Publications

Found 45 results
Filters: Author is T. Zhang  [Clear All Filters]
2016
D. L. Zheng, Tang, G. D., Chen, Y. N., Zhang, T., Qin, M. B., Zheng, D. L., Tang, G. D., Chen, Y. N., Zhang, T., Qin, M. B., Zheng, D. L., Tang, G. D., Chen, Y. N., Zhang, T., and Qin, M. B., Genetic variability of ERCC1 and ERCC2 genes involved in the nucleotide excision repair pathway influences the treatment outcome of gastric cancer, vol. 15, p. -, 2016.
D. L. Zheng, Tang, G. D., Chen, Y. N., Zhang, T., Qin, M. B., Zheng, D. L., Tang, G. D., Chen, Y. N., Zhang, T., Qin, M. B., Zheng, D. L., Tang, G. D., Chen, Y. N., Zhang, T., and Qin, M. B., Genetic variability of ERCC1 and ERCC2 genes involved in the nucleotide excision repair pathway influences the treatment outcome of gastric cancer, vol. 15, p. -, 2016.
D. L. Zheng, Tang, G. D., Chen, Y. N., Zhang, T., Qin, M. B., Zheng, D. L., Tang, G. D., Chen, Y. N., Zhang, T., Qin, M. B., Zheng, D. L., Tang, G. D., Chen, Y. N., Zhang, T., and Qin, M. B., Genetic variability of ERCC1 and ERCC2 genes involved in the nucleotide excision repair pathway influences the treatment outcome of gastric cancer, vol. 15, p. -, 2016.
R. F. Zhang, Xie, W. M., Zhang, T., Lei, C. Z., Zhang, R. F., Xie, W. M., Zhang, T., and Lei, C. Z., High polymorphism at microsatellite loci in the Chinese donkey, vol. 15, p. -, 2016.
R. F. Zhang, Xie, W. M., Zhang, T., Lei, C. Z., Zhang, R. F., Xie, W. M., Zhang, T., and Lei, C. Z., High polymorphism at microsatellite loci in the Chinese donkey, vol. 15, p. -, 2016.
Y. Cui, Zhang, T., Yan, Y., Liu, K., Cui, Y., Zhang, T., Yan, Y., and Liu, K., Identification of a mutation in Hepatitis B virus surface antigen capable of evading ELISA screening, vol. 15, p. -, 2016.
Y. Cui, Zhang, T., Yan, Y., Liu, K., Cui, Y., Zhang, T., Yan, Y., and Liu, K., Identification of a mutation in Hepatitis B virus surface antigen capable of evading ELISA screening, vol. 15, p. -, 2016.
X. Liu, Wang, L. G., Zhang, L. C., Yan, H., Zhao, K. B., Liang, J., Li, N., Pu, L., Zhang, T., Wang, L. X., Liu, X., Wang, L. G., Zhang, L. C., Yan, H., Zhao, K. B., Liang, J., Li, N., Pu, L., Zhang, T., and Wang, L. X., Molecular cloning, tissue expression pattern, and copy number variation of porcine SCUBE3, vol. 15, p. -, 2016.
X. Liu, Wang, L. G., Zhang, L. C., Yan, H., Zhao, K. B., Liang, J., Li, N., Pu, L., Zhang, T., Wang, L. X., Liu, X., Wang, L. G., Zhang, L. C., Yan, H., Zhao, K. B., Liang, J., Li, N., Pu, L., Zhang, T., and Wang, L. X., Molecular cloning, tissue expression pattern, and copy number variation of porcine SCUBE3, vol. 15, p. -, 2016.
Y. Wei, Zhang, G. X., Zhang, T., Wang, J. Y., Fan, Q. C., Tang, Y., Ding, F. X., Zhang, L., Wei, Y., Zhang, G. X., Zhang, T., Wang, J. Y., Fan, Q. C., Tang, Y., Ding, F. X., and Zhang, L., Myf5 and MyoG gene SNPs associated with Bian chicken growth trait, vol. 15, p. -, 2016.
Y. Wei, Zhang, G. X., Zhang, T., Wang, J. Y., Fan, Q. C., Tang, Y., Ding, F. X., Zhang, L., Wei, Y., Zhang, G. X., Zhang, T., Wang, J. Y., Fan, Q. C., Tang, Y., Ding, F. X., and Zhang, L., Myf5 and MyoG gene SNPs associated with Bian chicken growth trait, vol. 15, p. -, 2016.
L. Pu, Zhang, L. C., Zhang, J. S., Song, X., Wang, L. G., Liang, J., Zhang, Y. B., Liu, X., Yan, H., Zhang, T., Yue, J. W., Li, N., Wu, Q. Q., Wang, L. X., Pu, L., Zhang, L. C., Zhang, J. S., Song, X., Wang, L. G., Liang, J., Zhang, Y. B., Liu, X., Yan, H., Zhang, T., Yue, J. W., Li, N., Wu, Q. Q., and Wang, L. X., Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake, vol. 15, p. -, 2016.
