Publications
Found 19 results
Filters: Author is F.F. Silva [Clear All Filters]
“Regression trees in genomic selection for carcass traits in pigs”, Genetics and Molecular Research, vol. 19, no. 1, 2020.
, “The use of bioinformatics tools to characterize a hypothetical protein from Penicillium rubens”, Genetics and Molecular Research, vol. 19, no. 2, 2020.
, “Support vector machines applied to the genetic classification problem of hybrid populations with high degrees of similarity”, Genetics and Molecular Research, vol. 17, no. 4, 2018.
, “Effects of using phenotypic means and genotypic values in GGE biplot analyses on genotype by environment studies on tropical maize (Zea mays)”, vol. 15, p. -, 2016.
, “Effects of using phenotypic means and genotypic values in GGE biplot analyses on genotype by environment studies on tropical maize (Zea mays)”, vol. 15, p. -, 2016.
, “Genetic progress resulting from forty-three years of breeding of the carioca common bean in Brazil”, vol. 15, p. -, 2016.
, “Genetic progress resulting from forty-three years of breeding of the carioca common bean in Brazil”, vol. 15, p. -, 2016.
, “Genomic prediction for additive and dominance effects of censored traits in pigs”, vol. 15, no. 4, p. -, 2016.
, Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSThe first author would like to thank the CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for a Sandwich Doctorate scholarship (grant #BEX 9415/14-9). Research supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais). REFERENCESAzevedo CF, de Resende MD, E Silva FF, Viana JMS, et al (2015). Ridge, Lasso and Bayesian additive-dominance genomic models. BMC Genet. 16: 105. http://dx.doi.org/10.1186/s12863-015-0264-2 Band GO, Guimarães SEF, Lopes PS, Peixoto JDO, et al (2005). Relationship between the Porcine Stress Syndrome gene and carcass and performance traits in F2 pigs resulting from divergent crosses. Genet. Mol. Biol. 28: 92-96. http://dx.doi.org/10.1590/S1415-47572005000100016 Costa EV, Diniz DB, Veroneze R, Resende MD, et al (2015). Estimating additive and dominance variances for complex traits in pigs combining genomic and pedigree information. Genet. Mol. Res. 14: 6303-6311. http://dx.doi.org/10.4238/2015.June.11.4 Cox DR, et al (1972). Regression models and life tables (with discussion). J. R. Stat. Soc. Series B Stat. Methodol. 34: 187-220. de Los Campos G, Gianola D, Rosa GJM, et al (2009). Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. J. Anim. Sci. 87: 1883-1887. http://dx.doi.org/10.2527/jas.2008-1259 Ducrocq V, Sölkner J and Mészáros G (2010). Survival Kit v6-a Software Package for Survival Analysis (ID232). Proceedings of the 9th World Congress of Genetic and Applied Livestock Production, Leipzig, 232. Ertl J, Legarra A, Vitezica ZG, Varona L, et al (2014). Genomic analysis of dominance effects on milk production and conformation traits in Fleckvieh cattle. Genet. Sel. Evol. 46: 40. http://dx.doi.org/10.1186/1297-9686-46-40 de Almeida Filho JE, Guimarães JFR, E Silva FF, de Resende MD, et al (2016). The contribution of dominance to phenotype prediction in a pine breeding and simulated population. Heredity (Edinb) 117: 33-41. http://dx.doi.org/10.1038/hdy.2016.23 Giolo SR, Demétrio CGB, et al (2011). A frailty modeling approach for parental effects in animal breeding. J. Appl. Stat. 38: 619-629. http://dx.doi.org/10.1080/02664760903521492 Guo SF, Gianola D, Rekaya R, Short T, et al (2001). Bayesian analysis of lifetime performance and prolificacy in Landrace sows using a linear mixed model with censoring. Livest. Prod. Sci. 72: 243-252. http://dx.doi.org/10.1016/S0301-6226(01)00219-6 Hollander CA, Knol EF, Heuven HCM, van Grevenhof EM, et al (2015). Interval from last insemination to culling: II. Culling reasons from practise and the correlation with longevity. Livest. Sci. 181: 25-30. http://dx.doi.org/10.1016/j.livsci.2015.09.018 Hou Y, Madsen P, Labouriau R, Zhang Y, et al (2009). Genetic analysis of days from calving to first insemination and days open in Danish Holsteins using different models and censoring scenarios. J. Dairy Sci. 92: 1229-1239. http://dx.doi.org/10.3168/jds.2008-1556 Kärkkäinen HP, Sillanpää MJ, et al (2013). Fast genomic predictions via Bayesian G-BLUP and multilocus models of threshold traits including censored Gaussian data. G3 (Bethesda) 3: 1511-1523. http://dx.doi.org/10.1534/g3.113.007096 Mészáros G, Pálos J, Ducrocq V, Sölkner J, et al (2010). Heritability of longevity in Large White and Landrace sows using continuous time and grouped data models. Genet. Sel. Evol. 42: 13. http://dx.doi.org/10.1186/1297-9686-42-13 Morota G, Boddhireddy P, Vukasinovic N, Gianola D, et al (2014). Kernel-based variance component estimation and whole-genome prediction of pre-corrected phenotypes and progeny tests for dairy cow health traits. Front. Genet. 5: 56. http://dx.doi.org/10.3389/fgene.2014.00056 Mrode RA (2005). Linear models for the prediction of animal breeding values. CAB International, Wallingford. Muñoz PR, Resende MFJrGezanSA, Resende MDV, et al (2014). Unraveling additive from nonadditive effects using genomic relationship matrices. Genetics 198: 1759-1768. http://dx.doi.org/10.1534/genetics.114.171322 Nishio M, Satoh M, et al (2014). Including dominance effects in the genomic BLUP method for genomic evaluation. PLoS One 9: e85792. http://dx.doi.org/10.1371/journal.pone.0085792 Onteru SK, Fan B, Nikkilä MT, Garrick DJ, et al (2011). Whole-genome association analyses for lifetime reproductive traits in the pig. J. Anim. Sci. 89: 988-995. http://dx.doi.org/10.2527/jas.2010-3236 Ornella L, Pérez P, Tapia E, González-Camacho JM, et al (2014). Genomic-enabled prediction with classification algorithms. Heredity (Edinb) 112: 616-626. http://dx.doi.org/10.1038/hdy.2013.144 Pankratz VS, de Andrade M, Therneau TM, et al (2005). Random-effects Cox proportional hazards model: general variance components methods for time-to-event data. Genet. Epidemiol. 28: 97-109. http://dx.doi.org/10.1002/gepi.20043 Pérez P, de los Campos G, et al (2014). Genome-wide regression and prediction with the BGLR statistical package. Genetics 198: 483-495. http://dx.doi.org/10.1534/genetics.114.164442 Pinheiro JC and Bates DM (2000). Mixed-Effects Models in S and S-PLUS. Springer-Verlag, New York. R Development Core Team (2016). R: A Language and Environment for Statistical Computing. Available at http://www.R-project.org. Accessed March 16, 2016. Resende MDV, Silva FF and Azevedo CF (2014). Estatística matemática, biométrica e computacional: modelos mistos, multivariados, categóricos e generalizados (REML/BLUP), Inferência Bayesiana, Regressão Aleatória, Seleção Genômica, QTL-GWAS, Estatística Espacial e Temporal, Competição, Sobrevivência. Editora Suprema, Viçosa. Santos VS, Martins Filho S, Resende MDV, Azevedo CF, et al (2015). Genomic selection for slaughter age in pigs using the Cox frailty model. Genet. Mol. Res. 14: 12616-12627. http://dx.doi.org/10.4238/2015.October.19.5 Schaeffer L (2013). Survival. In: History of genetic evaluation methods in dairy cattle (Grosu H, Schaeffer L, Oltenacu PA, et al., eds.) 279-298. Available at [https://xa.yimg.com/kq/groups/18395782/1926111600/name/FINAL_BOOK_29.04.2013.pdf]. Accessed 12 April, 2016 Schneider MdelP, Strandberg E, Ducrocq V, Roth A, et al (2005). Survival analysis applied to genetic evaluation for female fertility in dairy cattle. J. Dairy Sci. 88: 2253-2259. http://dx.doi.org/10.3168/jds.S0022-0302(05)72901-5 Serenius T, Stalder KJ, Puonti M, et al (2006). Impact of dominance effects on sow longevity. J. Anim. Breed. Genet. 123: 355-361. http://dx.doi.org/10.1111/j.1439-0388.2006.00614.x Silva FF, de Resende MD, Rocha GS, Duarte DA, et al (2013). Genomic growth curves of an outbred pig population. Genet. Mol. Biol. 36: 520-527. http://dx.doi.org/10.1590/S1415-47572013005000042 Smith BJ, et al (2007). boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference. J. Stat. Softw. 