Publications
Found 1 results
Filters: Author is J.M. Zhou [Clear All Filters]
“Association of TIRAP (MAL) gene polymorhisms with susceptibility to tuberculosis in a Chinese population”, vol. 10, pp. 7-15, 2011.
,
Akira S and Takeda K (2004). Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499-511.
http://dx.doi.org/10.1038/nri1391
PMid:15229469
Austin CM, Ma X and Graviss EA (2008). Common nonsynonymous polymorphisms in the NOD2 gene are associated with resistance or susceptibility to tuberculosis disease in African Americans. J. Infect. Dis. 197: 1713-1716.
http://dx.doi.org/10.1086/588384
PMid:18419343
Bafica A, Scanga CA, Feng CG, Leifer C, et al. (2005). TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 202: 1715-1724.
http://dx.doi.org/10.1084/jem.20051782
PMid:16365150 PMCid:2212963
Barreiro LB, Neyrolles O, Babb CL, Tailleux L, et al. (2006). Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med. 3: e20.
http://dx.doi.org/10.1371/journal.pmed.0030020
PMid:16379498 PMCid:1324949
Barrett JC, Fry B, Maller J and Daly MJ (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263-265.
http://dx.doi.org/10.1093/bioinformatics/bth457
PMid:15297300
Bellamy R, Fry B, Maller J and Daly MJ (2003). Susceptibility to mycobacterial infections: the importance of host genetics. Genes Immun. 4: 4-11.
http://dx.doi.org/10.1017/CBO9780511546235
Branger J, Leemans JC, Florquin S, Weijer S, et al. (2004). Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int. Immunol. 16: 509-516.
http://dx.doi.org/10.1093/intimm/dxh052
PMid:14978024
Castiblanco J, Varela DC, Castano-Rodriguez N, Rojas-Villarraga A, et al. (2008). TIRAP (MAL) S180L polymorphism is a common protective factor against developing tuberculosis and systemic lupus erythematosus. Infect. Genet. Evol. 8: 541-544.
http://dx.doi.org/10.1016/j.meegid.2008.03.001
PMid:18417424
Delgado JC, Baena A, Thim S and Goldfeld AE (2002). Ethnic-specific genetic associations with pulmonary tuberculosis. J. Infect. Dis. 186: 1463-1468.
http://dx.doi.org/10.1086/344891
PMid:12404162
Drage MG, Pecora ND, Hise AG, Febbraio M, et al. (2009). TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 258: 29-37.
http://dx.doi.org/10.1016/j.cellimm.2009.03.008
PMid:19362712 PMCid:2730726
Dye C (2006). Global epidemiology of tuberculosis. Lancet 367: 938-940.
http://dx.doi.org/10.1016/S0140-6736(06)68384-0
George J, Kubarenko AV, Rautanen A, Mills TC, et al. (2010). MyD88 adaptor-like D96N is a naturally occurring loss-of-function variant of TIRAP. J. Immunol. 184: 3025-3032.
http://dx.doi.org/10.4049/jimmunol.0901156
PMid:20164415
Harding CV and Boom WH (2010). Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat. Rev. Microbiol. 8: 296-307.
http://dx.doi.org/10.1038/nrmicro2321
PMid:20234378 PMCid:3037727
Hawn TR, Dunstan SJ, Thwaites GE, Simmons CP, et al. (2006). A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J. Infect. Dis. 194: 1127-1134.
http://dx.doi.org/10.1086/507907
PMid:16991088
Jo EK (2008). Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. Curr. Opin. Infect. Dis. 21: 279-286.
http://dx.doi.org/10.1097/QCO.0b013e3282f88b5d
PMid:18448973
Jo EK, Yang CS, Choi CH and Harding CV (2007). Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell. Microbiol. 9: 1087-1098.
http://dx.doi.org/10.1111/j.1462-5822.2007.00914.x
PMid:17359235
Khor CC, Chapman SJ, Vannberg FO, Dunne A, et al. (2007). A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat. Genet. 39: 523-528.
http://dx.doi.org/10.1038/ng1976
PMid:17322885 PMCid:2660299
Ma X, Liu Y, Gowen BB, Graviss EA, et al. (2007). Full-exon resequencing reveals Toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One 2: e1318.
http://dx.doi.org/10.1371/journal.pone.0001318
PMid:18091991 PMCid:2117342
Nagpal K, Plantinga TS, Wong J, Monks BG, et al. (2009). A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling. J. Biol. Chem. 284: 25742-25748.
http://dx.doi.org/10.1074/jbc.M109.014886
PMid:19509286 PMCid:2757976
Nejentsev S, Thye T, Szeszko JS, Stevens H, et al. (2008). Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat. Genet. 40: 261-262.
http://dx.doi.org/10.1038/ng0308-261
PMid:18305471
O'Neill LA and Bowie AG (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7: 353-364.
http://dx.doi.org/10.1038/nri2079
PMid:17457343
Ogus AC, Yoldas B, Ozdemir T, Uguz A, et al. (2004). The Arg753GLn polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur. Respir. J. 23: 219-223.
http://dx.doi.org/10.1183/09031936.03.00061703
PMid:14979495
Quesniaux V, Fremond C, Jacobs M, Parida S, et al. (2004). Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect. 6: 946-959.
http://dx.doi.org/10.1016/j.micinf.2004.04.016
PMid:15310472
Rossman M and Oner-Eyuboglu A (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman A, ed.). 3rd edn. McGraww Hill Company, New York, 2483-2501.
Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54.
http://dx.doi.org/10.1002/humu.1380040107
PMid:7951258
Sanchez D, Rojas M, Hernandez I, Radzioch D, et al. (2010). Role of TLR2- and TLR4-mediated signaling in Mycobacterium tuberculosis-induced macrophage death. Cell. Immunol. 260: 128-136.
http://dx.doi.org/10.1016/j.cellimm.2009.10.007
PMid:19919859
Schroder NW and Schumann RR (2005). Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect. Dis. 5: 156-164.
PMid:15766650
Thuong NT, Hawn TR, Thwaites GE, Chau TT, et al. (2007). A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun. 8: 422-428.
http://dx.doi.org/10.1038/sj.gene.6364405
PMid:17554342
Xue Y, Jin L, Li AZ, Wang HJ, et al. (2010a). Microsatellite polymorphisms in intron 2 of the Toll-like receptor 2 gene and their association with susceptibility to pulmonary tuberculosis in Han Chinese. Clin. Chem. Lab. Med. 48: 785-789.
http://dx.doi.org/10.1515/cclm.2010.154
PMid:20298136
Xue Y, Zhao ZQ, Wang HJ, Jin L, et al. (2010b). Toll-like receptors 2 and 4 gene polymorphisms in a southeastern Chinese population with tuberculosis. Int. J. Immunogenet. 37: 135-138.
http://dx.doi.org/10.1111/j.1744-313X.2009.00892.x
PMid:20002809
Yamamoto M, Sato S, Hemmi H, Sanjo H, et al. (2002). Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420: 324-329.
http://dx.doi.org/10.1038/nature01182
PMid:12447441