L. Pu, Zhang, L. C., Zhang, J. S., Song, X., Wang, L. G., Liang, J., Zhang, Y. B., Liu, X., Yan, H., Zhang, T., Yue, J. W., Li, N., Wu, Q. Q., Wang, L. X., Pu, L., Zhang, L. C., Zhang, J. S., Song, X., Wang, L. G., Liang, J., Zhang, Y. B., Liu, X., Yan, H., Zhang, T., Yue, J. W., Li, N., Wu, Q. Q., and Wang, L. X., Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake, vol. 15, p. -, 2016.
H. Zhao, Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., and Gu, X. M., RETRACTION of “Tumor necrosis factor alpha gene -308G>A polymorphism association with the risk of esophageal cancer in a Han Chinese population” by H. Zhao, H.W. Zhang, T. Zhang and X.M. Gu - Genet. Mol. Res. 15 (2): gmr.15025866 DOI: http://dx.doi.org/10.4238/gmr.15025866, vol. 15. p. -, 2016.
H. Zhao, Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., and Gu, X. M., RETRACTION of “Tumor necrosis factor alpha gene -308G>A polymorphism association with the risk of esophageal cancer in a Han Chinese population” by H. Zhao, H.W. Zhang, T. Zhang and X.M. Gu - Genet. Mol. Res. 15 (2): gmr.15025866 DOI: http://dx.doi.org/10.4238/gmr.15025866, vol. 15. p. -, 2016.
Y. Zhi, Cao, Z., Li, Q. H., Li, X. L., Sun, Y., Zhang, T., Zhang, Q., Zhi, Y., Cao, Z., Li, Q. H., Li, X. L., Sun, Y., Zhang, T., Zhang, Q., Zhi, Y., Cao, Z., Li, Q. H., Li, X. L., Sun, Y., Zhang, T., and Zhang, Q., Transcriptional analysis of atrial and ventricular muscles from rats, vol. 15, p. -, 2016.
Y. Zhi, Cao, Z., Li, Q. H., Li, X. L., Sun, Y., Zhang, T., Zhang, Q., Zhi, Y., Cao, Z., Li, Q. H., Li, X. L., Sun, Y., Zhang, T., Zhang, Q., Zhi, Y., Cao, Z., Li, Q. H., Li, X. L., Sun, Y., Zhang, T., and Zhang, Q., Transcriptional analysis of atrial and ventricular muscles from rats, vol. 15, p. -, 2016.
Y. Zhi, Cao, Z., Li, Q. H., Li, X. L., Sun, Y., Zhang, T., Zhang, Q., Zhi, Y., Cao, Z., Li, Q. H., Li, X. L., Sun, Y., Zhang, T., Zhang, Q., Zhi, Y., Cao, Z., Li, Q. H., Li, X. L., Sun, Y., Zhang, T., and Zhang, Q., Transcriptional analysis of atrial and ventricular muscles from rats, vol. 15, p. -, 2016.
H. Zhao, Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., and Gu, X. M., Tumor necrosis factor alpha gene -308G>A polymorphism association with the risk of esophageal cancer in a Han Chinese population, vol. 15. p. -, 2016.
H. Zhao, Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., and Gu, X. M., Tumor necrosis factor alpha gene -308G>A polymorphism association with the risk of esophageal cancer in a Han Chinese population, vol. 15. p. -, 2016.
H. Zhao, Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., and Gu, X. M., Tumor necrosis factor alpha gene -308G>A polymorphism association with the risk of esophageal cancer in a Han Chinese population, vol. 15. p. -, 2016.
H. Zhao, Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., and Gu, X. M., Tumor necrosis factor alpha gene -308G>A polymorphism association with the risk of esophageal cancer in a Han Chinese population, vol. 15. p. -, 2016.
H. Zhao, Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., Gu, X. M., Zhao, H., Zhang, H. W., Zhang, T., and Gu, X. M., Tumor necrosis factor alpha gene -308G>A polymorphism association with the risk of esophageal cancer in a Han Chinese population, vol. 15. p. -, 2016.
2015
H. Xing, Shao, B., Gu, Y. Y., Yuan, Y. G., Zhang, T., Zang, J., and Cheng, Y., Analysis of polymorphisms in milk proteins from cloned and sexually reproduced goats, vol. 14, pp. 16196-16203, 2015.
S. Wei, Gong, Z., An, L., Zhang, T., Dai, H., and Chen, S., Cloprostenol and pregnant mare serum gonadotropin promote estrus synchronization, uterine development, and follicle-stimulating hormone receptor expression in mice, vol. 14, pp. 7184-7195, 2015.