21: 1-37. http://dx.doi.org/10.18637/jss.v021.i11 Sobczyńska M, Blicharski T, et al (2015). Phenotypic and genetic variation in longevity of Polish Landrace sows. J. Anim. Breed. Genet. 132: 318-327. http://dx.doi.org/10.1111/jbg.12135 Sorensen DA, Gianola D, Korsgaard IR, et al (1998). Bayesian mixed‐effects model analysis of a censored normal distribution with animal breeding applications. Acta Agric. Scand. Anim. Sci. 48: 222-229. Su G, Christensen OF, Ostersen T, Henryon M, et al (2012). Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PLoS One 7: e45293. http://dx.doi.org/10.1371/journal.pone.0045293 Therneau T (2012). Mixed effects Cox models. R package version 2.2-3. http://cran.r-project.org/web/packages/coxme/vignettes/coxme.pdf. Accessed April 12, 2016. VanRaden PM, et al (2008). Efficient methods to compute genomic predictions. J. Dairy Sci. 91: 4414-4423. http://dx.doi.org/10.3168/jds.2007-0980 Verardo LL, Silva FF, Varona L, Resende MDV, et al (2015). Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs. J. Appl. Genet. 56: 123-132. http://dx.doi.org/10.1007/s13353-014-0240-y Wang C, Da Y, et al (2014). Quantitative genetics model as the unifying model for defining genomic relationship and inbreeding coefficient. PLoS One 9: e114484. http://dx.doi.org/10.1371/journal.pone.0114484 Yazdi MH, Visscher PM, Ducrocq V, Thompson R, et al (2002). Heritability, reliability of genetic evaluations and response to selection in proportional hazard models. J. Dairy Sci. 85: 1563-1577. http://dx.doi.org/10.3168/jds.S0022-0302(02)74226-4
“Multi-trait BLUP model indicates sorghum hybrids with genetic potential for agronomic and nutritional traits”, vol. 15, p. -, 2016.
, “Multi-trait BLUP model indicates sorghum hybrids with genetic potential for agronomic and nutritional traits”, vol. 15, p. -, 2016.
, , , “Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs”, vol. 14, pp. 12217-12227, 2015.
, “Estimating additive and dominance variances for complex traits in pigs combining genomic and pedigree information”, vol. 14, pp. 6303-6311, 2015.
, “Genomic selection for slaughter age in pigs using the Cox frailty model”, vol. 14, pp. 12616-12627, 2015.
, “Genetic evaluation of milk yield in Alpine goats for the first four lactations using random regression models”, vol. 13, pp. 10943-10951, 2014.
, “Selection of sugar cane families by using BLUP and multi-diverse analyses for planting in the Brazilian savannah”, vol. 13, pp. 1619-1626, 2014.
, “Transcript profiling of expressed sequence tags from semimembranosus muscle of commercial and naturalized pig breeds”, vol. 11, pp. 3315-3328, 2012.
,
Bai Q, McGillivray C, da CN, Dornan S, et al. (2003). Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles. BMC Genomics 4: 8.
http://dx.doi.org/10.1186/1471-2164-4-8
PMid:12611633 PMCid:152649
Brandt U (2006). Energy converting NADH:quinone oxidoreductase (complex I). Annu. Rev. Biochem. 75: 69-92.
http://dx.doi.org/10.1146/annurev.biochem.75.103004.142539
PMid:16756485
Briggs HM and Briggs DM (1969). In Modern Breeds of Livestock. The MacMillan Co., New York.
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, et al. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676.
http://dx.doi.org/10.1093/bioinformatics/bti610
PMid:16081474
Davoli R, Zambonelli P, Bigi D, Fontanesi L, et al. (1999). Analysis of expressed sequence tags of porcine skeletal muscle. Gene 233: 181-188.
http://dx.doi.org/10.1016/S0378-1119(99)00141-9
Davoli R, Fontanesi L, Zambonelli P, Bigi D, et al. (2002). Isolation of porcine expressed sequence tags for the construction of a first genomic transcript map of the skeletal muscle in pig. Anim. Genet. 33: 3-18.
http://dx.doi.org/10.1046/j.1365-2052.2002.00800.x
PMid:11849132
Ewing B, Hillier L, Wendl MC and Green P (1998). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175-185.
