Publications

Found 1 results
Filters: Author is B.P. Matta  [Clear All Filters]
2010
B. P. Matta and Bitner-Mathé, B. C., An interspecific QTL study of Drosophila wing size and shape variation to investigate the genetic basis of morphological differences, vol. 9, pp. 2032-2049, 2010.
Ashburner M, Golic KG and Hawley RS (2005). Drosophila: a Laboratory Handbook. 2nd edn. Cold Spring Harbor Laboratory Press, New York.   Atkinson D and Sibly RM (1997). Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol. 12: 235-239. http://dx.doi.org/10.1016/S0169-5347(97)01058-6   Bitner-Mathé BC and Klaczko LB (1999a). Size and shape heritability in natural populations of Drosophila mediopunctata: temporal and microgeographical variation. Genetica 105: 35-42. http://dx.doi.org/10.1023/A:1003591726851 PMid:10483092   Bitner-Mathé BC and Klaczko LB (1999b). Plasticity of Drosophila melanogaster wing morphology: effects of sex, temperature and density. Genetica 105: 203-210. http://dx.doi.org/10.1023/A:1003765106652 PMid:10568261   Bitner-Mathé BC and Klaczko LB (1999c). Heritability, phenotypic and genetic correlations of size and shape of Drosophila mediopunctata wings. Heredity 83: 688-696. http://dx.doi.org/10.1046/j.1365-2540.1999.00606.x PMid:10651913   Bochdanovits Z and De Jong G (2003). Experimental evolution in Drosophila melanogaster: interaction of temperature and food quality selection regimes. Evolution 57: 1829-1836. PMid:14503624   Calboli FC, Kennington WJ and Partridge L (2003). QTL mapping reveals a striking coincidence in the positions of genomic regions associated with adaptive variation in body size in parallel clines of Drosophila melanogaster on different continents. Evolution 57: 2653-2658. PMid:14686541   Carreira VP, Mensch J and Fanara JJ (2009). Body size in Drosophila: genetic architecture, allometries and sexual dimorphism. Heredity 102: 246-256. http://dx.doi.org/10.1038/hdy.2008.117 PMid:19018274   Civetta A and Singh RS (1998). Sex and speciation: genetic architecture and evolutionary potential of sexual versus nonsexual traits in the sibling species of the Drosophila melanogaster complex. Evolution 52: 1080-1092. http://dx.doi.org/10.2307/2411238   Civetta A and Cantor EJ (2003). The genetics of mating recognition between Drosophila simulans and D. sechellia. Genet. Res. 82: 117-126. http://dx.doi.org/10.1017/S0016672303006360 PMid:14768896   Civetta A, Waldrip-Dail HM and Clark AG (2002). An introgression approach to mapping differences in mating success and sperm competitive ability in Drosophila simulans and D. sechellia. Genet. Res. 79: 65-74. http://dx.doi.org/10.1017/S0016672301005419 PMid:11974604   Civetta A, Montooth KL and Mendelson M (2005). Quantitative trait loci and interaction effects responsible for variation in female postmating mortality in Drosophila simulans and D. sechellia introgression lines. Heredity 94: 94-100. http://dx.doi.org/10.1038/sj.hdy.6800570 PMid:15354189   Dermitzakis ET, Masly JP, Waldrip HM and Clark AG (2000). Non-Mendelian segregation of sex chromosomes in heterospecific Drosophila males. Genetics 154: 687-694. PMid:10655222 PMCid:1460945   Dworkin I and Gibson G (2006). Epidermal growth factor receptor and transforming growth factor-beta signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics 173: 1417-1431. http://dx.doi.org/10.1534/genetics.105.053868 PMid:16648592 PMCid:1526698   Falconer DS and Mackay TFC (1996). Introduction to Quantitative Genetics. 4th edn. Addison Wesley Longman (Pearson Education), Essex.   Gilchrist AS and Partridge L (2001). The contrasting genetic architecture of wing size and shape in Drosophila melanogaster. Heredity 86: 144-152. http://dx.doi.org/10.1046/j.1365-2540.2001.00779.x PMid:11380659   Gilchrist GW and Huey RB (2004). Plastic and genetic variation in wing loading as a function of temperature within and among parallel clines in Drosophila subobscura. Integr. Comp. Biol. 44: 461-470. http://dx.doi.org/10.1093/icb/44.6.461 PMid:21676732   Gilchrist AS, Azevedo RB, Partridge L and O'Higgins P (2000). Adaptation and constraint in the evolution of Drosophila melanogaster wing shape. Evol. Dev. 2: 114-124. http://dx.doi.org/10.1046/j.1525-142x.2000.00041.x PMid:11258389   Hey J and Kliman RM (1993). Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol. Biol. Evol. 10: 804-822. PMid:8355601   Huey RB, Gilchrist GW, Carlson ML, Berrigan D, et al. (2000). Rapid evolution of a geographic cline in size in an introduced fly. Science 287: 308-309. http://dx.doi.org/10.1126/science.287.5451.308 PMid:10634786   Inaki M, Kojima T, Ueda R and Saigo K (2002). Requirements of high levels of Hedgehog signaling activity for medial-region cell fate determination in Drosophila legs: identification of pxb, a putative Hedgehog signaling attenuator gene repressed along the anterior-posterior compartment boundary. Mech. Dev. 116: 3-18. http://dx.doi.org/10.1016/S0925-4773(02)00119-3   Jiang C and Zeng ZB (1995). Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140: 1111- 1127. PMid:7672582 PMCid:1206666   Jones CD (2005). The genetics of adaptation in Drosophila sechellia. Genetica 123: 137-145. http://dx.doi.org/10.1007/s10709-004-2728-6 PMid:15881686   Klaczko LB and Bitner-Mathé BC (1990). On the edge of a wing. Nature 346: 321. http://dx.doi.org/10.1038/346321a0   Kramer JM, Davidge JT, Lockyer JM and Staveley BE (2003). Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC Dev. Biol. 3: 5. http://dx.doi.org/10.1186/1471-213X-3-5 PMid:12844367 PMCid:183841   Lecuit T and Le Goff L (2007). Orchestrating size and shape during morphogenesis. Nature 450: 189-192. http://dx.doi.org/10.1038/nature06304 PMid:17994084   Louis J and David JR (1986). Ecological specialization in the Drosophila melanogaster species subgroup: a case study of D. sechellia. Acta Oecol. 7: 215-229.   MacDonald SJ (2002). Wing shape in the Drosophila simulans species complex. Drosophila Inf. Serv. 85: 31-34.   Mackay TF, Stone EA and Ayroles JF (2009). The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10: 565-577. http://dx.doi.org/10.1038/nrg2612 PMid:19584810   Mantel N (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220. PMid:6018555   Matta BP and Bitner-Mathé BC (2004). Genetic architecture of wing morphology in Drosophila simulans and an analysis of temperature effects on genetic parameter estimates. Heredity 93: 330-341. http://dx.doi.org/10.1038/sj.hdy.6800508 PMid:15305171   Ranz JM, Maurin D, Chan YS, von Grotthuss M, et al. (2007). Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biol. 5: e152. http://dx.doi.org/10.1371/journal.pbio.0050152 PMid:17550304 PMCid:1885836   Rieseberg LH, Widmer A, Arntz AM and Burke JM (2003). The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358: 1141-1147. http://dx.doi.org/10.1098/rstb.2003.1283 PMid:12831480 PMCid:1693210   Rohlf JF (1992). NTSYS-pc Numerical Taxonomy and Multivariate Analysis System. Version 1.70. Applied Biostatistics Inc., New York. PMid:1569698   Wang S, Basten CJ and Zeng ZB (2007). Windows QTL Cartographer. Version 2.5. Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh.   Weber KE, Johnson N, Champlin D and Patty A (2005). Many P-element insertions affect wing shape in Drosophila melanogaster. Genetics 169: 1461-1475. http://dx.doi.org/10.1534/genetics.104.027748 PMid:15545659 PMCid:1449561   Yedvobnick B, Kumar A, Chaudhury P, Opraseuth J, et al. (2004). Differential effects of Drosophila mastermind on asymmetric cell fate specification and neuroblast formation. Genetics 166: 1281-1289. http://dx.doi.org/10.1534/genetics.166.3.1281 PMid:15082547 PMCid:1470772   Zeng ZB (1993). Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Natl. Acad. Sci U. S. A. 90: 10972-10976. http://dx.doi.org/10.1073/pnas.90.23.10972 PMid:8248199 PMCid:47903   Zeng ZB (1994). Precision mapping of quantitative trait loci. Genetics 136: 1457-1468. PMid:8013918 PMCid:1205924   Zimmerman E, Palsson A and Gibson G (2000). Quantitative trait loci affecting components of wing shape in Drosophila melanogaster. Genetics 155: 671-683. PMid:10835390 PMCid:1461095