S. - Y. Guo, Ding, Y. - J., Li, L., Zhang, T., Zhang, Z. - Z., and Zhang, E. - S., Correlation of CD4+ CD25+ Foxp3+ Treg with the recovery of joint function after total knee replacement in rats with osteoarthritis, vol. 14, pp. 7290-7296, 2015.
L. Q. Zheng, Zhang, H. L., Guan, Z. H., Hu, M. Y., Zhang, T., and Ge, S. J., Elevated serum homocysteine level in the development of diabetic peripheral neuropathy, vol. 14, pp. 15365-15375, 2015.
Y. F. Ma, Yang, B., Li, J., Zhang, T., Guo, J. T., Chen, L., Li, M., Chu, J., Liang, C. Y., and Liu, Y., Expression of Ras-related protein 25 predicts chemotherapy resistance and prognosis in advanced non-small cell lung cancer, vol. 14, pp. 13998-14008, 2015.
D. Li, Peng, J. J., Tan, Y., Chen, T., Wei, D., Du, M., and Zhang, T., Genetic variations in microRNA genes and susceptibility to hepatocellular carcinoma, vol. 14, pp. 1926-1931, 2015.
G. X. Zhang, Fan, Q. C., Zhang, T., Wang, J. Y., Wang, W. H., Xue, Q., and Wang, Y. J., Genome-wide association study of growth traits in the Jinghai Yellow chicken, vol. 14, pp. 15331-15338, 2015.
T. Zhang, Fan, Q. C., Wang, J. Y., Zhang, G. X., Gu, Y. P., and Tang, Y., Genome-wide association study of meat quality traits in chicken, vol. 14, pp. 10452-10460, 2015.
G. Zhang, Bai, R., Zhang, T., Zhang, H., Wen, S. Z., and Jiang, D. M., Investigation of the role of VEGF gene polymorphisms in the risk of osteosarcoma, vol. 14, pp. 8283-8289, 2015.
T. Zhang, Zhang, G. X., Han, K. P., Tang, Y., Wang, J. Y., Fan, Q. C., Chen, X. S., Wei, Y., and Wang, Y. J., Molecular cloning and characterization, and prokaryotic expression of the GnRH1 gene obtained from Jinghai yellow chicken, vol. 14, pp. 2831-2849, 2015.
X. Cao, Xia, H. Y., Zhang, T., Qi, L. C., Zhang, B. Y., Cui, R., Chen, X., Zhao, Y. R., and Li, X. Q., Protective effect of lyophilized recombinant human brain natriuretic peptide on renal ischemia/reperfusion injury in mice, vol. 14, pp. 13300-13311, 2015.
L. Zhang, Liu, R. X., Wang, J., Zhang, T., Li, J., Shi, J. H., Kang, B. Y., and Chen, S. Q., A SCAR marker for the analysis of chloroplast DNA from different cultivars of Cornus officinalis, vol. 14, pp. 17170-17181, 2015.
M. A. Abdalhag, Zhang, T., Fan, Q. C., Zhang, X. Q., Zhang, G. X., Wang, J. Y., Wei, Y., and Wang, Y. J., Single nucleotide polymorphisms associated with growth traits in Jinghai yellow chickens, vol. 14, pp. 16169-16177, 2015.
Z. G. Wang, Zhang, G. X., Hao, S. H., Zhang, W. W., Zhang, T., Zhang, Z. P., and Wu, R. X., Technological value of SPECT/CT fusion imaging for the diagnosis of lower gastrointestinal bleeding, vol. 14, pp. 14947-14955, 2015.
L. J. Qin, Zhang, T., Jia, Y. S., Zhang, Y. B., Zhang, Y. X., and Wang, H. T., Thermotherapy-induced reduction in glioma invasiveness is mediated by tumor necrosis factor-alpha, vol. 14, pp. 11771-11779, 2015.
2012
C. Qiu, Peng, W. K., Shi, F., and Zhang, T., Bottom-up assembly of RNA nanoparticles containing phi29 motor pRNA to silence the asthma STAT5b gene, vol. 11, pp. 3236-3245, 2012.
