Publications

Found 2 results
Filters: Author is I. Shahzadi  [Clear All Filters]
2010
M. M. Shah, Hassan, S. W., Maqbool, K., Shahzadi, I., and Pervez, A., Comparisons of DNA marker-based genetic diversity with phenotypic estimates in maize grown in Pakistan, vol. 9, pp. 1936-1945, 2010.
Bligh HFJ, Blackhall NW, Edwards KJ and McClung AM (1999). Using amplified fragment length polymorphisms and simple sequence length polymorphisms to identify cultivars of brown and white milled rice. Crop Sci. 39: 1715-1721. http://dx.doi.org/10.2135/cropsci1999.3961715x   Cox TS, Kiang YT, Gorman MB and Rodgers DM (1985). Relationship between coefficient of parentage and genetic similarity indices in the soybean. Crop Sci. 25: 529-532. http://dx.doi.org/10.2135/cropsci1985.0011183X002500030023x   Franco J, Crossa J, Ribaut JM, Betran J, et al. (2001). A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. Theor. Appl. Genet. 103: 944-952. http://dx.doi.org/10.1007/s001220100641   Ghafoor S, Shah MM, Ahmad H, Swati ZA, et al. (2007). Molecular characterization of Ephedra species found in Pakistan. Genet. Mol. Res. 6: 1123-1130. PMid:18273806   Habib R, Shah MM and Swati ZA (2006). Assessment of Genetic Variability in Synthetic Hexaploid Wheat Conferring Resistance Against Fusarium Head Blight. In: 'Breeding for Success: Diversity in Action. Proceedings of the 13th Australasian Plant Breeding Conference (Mercer CF, ed.). New Zealand Grassland Association, Christchurch, 1228-1237.   Iqbal MJ and Rayburn AL (1994). Stability of RAPD markers for determining cultivar specific DNA profiles in rye (Secale cereale L.). Euphytica 75: 215-220. http://dx.doi.org/10.1007/BF00025606   Iqbal MJ, Aziz N, Saeed NA, Zafar Y, et al. (1997). Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor. Appl. Genet. 94: 139-144. http://dx.doi.org/10.1007/s001220050392 PMid:19352756   Iva B, Snežana MD, Milomir F and Kosana K (2005). Genetic characterization of early maturing maize hybrids (Zea mays L.) obtained by protein and RAPD markers. Genetika 37: 235-243. http://dx.doi.org/10.2298/GENSR0503235B   Jarne P and Lagoda PJL (1996). Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11: 424-429. http://dx.doi.org/10.1016/0169-5347(96)10049-5   Joshi CP and Nguyen HT (1993). Application of the random amplified polymorphic DNA technique for the detection of polymorphism among wild and cultivated tetraploid wheats. Genome 36: 602-609. http://dx.doi.org/10.1139/g93-081 PMid:8349131   Kafkas S, Özgen M, Dogan Y, Özcan B, et al. (2008). Molecular characterization of Mulberry accessions in Turkey by AFLP markers. J. Am. Soc. Hort. Sci. 133: 593-597.   Lübberstedt T, Melchinger AE, Dußle C, Vuylsteke M, et al. (2000). Relationships among early European maize inbreds IV. Genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD, and pedigree data. Crop Sci. 40: 783-791.   McCouch SR, Kochert G, Yu ZH, Wang ZY, et al. (1988). Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76: 815-829. http://dx.doi.org/10.1007/BF00273666   Melchinger AE, Messmer MM, Lee M, Woodman WL, et al. (1991). Diversity and relationships among U.S. maize inbreds revealed by restriction fragment length polymorphisms. Crop Sci. 31: 669-678. http://dx.doi.org/10.2135/cropsci1991.0011183X003100030025x   Mukhtar MS, Rahmanw MU and Zafar Y (2002). Assessment of genetic diversity among wheat (Triticum aestivum L.) cultivars from a range of localities across Pakistan using