Publications

Found 4 results
Filters: Author is T. Yakut  [Clear All Filters]
2013
E. Armagan, Almacıoglu, M. L., Yakut, T., Köse, A., Karkucak, M., Köksal, O., and Gorukmez, O., Cathecol-O-methyl transferase Val158Met genotype is not a risk factor for conversion disorder, vol. 12, pp. 852-858, 2013.
Albaugh MD, Harder VS, Althoff RR, Rettew DC, et al. (2010). COMT Val158Met genotype as a risk factor for problem behaviors in youth. J. Am. Acad. Child Adolesc. Psychiatry 49: 841-849. http://dx.doi.org/10.1016/j.jaac.2010.05.015 PMid:20643317 PMCid:3141335   American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders, DSM-IV-TP. 4th edn. Text Revision. American Psychiatric Association, Washington.   Binzer M, Andersen PM and Kullgren G (1997). Clinical characteristics of patients with motor disability due to conversion disorder: a prospective control group study. J. Neurol. Neurosurg. Psychiatry 63: 83-88. http://dx.doi.org/10.1136/jnnp.63.1.83 PMid:9221972 PMCid:2169635   Caspi A, Langley K, Milne B, Moffitt TE, et al. (2008). A replicated molecular genetic basis for subtyping antisocial behavior in children with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 65: 203-210. http://dx.doi.org/10.1001/archgenpsychiatry.2007.24 PMid:18250258   Chen J, Lipska BK, Halim N, Ma QD, et al. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am. J. Hum. Genet. 75: 807- 821. http://dx.doi.org/10.1086/425589 PMid:15457404 PMCid:1182110   Craddock N, Owen MJ and O'Donovan MC (2006). The catechol-O-methyl transferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons. Mol. Psychiatry 11: 446-458. http://dx.doi.org/10.1038/sj.mp.4001808 PMid:16505837   DeYoung CG, Getchell M, Koposov RA, Yrigollen CM, et al. (2010). Variation in the catechol-O-methyltransferase Val 158 Met polymorphism associated with conduct disorder and ADHD symptoms, among adolescent male delinquents. Psychiatr. Genet. 20: 20-24. http://dx.doi.org/10.1097/YPG.0b013e32833511e4 PMid:19997043 PMCid:2895253   Dula DJ and DeNaples L (1995). Emergency department presentation of patients with conversion disorder. Acad. Emerg. Med. 2: 120-123. http://dx.doi.org/10.1111/j.1553-2712.1995.tb03174.x PMid:7621217   Eisenberg J, Mei-Tal G, Steinberg A, Tartakovsky E, et al. (1999). Haplotype relative risk study of catechol-O-methyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD): association of the high-enzyme activity Val allele with ADHD impulsive-hyperactive phenotype. Am. J. Med. Genet. 88: 497-502. http://dx.doi.org/10.1002/(SICI)1096-8628(19991015)88:5<497::AID-AJMG12>3.0.CO;2-F   Glatt SJ, Faraone SV and Tsuang MT (2003). Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case-control and family-based studies. Am. J. Psychiatry 160: 469-476. http://dx.doi.org/10.1176/appi.ajp.160.3.469 PMid:12611827   Gogos JA, Morgan M, Luine V, Santha M, et al. (1998). Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc. Natl. Acad. Sci. U. S. A. 95: 9991-9996. http://dx.doi.org/10.1073/pnas.95.17.9991 PMid:9707588 PMCid:21449   Gutierrez B, Bertranpetit J, Guillamat R, Valles V, et al. (1997). Association analysis of the catechol O-methyltransferase gene and bipolar affective disorder. Am. J. Psychiatry 154: 113-115. PMid:8988970   Holmboe K, Nemoda Z, Fearon RM, Csibra G, et al. (2010). Polymorphisms in dopamine system genes are associated with individual differences in attention in infancy. Dev. Psychol. 