Castanotto D and Rossi JJ (2009). The promises and pitfalls of RNA-interference-based therapeutics. Nature 457: 426-433. http://dx.doi.org/10.1038/nature07758 PMid:19158789 PMCid:2702667   Chen C, Sheng S, Shao Z and Guo P (2000). A dimer as a building block in assembling RNA. A hexamer that gears bacterial virus phi29 DNA-translocating machinery. J. Biol. Chem. 275: 17510-17516. http://dx.doi.org/10.1074/jbc.M909662199 PMid:10748150   Dorsett Y and Tuschl T (2004). siRNAs: applications in functional genomics and potential as therapeutics. Nat. Rev. Drug. Discov. 3: 318-329. http://dx.doi.org/10.1038/nrd1345 PMid:15060527   Elbashir SM, Lendeckel W and Tuschl T (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15: 188-200. http://dx.doi.org/10.1101/gad.862301 PMid:11157775 PMCid:312613   Guo P (2010). The emerging field of RNA nanotechnology. Nat. Nanotechnol. 5: 833-842. http://dx.doi.org/10.1038/nnano.2010.231 PMid:21102465 PMCid:3149862   Guo S, Tschammer N, Mohammed S and Guo P (2005). Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum. Gene Ther. 16: 1097-1109. http://dx.doi.org/10.1089/hum.2005.16.1097 PMid:16149908 PMCid:2837361   Kraus E, James W and Barclay AN (1998). Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit CD4+ T lymphocyte function. J. Immunol. 160: 5209-5212. PMid:9605115   Lee TJ, Schwartz C and Guo P (2009). Construction of bacteriophage phi29 DNA packaging motor and its applications in nanotechnology and therapy. Ann. Biomed. Eng. 37: 2064-2081. http://dx.doi.org/10.1007/s10439-009-9723-0 PMid:19495981 PMCid:2855900   Maes T, Tournoy KG and Joos GF (2011). Gene therapy for allergic airway diseases. Curr. Allergy Asthma Rep. 11: 163-172. http://dx.doi.org/10.1007/s11882-011-0177-8 PMid:21243453   North ML, Khanna N, Marsden PA, Grasemann H, et al. (2009). Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am. J. Physiol. Lung Cell Mol. Physiol. 296: L911-L920. http://dx.doi.org/10.1152/ajplung.00025.2009 PMid:19286931   Shu D, Huang LP, Hoeprich S and Guo P (2003). Construction of phi29 DNA-packaging RNA monomers, dimers, and trimers with variable sizes and shapes as potential parts for nanodevices. J. Nanosci. Nanotechnol. 3: 295-302. http://dx.doi.org/10.1166/jnn.2003.160 PMid:14598442   Shu D, Moll WD, Deng Z, Mao C, et al. (2004). Bottom-up Assembly of RNA Arrays and Superstructures as Potential Parts in Nanotechnology. Nano Lett. 4: 1717-1723. http://dx.doi.org/10.1021/nl0494497 PMid:21171616 PMCid:3010238   Shu Y, Shu D, Diao Z, Shen G, et al. (2009). Fabrication of Polyvalent Therapeutic RNA Nanoparticles for Specific Delivery of siRNA, Ribozyme and Drugs to Targeted Cells for Cancer Therapy. IEEE NIH Life Sci. Syst. Appl. Workshop 2009: 9-12.   Tarapore P, Shu Y, Guo P and Ho SM (2011). Application of phi29 motor pRNA for targeted therapeutic delivery of siRNA silencing metallothionein-IIA and survivin in ovarian cancers. Mol. Ther. 19: 386-394. http://dx.doi.org/10.1038/mt.2010.243 PMid:21063391 PMCid:3034850   Zhang HM, Su Y, Guo S, Yuan J, et al. (2009). Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs. Antiviral Res. 83: 307-316. http://dx.doi.org/10.1016/j.antiviral.2009.07.005 PMid:19616030   Zhou J, Shu Y, Guo P, Smith DD, et al. (2011). Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods 54: 284-294. http://dx.doi.org/10.1016/j.ymeth.2010.12.039 PMid:21256218 PMCid:3107903   Zhu J (2010). Transcriptional regulation of Th2 cell differentiation. Immunol. Cell Biol. 88: 244-249. http://dx.doi.org/10.1038/icb.2009.114 PMid:20065998 PMCid:3477614   Zhu J, Cote-Sierra J, Guo L and Paul WE (2003). Stat5 activation plays a critical role in Th2 differentiation. Immunity 19: 739-748. http://dx.doi.org/10.1016/S1074-7613(03)00292-9
J. Yang, Shen, S., Zhang, T., Chen, G. D., Liu, H., Ma, X. B., Chen, W. Y., and Peng, Z. S., Morphological variation of mutant sunflowers (Helianthus annuus) induced by space flight and their genetic background detection by SSR primers, vol. 11, pp. 3379-3388, 2012.
