Found 7 results
Filters: Author is Y.B. Huang  [Clear All Filters]
Z. P. Zheng, Liu, X. H., Huang, Y. B., Wu, X., He, C., and Li, Z., QTLs for days to silking in a recombinant inbred line maize population subjected to high and low nitrogen regimes, vol. 11, pp. 790-798, 2012.
Agrama HAS, Zakaria AG, Said FB and Tuinstra M (1999). Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol. Breed. 5: 187-195. Bänziger M, Betran FJ and Lafitte HR (1997). Efficiency of high-nitrogen selection environments for improving maize for low-nitrogen target environments. Crop Sci. 37: 1103-1109. Doerge RW and Churchill GA (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285-294. PMid:8770605    PMCid:1206957 Gong Q, Wang TY, Tan XL, Shi YS, et al. (2006). QTL analysis of traits related to flowering in elite maize inbred line Dan330 with early maturity. J. Plant Genet. Resour. 7: 437-441. Hu YM, Wu X, Li CX, Fu ZY, et al. (2008). Genetic analysis on the related traits of florescence for hybrid seed production in maize. J. Nanjing Agric. Univ. 31: 11-16. Khairallah MM, Bohn M, Jiang C, Deutsch JA, et al. (1998). Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed. 117: 309-318. Li YL, Li XH, Dong YB, Niu SZ, et al. (2007). QTL mapping of developmental stages using F2:3 and BC2S1 populations derived from the same cross in maize. Acta Agric. Boreali-Sin. 22: 38-43. Liu XH, Tan ZB and Tan ZB (2009). Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica 167: 229-235. Liu X, Zheng Z, Tan Z, Li Z, et al. (2010). QTL mapping for controlling anthesis-silking interval based on RIL population in maize. Afr. J. Biotechnol. 9: 950-955. McIntyre CL, Mathews KL, Rattey A, Chapman SC, et al. (2010). Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor. Appl. Genet. 120: 527-541. PMid:19865806 Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, et al. (1996). Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet. 92: 905-914. Ribaut JM, Fracheboud Y, Monneveux P, Banziger M, et al. (2007). Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol. Breed. 20: 15-29. Sabadin PK, Souza CL Jr, Souza AP and Garcia AAF (2008). QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 145: 194-203. Szalma SJ, Hostert BM, Ledeaux JR, Stuber CW, et al. (2007). QTL mapping with near-isogenic lines in maize. Theor. Appl. Genet. 114: 1211-1228. PMid:17308934 Tang H, Yan JB, Huang YQ, Zheng YL, et al. (2005). QTL mapping of five agronomic traits in maize. Yi. Chuan Xue. Bao. 32: 203-209. PMid:15759869 Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78. PMid:12011185 Wan XY, Wan JM, Jiang L, Wang JK, et al. (2006). QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor. Appl. Genet. 112: 1258-1270. PMid:16477428 Wang S, Basten CJ and Zeng ZB (2010). Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. Available at []. Accessed March 10, 2010. Wu JW, Liu C, Wang TY, Li Y, et al. (2008). QTL analysis of flowering related traits in maize under different water regimes. J. Maize Sci. 16: 61-65. Yang GB, Liu XY, Gao DJ, Tan FZ, et al. (2007). Constrict factors and countermeasures of maize planting in northern premature areas of Heilongjiang. Heilongjiang Agric. Sci. 6: 18-19. Yang X, Guo Y, Yan J, Zhang J, et al. (2010). Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theor. Appl. Genet. 120: 665-678. PMid:19856173 Zhang JM, Liu C, Shi YS, Song YC, et al. (2004). QTL analysis of parameters related to flowering in maize under drought stress and normal irrigation condition. J. Plant Genet. Resour. 5: 161-165.
S. L. Fu, Tang, Z. X., Liu, L., Lu, L. M., and Huang, Y. B., Variation of genomic DNA methylation in the nitrate reductase gene of sibling tobacco (Nicotiana tabacum) cultivars, vol. 11, pp. 1169-1177, 2012.