46: 404-416. http://dx.doi.org/10.1037/a0018180 PMid:20210499 PMCid:3276838   Kereszturi E, Tarnok Z, Bognar E, Lakatos K, et al. (2008). Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B: 1431-1435. http://dx.doi.org/10.1002/ajmg.b.30704 PMid:18214865   Kunugi H, Vallada HP, Hoda F, Kirov G, et al. (1997). No evidence for an association of affective disorders with high- or low-activity allele of catechol-o-methyltransferase gene. Biol. Psychiatry 42: 282-285. http://dx.doi.org/10.1016/S0006-3223(96)00366-6   Lachman HM, Papolos DF, Saito T, Yu YM, et al. (1996). Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6: 243-250. http://dx.doi.org/10.1097/00008571-199606000-00007 PMid:8807664   Lewis DA, Melchitzky DS, Sesack SR, Whitehead RE, et al. (2001). Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J. Comp. Neurol. 432: 119-136. http://dx.doi.org/10.1002/cne.1092 PMid:11241381   Lotta T, Vidgren J, Tilgmann C, Ulmanen I, et al. (1995). Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 34: 4202-4210. http://dx.doi.org/10.1021/bi00013a008 PMid:7703232   Monuteaux MC, Biederman J, Doyle AE, Mick E, et al. (2009). Genetic risk for conduct disorder symptom subtypes in an ADHD sample: specificity to aggressive symptoms. J. Am. Acad. Child Adolesc. Psychiatry 48: 757-764. http://dx.doi.org/10.1097/CHI.0b013e3181a5661b PMid:19465875   Palmason H, Moser D, Sigmund J, Vogler C, et al. (2010). Attention-deficit/hyperactivity disorder phenotype is influenced by a functional catechol-O-methyltransferase variant. J. Neural Transm. 117: 259-267. http://dx.doi.org/10.1007/s00702-009-0338-2 PMid:19946713   Purcell TB (1991). The somatic patient. Emerg. Med. Clin. North Am. 9: 137-159. PMid:2001663   Sadock BJ and Sadock VA (2000). Kaplan and Sadock's Comprehensive Textbook of Psychiatry. 7th edn. Lippincott Williams & Wilkins, Baltimore.   Sengupta S, Grizenko N, Schmitz N, Schwartz G, et al. (2008). COMT Val108/158Met polymorphism and the modulation of task-oriented behavior in children with ADHD. Neuropsychopharmacology 33: 3069-3077. http://dx.doi.org/10.1038/npp.2008.85 PMid:18580877 PMCid:2885152   Shifman S, Bronstein M, Sternfeld M, Pisante A, et al. (2004). COMT: a common susceptibility gene in bipolar disorder and schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 128B: 61-64. http://dx.doi.org/10.1002/ajmg.b.30032 PMid:15211633   Stonnington CM, Barry JJ and Fisher RS (2006). Conversion disorder. Am. J. Psychiatry 163: 1510-1517. http://dx.doi.org/10.1176/appi.ajp.163.9.1510 PMid:16946174   Tunbridge EM, Bannerman DM, Sharp T and Harrison PJ (2004). Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J. Neurosci. 24: 5331- 5335. http://dx.doi.org/10.1523/JNEUROSCI.1124-04.2004 PMid:15190105   Weinshilboum RM, Otterness DM and Szumlanski CL (1999). Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu. Rev. Pharmacol. Toxicol. 39: 19-52. http://dx.doi.org/10.1146/annurev.pharmtox.39.1.19 PMid:10331075   Wirgenes KV, Djurovic S, Sundet K, Agartz I, et al. (2010). Catechol O-methyltransferase variants and cognitive performance in schizophrenia and bipolar disorder versus controls. Schizophr. Res. 122: 31-37. http://dx.doi.org/10.1016/j.schres.2010.05.007 PMid:20605701
2011
H. Saricaoglu, Yilmaz, M., Karkucak, M., Ozturk, H. Z. Y., Yakut, T., Gulten, T., Baskan, E. B., Aydogan, K., and Dilek, K., Investigation of ABCB1 gene polymorphism with colchicine response in Behçet’s disease, vol. 10, pp. 1-6, 2011.