Ahloowalia BS, Maluszynski M and Nichterlein K (2004). Global impact of mutation-derived varieties. Euphytica 135: 187-204. http://dx.doi.org/10.1023/B:EUPH.0000014914.85465.4f Arias DM and Rieseberg LM (1995). Genetic relationships among domesticated and wild sunflowers (Helianthus annuus, Asteraceae). Econ. Bot. 49: 239-248. http://dx.doi.org/10.1007/BF02862340 Bamberg J (2006). Crazy sepal: A new floral sepallata-like mutant in the wild potato Solanum microdontum Bitter. Am. J. Potato Res. 83: 433-435. http://dx.doi.org/10.1007/BF02872019 Chen WY, Chen ZY and Yang J (2009). Floral morphological characters and pollination characteristics of sunflower induced by space flight. J. Mianyang Norm. Univ. 28: 56-60. Chen XD, Lan J and Wang XG (2007). Primary effects on Isatis indigotica after spaceflight. Zhong Yao Cai 30: 381-383. PMid:17674782 Cyranoski D (2001). Satellite will probe mutating seeds in space. Nature 410: 857. http://dx.doi.org/10.1038/35073784 PMid:11309578 Frez JB and Simpsom J (1964). The pollination requirements of sunflowers. Emp. J. Exp. Agric. 32: 340-342. Gentzbittel L, Zhang YX, Vear F, Griveau B, et al. (1994). RFLP studies of genetic relationships among inbred lines of the cultivated sunflower, Helianthus annuus L.: evidence for distinct restorer and maintainer germplasm pools. Theor. Appl. Genet. 89: 419-425. http://dx.doi.org/10.1007/BF00225376 Heesacker A, Kishore VK, Gao W, Tang S, et al. (2008). SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility. Theor. Appl. Genet. 117: 1021-1029. http://dx.doi.org/10.1007/s00122-008-0841-0 PMid:18633591 Hongtrakul V, Huestis GM and Knapp SJ (1997). Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbredlines. Theor. Appl. Genet. 95: 400-407. http://dx.doi.org/10.1007/s001220050576 Knapp SJ, Berry ST and Rieseberg LH (2001). Genetic Mapping Insunflower. In: DNA Markers in Plants (Philips RL and Vasil IK, eds.). Kluwer Academic Publishers, Dordrecht, 379-403. Kondyurin A (2001). Large-size space laboratory for biological orbit experiments. Adv. Space Res. 28: 665-671. http://dx.doi.org/10.1016/S0273-1177(01)00376-3 Li JT, Yang J, Chen DC, Zhang XL, et al. (2007). An optimized mini-preparation method to obtain high-quality genomic DNA from mature leaves of sunflower. Genet. Mol. Res. 6: 1064-1071. PMid:18273799 Li SZ, Cao MJ, Rong TZ, Pan GT, et al. (2007). Cytological observation on pollen abortion of genetic male sterile mutant induced by space flight in maize. Fen Zi Xi Bao Sheng Wu Xue Bao 40: 359-364. PMid:18254342 Lu WH, Wang XZ, Zheng Q, Guan SH, et al. (2008). Diversity and stability study on rice mutants induced in space environment. Genomics Proteomics Bioinformatics 6: 51-60. http://dx.doi.org/10.1016/S1672-0229(08)60020-0 Nehnevajova E, Herzig R, Federer G, Erismann KH, et al. (2007). Chemical mutagenesis - a promising technique to increase metal concentration and extraction in sunflowers. Int. J. Phytoremediation 9: 149-165. http://dx.doi.org/10.1080/15226510701232880 PMid:18246722 Pelaz S, Ditta GS, Baumann E, Wisman E, et al. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203. http://dx.doi.org/10.1038/35012103 PMid:10821278 Pham-Delegue MH, Etievant P and Guichard E (1990). Chemicals involved in honeybee-sunflower relationship. J. Chem. Ecol. 16: 3053-3065. http://dx.doi.org/10.1007/BF00979612 Ruyters G and Friedrich U (2006). Gravitational biology within the German Space Program: goals, achievements, and perspectives. Protoplasma 229: 95-100. http://dx.doi.org/10.1007/s00709-006-0212-0 PMid:17180489 Skorić D, Jocic S, Sakac Z and Lecic N (2008). Genetic possibilities for altering sunflower oil quality to obtain novel oils. Can. J. Physiol. Pharmacol. 86: 215-221. PMid:18418432 Tang S, Yu JK, Slabaugh B, Shintani K, et al. (2002). Simple sequence repeat map of the sunflower genome. Theor. Appl. Genet. 105: 1124-1136. http://dx.doi.org/10.1007/s00122-002-0989-y PMid:12582890 Tang S, Kishore VK and Knapp SJ (2003). PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor. Appl. Genet. 107: 6-19. PMid:12835928 Visscher AM, Paul AL, Kirst M, Alling AK, et al. (2009). Effects of a spaceflight environment on heritable changes in wheat gene expression. Astrobiology 9: 359-367. http://dx.doi.org/10.1089/ast.2008.0311 PMid:19413505 Wei LJ, Xu JL and Wang JM (2006). A comparative study on mutagenic effects of space flight and irradiation of y-rays on rice. Agric. Sci. China 5: 812-819. http://dx.doi.org/10.1016/S1671-2927(06)60129-6
2011
Y. Song, Hou, Y. - L., Hou, W. - R., Wu, G. - F., and Zhang, T., cDNA, genomic sequence cloning and overexpression of the ribosomal protein S13 gene in the giant panda (Ailuropoda melanoleuca), vol. 10, pp. 121-132, 2011.
