Delayed and restricted expression of UAS-regulated GFP gene in early transgenic zebrafish embryos by using the GAL4/UAS system. Mar. Biotechnol. 12: 1-7. http://dx.doi.org/10.1007/s10126-009-9217-y PMid:19590921