Babaoglu MO, Bayar B, Aynacioglu AS, Kerb R, et al. (2005). Association of the ABCB1 3435C>T polymorphism with antiemetic efficacy of 5-hydroxytryptamine type 3 antagonists. Clin. Pharmacol. Ther. 78: 619-626. http://dx.doi.org/10.1016/j.clpt.2005.08.015 PMid:16338277   Behçet H (1937). Uber rezidivierende aphthöse, durch ein Virus verursachte Geschwure, am Mund, am Auge, und an den Genitalien. Dermatol. Wschr. 105: 1152-1157.   Ben-Chetrit E and Levy M (1998). Does the lack of the P-glycoprotein efflux pump in neutrophils explain the efficacy of colchicine in familial Mediterranean fever and other inflammatory diseases? Med. Hypotheses 51: 377-380. http://dx.doi.org/10.1016/S0306-9877(98)90031-7   Ehrenfeld M, Levy M, Bar EM, Gallily R, et al. (1980). Effect of colchicine on polymorphonuclear leucocyte chemotaxis in human volunteers. Br. J. Clin. Pharmacol. 10: 297-300. http://dx.doi.org/10.1111/j.1365-2125.1980.tb01759.x PMid:7437248 PMCid:1430072   Ertel NH and Wallace SL (1971). Measurement of colchicine in urine and peripheral leucocytes. Clin. Res. 19: 348.   Gershoni-Baruch R, Peretz Y, Merav L, Dagan E, et al. (2005). The Influence of Polymorphisms in MDR1 on Colchicine Unresponsiveness in Familial Mediterranean Fever. In: The Fourth International Congress on Systemic Autoinflammatory Diseases, November 6-10, Bethesda, 25.   Hoffmeyer S, Burk O, von Richter O, Arnold HP, et al. (2000). Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. U. S. A. 97: 3473-3478. http://dx.doi.org/10.1073/pnas.97.7.3473 PMid:10716719 PMCid:16264   Illmer T, Schuler US, Thiede C, Schwarz UI, et al. (2002). MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients. Cancer Res. 62: 4955-4962. PMid:12208746   International Study Group for Behçet's Disease Contributors (1991). Evaluation of Diagnostic ("Classification") Criteria in Behçet's Disease: Toward Internationally Agreed Criteria. In: Behçet's Disease: Basic and Clinical Aspects (O' Duffy and Kökmen B, eds.). Marcel Dekker, New York, 11-39.   Kim RB (2002). Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab. Rev. 34: 47-54. http://dx.doi.org/10.1081/DMR-120001389 PMid:11996011   Marzolini C, Paus E, Buclin T and Kim RB (2004). Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin. Pharmacol. Ther. 75: 13-33. http://dx.doi.org/10.1016/j.clpt.2003.09.012 PMid:14749689   Miao LY, Huang CR, Hou JQ and Qian MY (2008). Association study of ABCB1 and CYP3A5 gene polymorphisms with sirolimus trough concentration and dose requirements in Chinese renal transplant recipients. Biopharm. Drug Dispos. 29: 1-5. http://dx.doi.org/10.1002/bdd.577 PMid:17941052   Rund D, Azar I and Shperling O (1999). A mutation in the promoter of the multidrug resistance gene (MDR1) in human hematological malignancies may contribute to the pathogenesis of resistant disease. Adv. Exp. Med. Biol. 457: 71-75. http://dx.doi.org/10.1007/978-1-4615-4811-9_9 PMid:10500782   Tufan A, Babaoglu MO, Akdogan A, Yasar U, et al. (2007). Association of drug transporter gene ABCB1 (MDR1) 3435C to T polymorphism with colchicine response in familial Mediterranean fever. J. Rheumatol. 34: 1540-1544. PMid:17610314   Yurdakul S, Mat C, Tuzun Y, Ozyazgan Y, et al. (2001). A double-blind trial of colchicine in Behcet's syndrome. Arthritis Rheum. 44: 2686-2692. http://dx.doi.org/10.1002/1529-0131(200111)44:11<2686::AID-ART448>3.0.CO;2-H   Zhou SF (2008). Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38: 802-832. http://dx.doi.org/10.1080/00498250701867889 PMid:18668431
2010
T. Yakut, Karkucak, M., Ursavas, A., Gulten, T., Burgazlioglu, B., Gorukmez, O., and Karadag, M., Lack of association of ACE gene I/D polymorphism with obstructive sleep apnea syndrome in Turkish patients, vol. 9, pp. 734-738, 2010.