Akimoto K, Katakami H, Kim HJ, Ogawa E, et al. (2007). Epigenetic inheritance in rice plants. Ann. Bot. 100: 205-217. PMid:17576658 PMCid:2735323   Assaad FF, Tucker KL and Signer ER (1993). Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol. Biol. 22: 1067-1085. PMid:8400126   Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev. 16: 6-21. PMid:11782440   Bjornsson HT, Fallin MD and Feinberg AP (2004). An integrated epigenetic and genetic approach to common human disease. Trends Genet. 20: 350-358. PMid:15262407   Campbell WH (1999). Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 277-303. PMid:15012211   Chan SWL, Henderson IR and Jacobsen SE (2005). Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 6: 351-360. PMid:15861207   Choi HK, Kleinhofs A and An GH (1989). Nucleotide sequence of rice nitrate reductase genes. Plant Mol. Biol. 13: 731- 733. PMid:2491689   Falcão RV, Oliveira MC and Colepicolo P (2010). Molecular characterization of nitrate reductase gene and its expression in the marine red alga Gracilaria tenuistipitata (Rhodophyta). J. Appl. Phycol. 22: 613-622.   Fedorova L and Fedorov A (2003). Introns in gene evolution. Genetica 118: 123-131. PMid:12868603   Fojtova M, Houdt HV, Depicker A and Kovarik A (2003). Epigenetic switch from posttranscriptional to transcriptional silencing is correlated with promoter hypermethylation. Plant Physiol. 133: 1240-1250. PMid:14551338 PMCid:281619   Fu YH and Marzluf GA (1987). Molecular cloning and analysis of the regulation of Nit-3, the structural gene for nitrate reductase in Neurospora crassa. Proc. Natl. Acad. Sci. U. S. A. 84: 8243-8247. PMid:2891138 PMCid:299518   Kaiser WM and Huber SC (1994). Post-translational regulation of nitrate reductase in higher plants. Plant Physiol. 106: 817-821. PMid:12232369 PMCid:159604   Kaiser WM, Weiner H and Huber SC (1999). Nitrate reductase in higher plants: A case study for transduction of environmental stimuli into control of catalytic activity. Physiol. Plantarum 105: 384-389.   Koukalova B, Fojtova M, Lim KY, Fulnecek J, et al. (2005). Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations. Plant Physiol. 139: 275-286. PMid:16113227 PMCid:1203377   Li YP, Wang YK, Ma WG and Tan CL (2001). Breeding and selecting of a new flue-cured tobacco variety Yunyan87 and its characteristics. Chin. Tob. Sci. 4: 42-43 (In Chinese with English abstract).   Liaud MF, Brinkmann H and Cerff R (1992). The β-tubulin gene family of pea: primary structures, genomic organization and intron-dependent evolution of genes. Plant Mol. Biol. 18: 639-651. PMid:1558942   Madlung A, Masuelli RW, Watson B, Reynolds SH, et al. (2002). Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol. 129: 733-746. PMid:12068115 PMCid:161697   Madlung A, Tyagi AP, Watson B, Jiang HM, et al. (2005). Genomic changes in synthetic Arabidopsis polyploids. Plant J. 41: 221-230. PMid:15634199   Matzke MA and Matzke AJM (1998). Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses. Cell Mol. Life Sci. 54: 94-103. PMid:9487390   Oh YJ, Chung H, Yu JG and Park YD (2009). Newly developed MSAP analysis reveals the different polymorphism patterns in transgenic tobacco plants with the dsRNA MET1 gene. Plant Biotechnol. Rep. 3: 139-145.   Okamoto PM, Fu YH and Marzluf GA (1991). Nit-3, the structural gene of nitrate reductase in Neurospora crassa: nucleotide sequence and regulation of mRNA synthesis and turnover. Mol. Gen. Genet. 227: 213-223. PMid:1829499   Paszkowski J and Whitham SA (2001). Gene silencing and DNA methylation processes. Curr. Opin. Plant Biol. 4: 123- 129.   Poulsen P, Kyvik KO, Vaag A and Beck-Nielsen H (1999). Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance - a population-based twin study. Diabetologia 42: 139-145. PMid:10064092   Shaked H, Kashkush K, Ozkan H, Feldman M, et al. (2001). Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13: 1749-1759. PMid:11487690 PMCid:139131   Singh SM, Murphy B and O'Reilly R (2002). Epigenetic contributors to the discordance of monozygotic twins. Clin. Genet. 62: 97-103. PMid:12220446   Tan CL, Li YP, Wang YK, Ma WG, et al. (1997). Breeding and selecing a new variety of flue cured tobacco Yunyan 85 and its characteristics. Chin. Tob. Sci. 1: 7-10 (In Chinese with English abstract).   Tang ZX, Fu SL, Ren ZL, Zhou JP, et al. (2008). Variations of tandem repeat, regulatory element, and promoter regions revealed by wheat-rye amphiploids. Genome 51: 399-408. PMid:18521118   Vaucheret H, Vincentz M, Kronenberger J, Caboche M, et al. (1989). Molecular cloning and characterisation of the two homologous genes coding for nitrate reductase in tobacco. Mol. Gen. Genet. 216: 10-15. PMid:2733690   Weinhold B (2006). Epigenetics: the science of change. Environ. Health Perspect. 114: A160-A167. PMid:16507447 PMCid:1392256   Wilkinson JQ and Crawford NM (1991). Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. Plant Cell 3: 461-471. PMid:1840922 PMCid:160014   Wu SC, Lu Q, Kriz AL and Harper JE (1995). Identification of cDNA clones corresponding to two inducible nitrate reductase genes in soybean: analysis in wild-type and nr1 mutant. Plant Mol. Biol. 29: 491-506. PMid:8534848   Xiao WY, Custard KD, Brown RC, Lemmon BE, et al. (2006). DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18: 805-814. PMid:16531498 PMCid:1425851   Yang CY, Huang YB, Tang ZX, Lu LM, et al. (2011). Analysis of DNA methylation variation in sibling tobacco (Nicotiana tabacum) cultivars. Afr. J. Biotechnol. 10: 874-881.   Zhang Y, Liu ZH, Liu C, Yang ZJ, et al. (2008). Analysis of DNA methylation variation in wheat genetic background after alien chromatin introduction based on methylation-sensitive amplification polymorphism. Chin. Sci. Bull. 53: 58-69.   Zhou JZ and Kleinhofs A (1996). Molecular evolution of nitrate reductase genes. J. Mol. Evol. 42: 432-442. PMid:8642612
J. J. Zhang, Zhang, X. Q., Liu, Y. H., Liu, H. M., Wang, Y. B., Tian, M. L., and Huang, Y. B., Variation characteristics of the nitrate reductase gene of key inbred maize lines and derived lines in China, vol. 9, pp. 1824-1835, 2010.