PMid:9521921
Ferraz AL, Ojeda A, Lopez-Bejar M, Fernandes LT, et al. (2008). Transcriptome architecture across tissues in the pig. BMC Genomics 9: 173.
http://dx.doi.org/10.1186/1471-2164-9-173
PMid:18416811 PMCid:2335121
Guimarães SEF and Lopes OS (2001). Uso de recursos genéticos nativos no mapeamento genético de suínos. Ação Ambiental 15: 27-28.
Hocquette JF, Ortigues-Marty I and Pethick D (1998). Nutritional and hormonal regulation of energy metabolism in skeletal muscles of meat-producing animals. Livest. Prod. Sci. 56: 115-143.
http://dx.doi.org/10.1016/S0301-6226(98)00187-0
Huang X and Madan A (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877.
http://dx.doi.org/10.1101/gr.9.9.868
PMid:10508846 PMCid:310812
Kim NK, Lim JH and Song MJ (2008). Comparisons of longissimus muscle metabolic enzymes and muscle fibre types in Korean and western pig breeds. Meat Sci. 78: 455-460.
http://dx.doi.org/10.1016/j.meatsci.2007.07.014
PMid:22062465
Lin CS and Hsu CW (2005). Differentially transcribed genes in skeletal muscle of Duroc and Taoyuan pigs. J. Anim. Sci. 83: 2075-2086.
PMid:16100062
Lopes PS, Guimarães SEF, Pires AV, Soares MAM, et al. (2002). Performance, Carcass Yield and Meat Quality Traits of F2 Crosses Between Brazilian Native and Commercial Pigs for QTL Mapping. Proceedings in World Congresss on Genetics Applied to Livestock Production: Montpellier, 155-158.
Mégy K, Audic S and Claverie JM (2002). Heart-specific genes revealed by expressed sequence tag (EST) sampling. Genome Biol. 3: RESEARCH0074.
Min XJ, Butler G, Storms R and Tsang A (2005). TargetIdentifier: a webserver for identifying full-length cDNAs from EST sequences. Nucleic Acids Res. 33: W669-W672.
http://dx.doi.org/10.1093/nar/gki436
PMid:15980559 PMCid:1160197
Nobis W, Ren X, Suchyta SP, Suchyta TR, et al. (2003). Development of a porcine brain cDNA library, EST database, and microarray resource. Physiol. Genomics 16: 153-159.
http://dx.doi.org/10.1152/physiolgenomics.00099.2003
PMid:14559975
Rehfeldt C, Henning M and Fiedler I (2008). Consequences of pig domestication for skeletal muscle growth and cellularity. Livest. Sci. 116: 30-41.
http://dx.doi.org/10.1016/j.livsci.2007.08.017
Sambrook J and Russell DW (2001). Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor.
Serão NV, Veroneze R, Ribeiro AM, Verardo LL, et al. (2011). Candidate gene expression and intramuscular fat content in pigs. J. Anim. Breed. Genet. 128: 28-34.
http://dx.doi.org/10.1111/j.1439-0388.2010.00887.x
PMid:21214641
Souza CA, Paiva SR, Pereira RW, Guimaraes SE, et al. (2009). Iberian origin of Brazilian local pig breeds based on Cytochrome b (MT-CYB) sequence. Anim. Genet. 40: 759-762.
http://dx.doi.org/10.1111/j.1365-2052.2009.01899.x
PMid:19422368
Tang Z, Li Y, Wan P, Li X, et al. (2007). LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol. 8: R115.
http://dx.doi.org/10.1186/gb-2007-8-6-r115
PMid:17573972 PMCid:2394763
Vianna AT (1985). Os Suínos. 14ª ed. Editora Nobel, São Paulo.
Wang XL, Wu KL, Li N, Li CL, et al. (2006). Analysis of expressed sequence tags from skeletal muscle-specific cDNA library of Chinese native Xiang pig. Yi Chuan Xue Bao 33: 984-991.