Agerholm-Larsen B, Nordestgaard BG and Tybjaerg-Hansen A (2000). ACE gene polymorphism in cardiovascular disease: meta-analyses of small and large studies in whites. Arterioscler. Thromb. Vasc. Biol. 20: 484-492. http://dx.doi.org/10.1161/01.ATV.20.2.484 PMid:10669647   Ahmadi N, Shapiro GK, Chung SA and Shapiro CM (2009). Clinical diagnosis of sleep apnea based on single night of polysomnography vs. two nights of polysomnography. Sleep Breath. 13: 221-226. http://dx.doi.org/10.1007/s11325-008-0234-2 PMid:19067010   Barceló A, Elorza MA, Barbé F, Santos C, et al. (2001). Angiotensin converting enzyme in patients with sleep apnoea syndrome: plasma activity and gene polymorphisms. Eur. Respir. J. 17: 728-732. http://dx.doi.org/10.1183/09031936.01.17407280 PMid:11401071   Bengtsson K, Orho-Melander M, Lindblad U, Melander O, et al. (1999). Polymorphism in the angiotensin converting enzyme but not in the angiotensinogen gene is associated with hypertension and type 2 diabetes: the Skaraborg Hypertension and Diabetes Project. J. Hypertens. 17: 1569-1575. http://dx.doi.org/10.1097/00004872-199917110-00010 PMid:10608470   Butler R, Morris AD and Struthers AD (1997). Angiotensin-converting enzyme gene polymorphism and cardiovascular disease. Clin. Sci. 93: 391-400. PMid:9486084   Candy GP, Skudicky D, Mueller UK, Woodiwiss AJ, et al. (1999). Association of left ventricular systolic performance and cavity size with angiotensin-converting enzyme genotype in idiopathic dilated cardiomyopathy. Am. J. Cardiol. 83: 740-744. http://dx.doi.org/10.1016/S0002-9149(98)00981-3   Lee YJ and Tsai JC (2002). ACE gene insertion/deletion polymorphism associated with 1998 World Health Organization definition of metabolic syndrome in Chinese type 2 diabetic patients. Diabetes Care 25: 1002-1008. http://dx.doi.org/10.2337/diacare.25.6.1002 PMid:12032106   Nakai K, Itoh C, Miura Y, Musya T, et al. (1994). Deletion polymorphism of the angiotensin I-converting enzyme gene associates with increased risk for ischemic heart diseases in the Japanese. Rinsho Byori 42: 689-694. PMid:8065033   O'Donnell CJ, Lindpaintner K, Larson MG, Rao VS, et al. (1998). Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation 97: 1766-1772. http://dx.doi.org/10.1161/01.CIR.97.18.1766 PMid:9603529   Patel SR, Larkin EK, Mignot E, Lin L, et al. (2007). The association of angiotensin converting enzyme (ACE) polymorphisms with sleep apnea and hypertension. Sleep 30: 531-533. PMid:17520798   Piérola J, Barceló A, de la Pe-a M, Barbé F, et al. (2007). Beta3-adrenergic receptor Trp64Arg polymorphism and increased body mass index in sleep apnoea. Eur. Respir. J. 30: 743-747. http://dx.doi.org/10.1183/09031936.00152006 PMid:17626108   Raynolds MV, Bristow MR, Bush EW, Abraham WT, et al. (1993). Angiotensin-converting enzyme DD genotype in patients with ischaemic or idiopathic dilated cardiomyopathy. Lancet 342: 1073-1075. http://dx.doi.org/10.1016/0140-6736(93)92061-W   Rubinsztajn R, Kumor M, Byskiniewicz K and Chazan R (2004). Angiotensin-converting enzyme gene polymorphism in patients with obstructive sleep apnea. Pol. Arch. Med. Wewn. 112: 817-822. PMid:15526842   Sakai K, Takada T, Nakayama H, Kubota Y, et al. (2005). Serotonin-2A and 2C receptor gene polymorphisms in Japanese patients with obstructive sleep apnea. Intern. Med. 44: 928-933. http://dx.doi.org/10.2169/internalmedicine.44.928 PMid:16258205   Schunkert H, Hense HW, Holmer SR, Stender M, et al. (1994). Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N. Engl. J. Med. 330: 1634-1638. http://dx.doi.org/10.1056/NEJM199406093302302 PMid:8177269   Seckin D, Ilhan N, Ilhan N and Ozbay Y (2006). The relationship between ACE insertion/deletion polymorphism and coronary artery disease with or without myocardial infarction. Clin. Biochem. 39: 50-54. http://dx.doi.org/10.1016/j.clinbiochem.2005.10.003 PMid:16303122   Ursavaş A and Ege E (2003). Obstructive sleep apnea and cardiovascular diseases. Anadolu. Kardiyol. Derg. 3: 150-155. PMid:12826511   Xiao Y, Huang X, Qiu C, Zhu X, et al. (1999). Angiotensin I-converting enzyme gene polymorphism in Chinese patients with obstructive sleep apnea syndrome. Chin. Med. J. 112: 701-704.   Yaggi HK, Concato J, Kernan WN, Lichtman JH, et al. (2005). Obstructive sleep apnea as a risk factor for stroke and death. N. Engl. J. Med. 353: 2034-2041. http://dx.doi.org/10.1056/NEJMoa043104 PMid:16282178   Yavuz Z, Ursavas A, Ege E, Ozarda IY, et al. (2008). Homocysteine levels in patients with obstructive sleep apnea syndrome. Tuberk. Toraks 56: 37-42. PMid:18330753
M. Yildiz, Karkucak, M., Yakut, T., Gorukmez, O., and Ozmen, A., Lack of association of genetic polymorphisms of angiotensin-converting enzyme gene I/D and glutathione-S-transferase enzyme T1 and M1 with retinopathy of prematures, vol. 9, pp. 2131-2139, 2010.
Abbas A, Delvinquiere K, Lechevrel M, Lebailly P, et al. (2004). GSTM1, GSTT1, GSTP1 and CYP1A1 genetic polymorphisms and susceptibility to esophageal cancer in a French population: different pattern of squamous cell carcinoma and adenocarcinoma. World J. Gastroenterol. 10: 3389-3393. PMid:15526353   Balogh A, Derzbach L, Vannay A and Vásárhelyi B (2006). Lack of association between insulin-like growth factor I receptor G (+3174)A polymorphism and retinopathy of prematurity. Graefes Arch. Clin. Exp. Ophthalmol. 244: 1035-1038. http://dx.doi.org/10.1007/s00417-005-0203-4 PMid:16362313   Bányász I, Bokodi G, Vannay A, Szebeni B, et al. (2006). Genetic polymorphisms of vascular endothelial growth factor and angiopoietin 2 in retinopathy of prematurity. Curr. Eye Res. 31: 685-690. http://dx.doi.org/10.1080/02713680600801123 PMid:16877277   Barceló A, Elorza MA, Barbé F, Santos C, et al. (2001). Angiotensin converting enzyme in patients with sleep apnoea syndrome: plasma activity and gene polymorphisms. Eur. Respir. J. 17: 728-732. http://dx.doi.org/10.1183/09031936.01.17407280 PMid:11401071   Beneteau-Burnat B and Baudin B (1991). Angiotensin-converting enzyme: clinical applications and laboratory investigations on serum and other biological fluids. Crit. Rev. Clin. Lab. Sci. 28: 337-356. http://dx.doi.org/10.3109/10408369109106868 PMid:1663362   Bossi E and Koerner F (1995). Retinopathy of prematurity. Intensive Care Med. 21: 241-246. http://dx.doi.org/10.1007/BF01701481 PMid:7790613   Habdous M, Siest G, Herbeth B, Vincent-Viry M, et al. (2004). Glutathione S-transferases genetic polymorphisms and human diseases: overview of epidemiological studies. Ann. Biol. Clin. 62: 15-24.   