random amplified polymorphic DNA (RAPD) analysis. Euphytica 128: 417-425. http://dx.doi.org/10.1023/A:1021261811454   Nei M (1972). Genetic distance between populations. Am. Nat. 106: 283-292. http://dx.doi.org/10.1086/282771   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Popi J, Rajnpreht J, Kannenberg LW and Pauls KP (2000). Random amplified polymorphic DNA-based evaluation of diversity in the hierarchical, open-ended population enrichment maize breeding system. Crop Sci. 40: 619-625. http://dx.doi.org/10.2135/cropsci2000.403619x   Shah MM, Gill KS, Baenziger PS, Yen Y, et al. (1999). Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci. 39: 1728-1732. http://dx.doi.org/10.2135/cropsci1999.3961728x   Shah MM, Yen Y, Gill KS and Baenziger PS (2000). Comparisons of RFLP and PCR-based markers to detect polymorphism between wheat cultivars. Euphytica 114: 135-142. http://dx.doi.org/10.1023/A:1003993930447   Shah MM, Hassan SW and Swati ZA (2006). Identifying Genetic Diversity in a Set of Pakistani Maize Germplasm Using RAPD Analyses. In: Proceedings of the 13th Australasian Plant Breeding Conference 'Breeding for Success: Diversity in Action' (Mercer DF, ed.). New Zealand Grassland Association, Christchurch, 1026-1030.   Smith JSC (1984). Genetic variability within U.S. hybrid maize: multivariate analysis of isozyme data. Crop Sci. 24: 1041-1046. http://dx.doi.org/10.2135/cropsci1984.0011183X002400060009x   Stevens R (2008). Prospects for using marker-assisted breeding to improve maize production in Africa. J. Sci. Food Agr. 88: 745-755. http://dx.doi.org/10.1002/jsfa.3154   Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, et al. (1992). Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132: 823-839. PMid:1468633 PMCid:1205218   Troggio M, Malacarne G, Coppola G, Segala C, et al. (2007). A dense single-nucleotide polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring pinot noir bacterial artificial chromosome contigs. Genetics 176: 2637-2650. http://dx.doi.org/10.1534/genetics.106.067462 PMid:17603124 PMCid:1950661   Troyer AF, Openshaw SJ and Knittle KH (1983). Measurement of Genetic Diversity Among Commercial Corn Hybrids Method. ASA Abstracts, Madison.   Weining S and Langridge P (1991). Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor. Appl. Genet. 82: 209-216. http://dx.doi.org/10.1007/BF00226215   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606   Wrigley CW and Shepherd KW (1977). Pedigree investigation using biochemical markers: the wheat cultivar Gabo. Aust. J. Exp. Agric. Anim. Husb. 17: 1028-1031. http://dx.doi.org/10.1071/EA9771028   Xia Z and Achar PN (2001). Random amplified polymorphic DNA and polymerase chain reaction markers for the differentiation and detection of Stenocarpella maydis in maize seeds. J. Phytopathol. 149: 35-44. http://dx.doi.org/10.1046/j.1439-0434.2001.00572.x   Zhang C, ShiMeng S, DeMin J, ZhiLiang S, et al. (1998). Rapid identification of twelve elite maize inbred lines using RAPD markers. Acta Agron. Sin. 24: 718-722.   Zhang Y, Mian MAR and Bouton JH (2006). Recent molecular and genomic studies on stress tolerance of forage and turf grasses. Crop Sci. 46: 497-511. http://dx.doi.org/10.2135/cropsci2004.0572
I. Shahzadi, Ahmed, R., Hassan, A., and Shah, M. M., Optimization of DNA extraction from seeds and fresh leaf tissues of wild marigold (Tagetes minuta) for polymerase chain reaction analysis, vol. 9, pp. 386-393, 2010.