PMid:17112969
Wimmers K, Ngu NT, Jennen DG, Tesfaye D, et al. (2008). Relationship between myosin heavy chain isoform expression and muscling in several diverse pig breeds. J. Anim. Sci. 86: 795-803.
http://dx.doi.org/10.2527/jas.2006-521
PMid:18156349
Wu J, Zhou D, Deng C, Wu X, et al. (2008). Characterization of porcine ENO3: genomic and cDNA structure, polymorphism and expression. Genet. Sel. Evol. 40: 563-579.
PMid:18694551 PMCid:2674891
“Genetic characterization of papaya plants (Carica papaya L.) derived from the first backcross generation”, vol. 10, pp. 393-403, 2011.
,
Arumuganathan K and Earle ED (1991). Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 208-218.
http://dx.doi.org/10.1007/BF02672069
Benchimol LL, Souza CL Jr and Souza AP (2005). Microsatellite-assisted backcross selection in maize. Genet. Mol. Biol. 28: 789-797.
http://dx.doi.org/10.1590/S1415-47572005000500022
Collard BCY, Jahufer MZZ, Brouwer JB and Pang ECK (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142: 169-196.
http://dx.doi.org/10.1007/s10681-005-1681-5
Conover RA, Litz RE and Malo SE (1986). Cariflora, a Papaya for South Florida with Tolerance to Papaya Ringspot Virus. Agricultural Experiment Station, University of Florida (Circular, 329), Florida.
Cruz CD (2008). Programa GENES: Diversidade Genética. Universidade Federal de Viçosa, Viçosa.
Daher RF, Pereira MG, Tupinambá EA, Amaral Júnior AT, et al. (2002). Assessment of coconut tree genetic divergence by compound sample RAPD marker analysis. Crop Breed. Appl. Biotechnol. 3: 431-438.
Damasceno Junior PC, Costa FR, Pereira TNS, Freitas Neto M, et al. (2009). Karyotype determination in three Caricaceae species emphasizing the cultivated form (C. papaya L.). Caryologia 62: 10-15.
Davies J, Berzonsky WA and Leach GD (2006). A comparison of marker-assisted and phenotypic selection for high grain protein content in spring wheat. Euphytica 152: 117-134.
http://dx.doi.org/10.1007/s10681-006-9185-5
Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
Faleiro FG, Ragagnin VA, Moreira MA and de Barros EG (2004). Use of molecular markers to accelerate the breeding of common bean lines resistant to rust and anthracnose. Euphytica 138: 213-218.
http://dx.doi.org/10.1023/B:EUPH.0000047080.80405.72
FAOSTAT (2009). Food and Agriculture Organization of the United Nations Statistical Database. Available at [http://faostat.fao.org/site/567/default.aspx#ancor]. Accessed August 20, 2009.
Gupta PK and Varshney RK (2000). The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113: 163-185.
http://dx.doi.org/10.1023/A:1003910819967
Hospital F and Charcosset A (1997). Marker-assisted introgression of quantitative trait loci. Genetics 147: 1469-1485.
PMid:9383086 PMCid:1208267
Hospital F, Moreau L, Lacoudre H, Charcosset A, et al. (1997). More on the efficiency of marker-assisted selection. Theor. Appl. Genet. 95: 1181-1189.
http://dx.doi.org/10.1007/s001220050679
Knapp SJ (1997). Marker assisted selection as a strategy for increasing the probability of selection superior genotypes. Crop Sci. 38: 1164-1174.
http://dx.doi.org/10.2135/cropsci1998.0011183X003800050009x
Kuchel H, Ye G, Fox R and Jefferies S (2005). Genetic and economic analysis of a targeted marker-assisted wheat breeding strategy. Mol. Breed. 16: 67-78.
http://dx.doi.org/10.1007/s11032-005-4785-7
Leal AA, Mangolin CA, do Amaral Júnior AT, Gonçalves LS, et al. (2010). Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines. Genet. Mol. Res. 9: 9-18.
http://dx.doi.org/10.4238/vol9-1gmr692
PMid:20082266
Lewis RS and Kernodle SP (2009). A method for accelerated trait conversion in plant breeding. Theor. Appl. Genet. 118: 1499-1508.
http://dx.doi.org/10.1007/s00122-009-0998-1
PMid:19266176
Liu Z, Moore PH, Ma H, Ackerman CM, et al. (2004). A primitive Y-chromosome in papaya marks incipient sex chromosome evolution. Nature 427: 348-352.
http://dx.doi.org/10.1038/nature02228
PMid:14737167
Marin SLM, Pereira MG, Amaral Júnior AT, Martelleto LAP, et al. (2006). Heterosis in papaya hybrids from partial diallel of 'Solo' and 'Formosa' parents. Crop Breed. Appl. Biotechnol. 6: 24-29.