Barakat A, Szick-Miranda K, Chang IF, Guyot R, et al. (2001). The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol. 127: 398-415. http://dx.doi.org/10.1104/pp.010265 PMid:11598216 PMCid:125077   Bortoluzzi S, d'Alessi F, Romualdi C and Danieli GA (2001). Differential expression of genes coding for ribosomal proteins in different human tissues. Bioinformatics 17: 1152-1157. http://dx.doi.org/10.1093/bioinformatics/17.12.1152 PMid:11751223   Draper DE and Reynaldo LP (1999). RNA binding strategies of ribosomal proteins. Nucleic Acids Res. 27: 381-388. http://dx.doi.org/10.1093/nar/27.2.381 PMid:9862955 PMCid:148190   Du YJ, Luo XY, Hao YZ, Zhang T, et al. (2007). cDNA cloning and overexpression of acidic ribosomal phosphoprotein P1 gene (RPLP1) from the giant panda. Int. J. Biol. Sci. 3: 428-433. http://dx.doi.org/10.7150/ijbs.3.428 PMid:18071584 PMCid:2043164   Hou WR, Chen Y, Peng Z, Wu X, et al. (2007a). cDNA cloning and sequences analysis of ubiquinol-cytochrome c reductase complex ubiquinone-binding protein (QP-C) from giant panda. Acta Theriol. Sin. 27: 190-194.   Hou WR, Du YJ, Chen Y, Wu X, et al. (2007b). Nucleotide sequence of cDNA encoding the mitochondrial precursor protein of the ATPase inhibitor from the giant panda (Ailuropoda melanoleuca). DNA Cell Biol. 26: 799-802. http://dx.doi.org/10.1089/dna.2007.0626 PMid:17822358   Hou YL, Hou WR, Ren ZL, Hao YZ, et al. (2008). cDNA, genomic sequence and overexpression of crystallin alpha-B gene (CRYAB) of the giant panda. Int. J. Biol. Sci. 4: 415-421. http://dx.doi.org/10.7150/ijbs.4.415 PMid:19043608 PMCid:2586680   Hou YL, Du YJ, Hou WR, Zhou CQ, et al. (2009a). Cloning and sequence analysis of translocase of inner mitochondrial membrane 10 homolog (yeast) gene (TIMM10) from the giant panda. J. Cell Anim. Biol. 3: 9-14.   Hou YL, Hou WR, Ren ZL, Hao YZ, et al. (2009b). cDNA cloning and overexpression of ribosomal protein S19 gene (RPS19) from the giant panda. DNA Cell Biol. 28: 41-47. http://dx.doi.org/10.1089/dna.2008.0799 PMid:19072723   Ishii K, Washio T, Uechi T, Yoshihama M, et al. (2006). Characteristics and clustering of human ribosomal protein genes. BMC Genomics 7: 37. http://dx.doi.org/10.1186/1471-2164-7-37 PMid:16504170 PMCid:1459141   Jagannathan I and Culver GM (2003). Assembly of the central domain of the 30S ribosomal subunit: roles for the primary binding ribosomal proteins S15 and S8. J. Mol. Biol. 330: 373-383. http://dx.doi.org/10.1016/S0022-2836(03)00586-2   Kumar R, Drouaud J, Raynal M and Small I (1995). Characterization of the nuclear gene encoding chloroplast ribosomal protein S13 from Arabidopsis thaliana. Curr. Genet. 28: 346-352. http://dx.doi.org/10.1007/BF00326432 PMid:8590480   Li R, Fan W, Tian G, Zhu H, et al. (2010). The sequence and de novo assembly of the giant panda genome. Nature 463: 311-317. http://dx.doi.org/10.1038/nature08696 PMid:20010809   Liao MJ, Zhu MY, Zhang ZH, Zhang AJ, et al. (2003). Cloning and sequence analysis of FSH and LH in the giant panda (Ailuropoda melanoleuca). Anim. Reprod. Sci. 77: 107-116. http://dx.doi.org/10.1016/S0378-4320(02)00275-0   Mager WH (1988). Control of ribosomal protein gene expression. Biochim. Biophys. Acta 949: 1-15. http://dx.doi.org/10.1016/0167-4781(88)90048-6   Malygin A, Parakhnevitch N and Karpova G (2005). Human ribosomal protein S13: cloning, expression, refolding, and structural stability. Biochim. Biophys. Acta 1747: 93-97. http://dx.doi.org/10.1016/j.bbapap.2004.10.001 PMid:15680243   Mather JP, Moore A and Li RH (1997). Activins, inhibins, and follistatins: further thoughts on a growing family of regulators. Proc. Soc. Exp. Biol. Med. 215: 209-222. PMid:9207855   Montali RJ (1990). Causes of neonatal mortality in giant panda. Tokyo Zoolog. Park Soc. 83-94.   Perry RP (2005). The architecture of mammalian ribosomal protein promoters. BMC Evol. Biol. 5: 15. http://dx.doi.org/10.1186/1471-2148-5-15 PMid:15707503 PMCid:554972   Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning. A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.   