Haider MZ, Devarajan LV, Al-Essa M, Srivastva BS, et al. (2000). Missense mutations in norrie disease gene are not associated with advanced stages of retinopathy of prematurity in Kuwaiti arabs. Biol. Neonate 77: 88-91. http://dx.doi.org/10.1159/000014199 PMid:10657684   Haider MZ, Devarajan LV, Al-Essa M, Srivastva BS, et al. (2001). Retinopathy of prematurity: mutations in the Norrie disease gene and the risk of progression to advanced stages. Pediatr. Int. 43: 120-123. http://dx.doi.org/10.1046/j.1442-200x.2001.01361.x PMid:11285060   Haider MZ, Devarajan LV, Al-Essa M and Kumar H (2002). Angiotensin-converting enzyme gene insertion/deletion polymorphism in Kuwaiti children with retinopathy of prematurity. Biol. Neonate 82: 84-88. http://dx.doi.org/10.1159/000063092 PMid:12169829   Hayes JD, Flanagan JU and Jowsey IR (2005). Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 45: 51-88. http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095857 PMid:15822171   Hayes LW, Goguen CA, Ching SF and Slakey LL (1978). Angiotensin-converting enzyme: accumulation in medium from cultured endothelial cells. Biochem. Biophys. Res. Commun. 82: 1147-1153. http://dx.doi.org/10.1016/0006-291X(78)90306-6   Hutcheson KA, Paluru PC, Bernstein SL, Koh J, et al. (2005). Norrie disease gene sequence variants in an ethnically diverse population with retinopathy of prematurity. Mol. Vis. 11: 501-508. PMid:16052165   Karna P, Muttineni J, Angell L and Karmaus W (2005). Retinopathy of prematurity and risk factors: a prospective cohort study. BMC Pediatr. 5: 18. http://dx.doi.org/10.1186/1471-2431-5-18 PMid:15985170 PMCid:1175091   Kwinta P, Bik-Multanowski M, Mitkowska Z, Tomasik T, et al. (2008). The clinical role of vascular endothelial growth factor (VEGF) system in the pathogenesis of retinopathy of prematurity. Graefes Arch. Clin. Exp. Ophthalmol. 246: 1467-1475. http://dx.doi.org/10.1007/s00417-008-0865-9 PMid:18546007   Lee YJ and Tsai JC (2002). ACE gene insertion/deletion polymorphism associated with 1998 World Health Organization definition of metabolic syndrome in Chinese type 2 diabetic patients. Diabetes Care 25: 1002-1008. http://dx.doi.org/10.2337/diacare.25.6.1002 PMid:12032106   Ng YK, Fielder AR, Shaw DE and Levene MI (1988). Epidemiology of retinopathy of prematurity. Lancet 2: 1235-1238. http://dx.doi.org/10.1016/S0140-6736(88)90820-3   Nishimura H, Tsuji H, Masuda H, Kasahara T, et al. (1999). The effects of angiotensin metabolites on the regulation of coagulation and fibrinolysis in cultured rat aortic endothelial cells. Thromb. Haemost. 82: 1516-1521. PMid:10595647   Onaran I, Ozaydin A, Ozdas SB and Ulutin T (2000a). Inhibition of platelet function by GSTM1-null human peripheral lymphocytes exposed to benzo(a)pyrene-induced challenge. Cell Biol. Toxicol. 