Moore PH and Ming R (2008). Papaya genome: a model for tropical fruit trees and beyond. Trop. Plant Biol. 1: 179-180.
http://dx.doi.org/10.1007/s12042-008-9025-y
Oliveira EJ, Silva AS, Carvalho AM, Santos LF, et al. (2010). Polymorphic microsatellite marker set for Carica papaya L. and its use in molecular-assisted selection. Euphytica 173: 279-287.
http://dx.doi.org/10.1007/s10681-010-0150-y
Oliveira LK, Melo LC, Brondani C, Peloso MJ, et al. (2008). Backcross assisted by microsatellite markers in common bean. Genet. Mol. Res. 7: 1000-1010.
http://dx.doi.org/10.4238/vol7-4gmr478
PMid:19048479
Pérez OJ, Dambier D, Ollitrault P, Coppens DG, et al. (2006). Microsatellite markers in Carica papaya L.: isolation, characterization and transferability to Vasconcellea species. Mol. Ecol. Notes 6: 212-217.
http://dx.doi.org/10.1111/j.1471-8286.2006.01197.x
Santos SC, Ruggiero C, Silva CLSP and Lemos GM (2003). A microsatellite library for Carica papaya L. cv Sunrise Solo. Rev. Bras. Frutic. 25: 263-267.
http://dx.doi.org/10.1590/S0100-29452003000200020
Schmierer DA, Kandemir N, Kudma DA, Jone BL, et al. (2004). Molecular marker-assisted selection for enhanced yield in malting barley. Mol. Breed. 14: 463-473.
http://dx.doi.org/10.1007/s11032-004-0903-1
Silva FF, Pereira MG, Campos WF, Damasceno Júnior PC, et al. (2007a). Monitoring of the genetic variability in papaya parent 'Formosa' of 'UENF/CALIMAN 01' hybrid via RAPD. Crop Breed. Appl. Biotechnol. 7: 36-42.
Silva FF, Pereira MG, Campos WF, Damasceno Júnior PC, et al. (2007b). DNA marker-assisted sex conversion in elite papaya genotype (Carica papaya L.). Crop Breed. Appl. Biotechnol. 7: 52-58.
Siqueira WJ, Fonseca MIS and Sondhal MR (1988). Regeneration of Lycopersicon esculentum x L. peruvianum hybrid plants from two year old callus culture. Bragantia 47: 1-8.
http://dx.doi.org/10.1590/S0006-87051988000100001
Storey WB (1953). Genetics of the papaya. J. Heredity 44: 70-78.
Tanksley SD (1983). Molecular markers in plant breeding. Plant Mol. Biol. Rep. 1: 3-8.
http://dx.doi.org/10.1007/BF02680255
Visscher PM, Haley CS and Thompson R (1996). Marker-assisted introgression in backcross breeding programs. Genetics 144: 1923-1932.
PMid:8978075 PMCid:1207739
Wang J, Chen C, Na JK, Yu Q, et al. (2008). Genome-wide comparative analyses of microsatellites in papaya. Trop. Plant Biol. 1: 278-292.
http://dx.doi.org/10.1007/s12042-008-9024-z
Xi ZY, He FH, Zeng RZ, Zang ZM, et al. (2008). Characterization of donor genome contents of backcross progenies detected by SSR markers in rice. Euphytica 3: 369-377.
http://dx.doi.org/10.1007/s10681-007-9547-7
Young ND and Tanksley SD (1989). RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor. Appl. Genet. 3: 353-359.
http://dx.doi.org/10.1007/BF00305828
Yu Q, Hou S, Feltus FA, Jones MR, et al. (2008). Low X/Y divergence in four pairs of papaya sex-linked genes. Plant J. 53: 124-132.
http://dx.doi.org/10.1111/j.1365-313X.2007.03329.x
PMid:17973896