Sanchez H, Fester T, Kloska S, Schroder W, et al. (1996). Transfer of rps19 to the nucleus involves the gain of an RNP-binding motif which may functionally replace RPS13 in Arabidopsis mitochondria. EMBO J. 15: 2138-2149. PMid:8641279 PMCid:450136   Shi Y, Zhai H, Wang X, Han Z, et al. (2004). Ribosomal proteins S13 and L23 promote multidrug resistance in gastric cancer cells by suppressing drug-induced apoptosis. Exp. Cell Res. 296: 337-346. http://dx.doi.org/10.1016/j.yexcr.2004.02.009 PMid:15149863   Wool IG (1996). Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21: 164-165. PMid:8871397   Wool IG, Chan YL and Gluck A (1995). Structure and evolution of mammalian ribosomal proteins. Biochem. Cell Biol. 73: 933-947. http://dx.doi.org/10.1139/o95-101 PMid:8722009   Wu ZA, Liu WX, Murphy C and Gall J (1990). Satellite 1 DNA sequence from genomic DNA of the giant panda Ailuropoda melanoleuca. Nucleic Acids Res. 18: 1054. http://dx.doi.org/10.1093/nar/18.4.1054 PMid:2315021 PMCid:330371   Yoshihama M, Uechi T, Asakawa S, Kawasaki K, et al. (2002). The human ribosomal protein genes: sequencing and comparative analysis of 73 genes. Genome Res. 12: 379-390. http://dx.doi.org/10.1101/gr.214202 PMid:11875025 PMCid:155282   Zeng JZ, Hong Y, Wang HY, Wang ZX, et al. (2001). Cloning and expression of ribosomal protein L26 in hepatocellular carcinoma. China J. Exp. Surg. 18: 108-109.
2010
G. - F. Wu, Hou, Y. - L., Hou, W. - R., Song, Y., and Zhang, T., Giant panda ribosomal protein S14: cDNA, genomic sequence cloning, sequence analysis, and overexpression, vol. 9, pp. 2004-2015, 2010.
Boultwood J, Lewis S and Wainscoat JS (1994). The 5q-syndrome. Blood 84: 3253-3260. PMid:7949083   Boultwood J, Fidler C, Strickson AJ, Watkins F, et al. (2002). Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood 99: 4638-4641. http://dx.doi.org/10.1182/blood.V99.12.4638 PMid:12036901   Boultwood J, Pellagatti A, Cattan H, Lawrie CH, et al. (2007). Gene expression profiling of CD34+ cells in patients with the 5q- syndrome. Br. J. Haematol. 139: 578-589. http://dx.doi.org/10.1111/j.1365-2141.2007.06833.x PMid:17916100   Diaz JJ and Roufa DJ (1992). Fine-structure map of the human ribosomal protein gene RPS14. Mol. Cell Biol. 12: 1680- 1686. PMid:1549121 PMCid:369611   Du YJ, Luo XY, Hao YZ, Zhang T, et al. (2007). cDNA cloning and overexpression of acidic ribosomal phosphoprotein P1 gene (RPLP1) from the giant panda. Int. J. Biol. Sci. 3: 428-433. http://dx.doi.org/10.7150/ijbs.3.428 PMid:18071584 PMCid:2043164   Ebert BL, Pretz J, Bosco J, Chang CY, et al. (2008). Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451: 335-339. http://dx.doi.org/10.1038/nature06494 PMid:18202658   Ferreira-Cerca S, Poll G, Gleizes PE, Tschochner H, et al. (2005). Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol. Cell 20: 263-275. http://dx.doi.org/10.1016/j.molcel.2005.09.005 PMid:16246728   Fewell SW and Woolford JL Jr (1999). Ribosomal protein S14 of Saccharomyces cerevisiae regulates its expression by binding to RPS14B pre-mRNA and to 18S rRNA. Mol. Cell Biol. 19: 826-834. PMid:9858605 PMCid:83939   Ford CL, Randal-Whitis L and Ellis SR (1999). Yeast proteins related to the p40/laminin receptor precursor are required for 20S ribosomal RNA processing and the maturation of 40S ribosomal subunits. Cancer Res. 59: 704-710. PMid:9973221   Giagounidis AA, Germing U, Haase S, Hildebrandt B, et al. (2004). Clinical, morphological, cytogenetic, and prognostic features of patients with myelodysplastic syndromes and del(5q) including band q31. Leukemia 18: 113-119. http://dx.doi.org/10.1038/sj.leu.2403189 PMid:14586479   Hou WR, Sun GL, Chen Y, Wu X, et al. (2008). Molecular cloning of ribosomal protein L26 (RPL26) cDNA from Ailuropoda melanoleuca and its potential value in phylogenetic