Aljanabi SM, Forget L and Dookun A (1999). An improved and rapid protocol for the isolation of polysaccharide- and polyphenol-free sugarcane DNA. Plant Mol. Biol. Rep. 17: 1-8. http://dx.doi.org/10.1023/A:1007692929505   Dellaporta SL, Wood J and Hicks JB (1983). A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19-21. http://dx.doi.org/10.1007/BF02712670   Deshmukh VP, Thakare PV, Chaudhari US and Gawande PA (2007). A simple method for isolation of genomic DNA from fresh and dry leaves of Terminalia arjuna (Roxb.) Wight and Argot. Electron. J. Biotechnol. 10: 468-472.   Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15.   Ghafoor S, Shah MM, Ahmad H, Swati ZA, et al. (2007). Molecular characterization of Ephedra species found in Pakistan. Genet. Mol. Res. 6: 1123-1130. PMid:18273806   Hills PN and Van Staden J (2002). An improved DNA extraction procedure for plant tissues with a high phenolic content. S. Afr. J. Bot. 68: 549-550.   Katterman FR and Shattuck VI (1983). An effective method of DNA isolation from the mature leaves of Gossypium species that contain large amounts of phenolic terpenoids and tannins. Prep. Biochem. 13: 347-359. http://dx.doi.org/10.1080/00327488308068177 PMid:6647418   Kaul PN, Bhattacharya AK, Rao BRR, Syamasundar KV, et al. (2005). Essential oil composition of Tagetes minuta L. fruits. J. Essent. Oil Res. 17: 184-185. http://dx.doi.org/10.1080/10412905.2005.9698869   Kim SH and Hamada T (2005). Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L). Lam. Biotechnol. Lett. 27: 1841-1845. http://dx.doi.org/10.1007/s10529-005-3891-2 PMid:16328977   Lawrence BM (1985). A review of the world production of essential oils - 1984. Perfumer Flavorist 10: 1-16.   Mangena T and Muyima NY (1999). Comparative evaluation of the antimicrobial activities of essential oils of Artemisia afra, Pteronia incana and Rosmarinus officinalis on selected bacteria and yeast strains. Lett. Appl. Microbiol. 28: 291-296. http://dx.doi.org/10.1046/j.1365-2672.1999.00525.x PMid:10212442   Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321-4325. http://dx.doi.org/10.1093/nar/8.19.4321 PMid:7433111 PMCid:324241   Rogers SO and Bendich AJ (1985). Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5: 69-76. http://dx.doi.org/10.1007/BF00020088   Saghai-Maroof MA, Soliman KM, Jorgensen RA and Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 81: 8014-8018. http://dx.doi.org/10.1073/pnas.81.24.8014 PMid:6096873 PMCid:392284   Sarwat M, Negi MS, Lakshmikumaran M, Tyagi AK, et al. (2006). A standardized protocol for genomic DNA isolation from Terminalia arjuna for genetic diversity analysis. Electron. J. Biotechnol. 9: 86-91. http://dx.doi.org/10.2225/vol9-issue1-fulltext-3   Schneerman MC, Mwangi J, Hobart B, Arbuckle J, et al. (2002). The dried corncob as a source of DNA for PCR analysis. Plant Mol. Biol. Rep. 20: 59-65. http://dx.doi.org/10.1007/BF02801933   Shah MM, Yen Y, Gill KS and Baenziger PS (2000). Comparisons of RFLP and PCR-based markers to detect polymorphism between wheat cultivars. Euphytica 114: 135-142. http://dx.doi.org/10.1023/A:1003993930447   Soule JA (1993a). Tagetes minuta: Potential New Herbs from South America. In: New Crops (Janick J and Simon JE, eds.). Wiley, New York, 649-654.   Soule JA (1993b). Medicinal and beverage uses of Tagetes (Tageteae: Compositae). Am. J. Bot. 80: 177.   Suman PSK, Ajit KS, Darokar MP and Kumar S (1999). Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol. Biol. Rep. 17: 1-7. http://dx.doi.org/10.1023/A:1017213630972   Warude D, Chavan P, Joshi K and Patwardhan B (2003). DNA isolation from fresh, dry plant samples with highly acidic tissue extracts. Plant Mol. Biol. Rep. 21: 467. http://dx.doi.org/10.1007/BF02772600   Wiese B, Quiroga OE, Vigo MS and Nolasco SM (1992). Seeds of Tagetes minuta L. chemical composition of seed oil and residual seed meal. [Semilla de Tagete minuta L. composición química del aceite seminal y de la harina residual de extracción]. An. Asoc. Quím. Argent. 80: 487-491.