16: 313-323. http://dx.doi.org/10.1023/A:1026750431055 PMid:11201055   Onaran I, Ozaydin A, Akbas F, Gultepe M, et al. (2000b). Are individuals with glutathione S-transferase GSTT1 null genotype more susceptible to in vitro oxidative damage? J. Toxicol. Environ. Health A 59: 15-26. http://dx.doi.org/10.1080/009841000157041 PMid:10681096   Rusai K, Vannay A, Szebeni B, Borgulya G, et al. (2008). Endothelial nitric oxide synthase gene T-786C and 27-bp repeat gene polymorphisms in retinopathy of prematurity. Mol. Vis. 14: 286-290. PMid:18334945 PMCid:2263012   Shah VA, Yeo CL, Ling YL and Ho LY (2005). Incidence, risk factors of retinopathy of prematurity among very low birth weight infants in Singapore. Ann. Acad. Med. Singapore 34: 169-178. PMid:15827664   Shastry BS (2007). Assessment of the contribution of insulin-like growth factor I receptor 3174 G→A polymorphism to the progression of advanced retinopathy of prematurity. Eur. J. Ophthalmol. 17: 950-953. PMid:18050122   Shastry BS (2009). Lack of association of VEGF (-2578 C→A) and ANG 2 (-35 G→C) gene polymorphisms with the progression of retinopathy of prematurity. Graefes Arch. Clin. Exp. Ophthalmol. 247: 859-860. http://dx.doi.org/10.1007/s00417-008-0988-z PMid:19018553   Shastry BS and Qu X (2007). Lack of association of the VEGF gene promoter (-634 G→C and -460 C→T) polymorphism and the risk of advanced retinopathy of prematurity. Graefes Arch. Clin. Exp. Ophthalmol. 245: 741-743. http://dx.doi.org/10.1007/s00417-006-0480-6 PMid:17119993   Shastry BS, Pendergast SD, Hartzer MK, Liu X, et al. (1997). Identification of missense mutations in the Norrie disease gene associated with advanced retinopathy of prematurity. Arch. Ophthalmol. 115: 651-655. http://dx.doi.org/10.1001/archopht.1997.01100150653015 PMid:9152134   Smith LE (2002). Pathogenesis of retinopathy of prematurity. Acta Paediatr. 91: 26-28. http://dx.doi.org/10.1111/j.1651-2227.2002.tb00157.x   Strange RC, Spiteri MA, Ramachandran S and Fryer AA (2001). Glutathione-S-transferase family of enzymes. Mutat. Res. 482: 21-26. http://dx.doi.org/10.1016/S0027-5107(01)00206-8   Subhani M, Combs A, Weber P, Gerontis C, et al. (2001). Screening guidelines for retinopathy of prematurity: the need for revision in extremely low birth weight infants. Pediatrics 107: 656-659. http://dx.doi.org/10.1542/peds.107.4.656 PMid:11335739   Uzunoğlu S, Acar H, Okudan N, Gökbel H, et al. (2006). Evaluation of the association between null genotypes of glutathione-S-transferases and Behcet's disease. Arch. Dermatol. Res. 297: 289-293. http://dx.doi.org/10.1007/s00403-005-0617-1 PMid:16283344   Van der Hel OL, Peeters PH, Hein DW, Doll MA, et al. (2003). NAT2 slow acetylation and GSTM1 null genotypes may increase postmenopausal breast cancer risk in long-term smoking women. Pharmacogenetics 13: 399-407. http://dx.doi.org/10.1097/00008571-200307000-00005 PMid:12835615   Vaughan DE (1997). The renin-angiotensin system and fibrinolysis. Am. J. Cardiol. 79: 12-16. http://dx.doi.org/10.1016/S0002-9149(97)00124-0   Yaggi HK, Concato J, Kernan WN, Lichtman JH, et al. (2005). Obstructive sleep apnea as a risk factor for stroke and death. N. Engl. J. Med. 353: 2034-2041. http://dx.doi.org/10.1056/NEJMoa043104 PMid:16282178   Zhong SL, Zhou SF, Chen X, Chan SY, et al. (2006). Relationship between genotype and enzyme activity of glutathione S-transferases M1 and P1 in Chinese. Eur. J. Pharm. Sci. 28: 77-85. http://dx.doi.org/10.1016/j.ejps.2006.01.002 PMid:16488119