study. Biochem. Syst. Ecol. 36: 194-200. http://dx.doi.org/10.1016/j.bse.2007.08.010   Hou YL, Hou WR, Ren ZL, Hao YZ, et al. (2009). cDNA cloning and overexpression of ribosomal protein S19 gene (RPS19) from the giant panda. DNA Cell Biol. 28: 41-47. http://dx.doi.org/10.1089/dna.2008.0799 PMid:19072723   Hwang KC, Cui XS, Park SP, Shin MR, et al. (2004). Identification of differentially regulated genes in bovine blastocysts using an annealing control primer system. Mol. Reprod. Dev. 69: 43-51. http://dx.doi.org/10.1002/mrd.20156 PMid:15278903   Jakovljevic J, de Mayolo PA, Miles TD, Nguyen TM, et al. (2004). The carboxy-terminal extension of yeast ribosomal protein S14 is necessary for maturation of 43S preribosomes. Mol. Cell 14: 331-342. http://dx.doi.org/10.1016/S1097-2765(04)00215-1   Larkin JC, Thompson JR and Woolford JL Jr (1987). Structure and expression of the Saccharomyces cerevisiae CRY1 gene: a highly conserved ribosomal protein gene. Mol. Cell Biol. 7: 1764-1775. PMid:3037334 PMCid:365278   Li R, Fan W, Tian G, Zhu H, et al. (2010). The sequence and de novo assembly of the giant panda genome. Nature 463: 311-317. http://dx.doi.org/10.1038/nature08696 PMid:20010809   Li Z, Paulovich AG and Woolford JL Jr (1995). Feedback inhibition of the yeast ribosomal protein gene CRY2 is mediated by the nucleotide sequence and secondary structure of CRY2 pre-mRNA. Mol. Cell Biol. 15: 6454-6464. PMid:7565797 PMCid:230896   Liao MJ, Zhu MY, Zheng X, Zhang ZH, et al. (2003). cDNA cloning of growth hormone from giant panda (Ailuropoda melanoleuca) and its expression in Escherichia coli. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 135: 109-116. PMid:12781978   Martin NJ and Roufa DJ (1997). Functional analysis of human RPS14 null alleles. J. Cell Sci. 110: 955-963.   Mayolo PA and Woolford JL Jr (2003). Interactions of yeast ribosomal protein rpS14 with RNA. J. Mol. Biol. 333: 697- 709. http://dx.doi.org/10.1016/j.jmb.2003.09.006   Moritz M, Paulovich AG, Tsay YF and Woolford JL Jr (1990). Depletion of yeast ribosomal proteins L16 or rp59 disrupts ribosome assembly. J. Cell Biol. 111: 2261-2274. http://dx.doi.org/10.1083/jcb.111.6.2261 PMid:2277060   Paulovich AG, Thompson JR, Larkin JC, Li Z, et al. (1993). Molecular genetics of cryptopleurine resistance in Saccharomyces cerevisiae: expression of a ribosomal protein gene family. Genetics 135: 719-730. PMid:8293976 PMCid:1205715   Ramakrishnan V and Moore PB (2001). Atomic structures at last: the ribosome in 2000. Curr. Opin. Struct. Biol. 11: 144-154. http://dx.doi.org/10.1016/S0959-440X(00)00184-6   Rogers JH (1990). The role of introns in evolution. FEBS Lett. 268: 339-343. http://dx.doi.org/10.1016/0014-5793(90)81282-S   Roy SW, Fedorov A and Gilbert W (2003). Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. Proc. Natl. Acad. Sci. U. S. A. 100: 7158-7162. http://dx.doi.org/10.1073/pnas.1232297100 PMid:12777620 PMCid:165846   Wool IG (1979). The structure and function of eukaryotic ribosomes. Annu. Rev. Biochem. 48: 719-754. http://dx.doi.org/10.1146/annurev.bi.48.070179.003443 PMid:382996   Wool IG, Chan YL and Gluck A (1995). Structure and evolution of mammalian ribosomal proteins. Biochem. Cell Biol. 73: 933-947. http://dx.doi.org/10.1139/o95-101 PMid:8722009   Yoshihama M, Uechi T, Asakawa S, Kawasaki K, et al. (2002). The human ribosomal protein genes: sequencing and comparative analysis of 73 genes. Genome Res. 12: 379-390. http://dx.doi.org/10.1101/gr.214202 PMid:11875025 PMCid:155282   Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, et al. (2001). Crystal structure of the ribosome at 5.5 A resolution. Science 292: 883-896. http://dx.doi.org/10.1126/science.1060089 PMid:11283358   Zhang T, Hou WR, Hou YL, Hao YZ, et al. (2009). cDNA, genomic sequence cloning and overexpression of ribosomal protein s20 gene (RPS20) from the giant panda (Ailuropoda melanoleuca). African J. Biotech. 8: 5627-5632