Ali ML, Taylor JH, Jie L, Sun G, et al. (2005). Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome 48: 521-533. PMid:16121248   Appenroth K, Meco R, Jourdan VV and Lillo C (2000). Phytochrome and post-translational regulation of nitrate reductase in higher plants. Plant Sci. 159: 51-56.   Campbell WH (1999). Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Ver. Plant Physiol. Plant. Mol. Biol. 50: 277-303. PMid:15012211   Chen Y, Chao Q, Tan G, Zhao J, et al. (2008). Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor. Appl. Genet. 117: 1241-1252. PMid:18762906   Chuanchai P, Tan XI, Silapapun A and Suthipong P (2010). Early hybrid testing in tropical maize: are molecular markers useful for selecting the parental component? Kasetsart J. Nat. Sci. 44: 70-78.   Desikan R, Griffiths R, Hancock J and Neill S (2002). A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 99: 16314-16318. PMid:12446847 PMCid:138608   Foyer CH, Valadier MH, Migge A and Becker TW (1998). Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol. 117: 283-292. PMid:9576798 PMCid:35013   Fulton TM, Chunwongse J and Tanksley SD (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209.   Huber JL, Redinbaugh MG, Huber SC and Campbell WH (1994). Regulation of maize leaf nitrate reductase activity involves both gene expression and protein phosphorylation. Plant Physiol. 106: 1667-1674. PMid:12232440 PMCid:159711   Kolbert Z and Erdei L (2008). Involvement of nitrate reductase in auxin-induced NO synthesis. Plant Signal Behav. 3: 972-973. PMid:19704423 PMCid:2633746   Krakowsky MD, Lee M, Garay L, Woodman-Clikeman W, et al. (2006). Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.). Theor. Appl. Genet. 113: 821-830. PMid:16896717   Legesse BW, Myburg AA, Pixley KV and Botha AM (2007). Genetic diversity of African maize inbred lines revealed by SSR markers. Hereditas 144: 10-17. PMid:17567435   Li SS (1997). Selection and application of maize inbred line huangzaosi. Beijing Agric. Sci. 15: 19-21.   Li DH, Mao LH, Yang JS and Liu JG (2005). Breeding process and utilization of excellent maize inbred line 478. J. Laiyang Agric. Coll. 22: 159-164.   Li XH, Yuan LX, Li XH and Zhang SH (2003). Heterotic grouping of 70 maize inbred lines by SSR markers. Sci. Agric. Sinica 36: 622-627.   Li Y, Wang Y, Wei M and Li X (2009). QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.). J. Genet. 88: 61-66. PMid:19417545   Lu BL, Zhao WY and Liu RZ (2004). The influence and contribution of the hybrids crossed by Mo17 deriving self inbred lines to the production of China. J. Maize Sci. 12: 127-128.   Lu Y, Yan J, Guimaraes CT, Taba S, et al. (2009). Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor. Appl. Genet. 120: 93-115. PMid:19823800   Menkir A, Kling JG, Badu-Apraku B and Ingelbrecht I (2005). Molecular marker-based genetic diversity assessment of striga-resistant maize inbred lines. Theor. Appl. Genet. 110: 1145-1153. PMid:15750826   Ning JL, Gao HM, Qu G and Yu B (2002). Utilization of inbred lines of Ludahonggu group in corn breeding and production in China. Rain Fed. Crops 22: 63-65.   Qu G, Xu WW, Chen DY and Li FZ (2002). Selection and application of superior maize inbred line Dan340. J. Maize Sci. 10: 30-33.   Schrag TA, Mohring J, Melchinger AE, Kusterer B, et al. (2010). Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Theor. Appl. Genet. 120: 451-461. PMid:19916002   Sivasankar S and Oaks A (1995). Regulation of nitrate reductase during early seedling growth (a role for asparagine and glutamine). Plant Physiol. 107: 1225-1231. PMid:12228428 PMCid:157256   Stevens R (2008). Prospects for using marker-assisted breeding to improve maize production in Africa. J. Sci. Food Agric. 88: 745-755.   Stöhr C and Ullrich WR (1997). A succinate-oxidising nitrate reductase is located at the plasma membrane of plant roots. Planta 203: 129-132.   Szalma SJ, Hostert BM, Ledeaux JR, Stuber CW, et al. (2007). QTL mapping with near-isogenic lines in maize. Theor. Appl. Genet. 114: 1211-1228. PMid:17308934   Taramino G and Tingey S (1996). Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277-287. PMid:8984002   Wang CL, Cheng FF, Sun ZH, Tang JH, et al. (2008). Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor. Appl. Genet. 117: 1129-1139. PMid:18677461   Wang YB, Wang ZH, Wang YP and Zhang X (1997). The analysis of heterotic group and improve of Chinese maize germplasm. Acta Agric. Boreali-Sinica 13: 74-80.   Xu SX, Liu J and Liu GS (2004). The use of SSRs for predicting the hybrid yield and yield heterosis in 15 key inbred lines of Chinese maize. Hereditas 141: 207-215. PMid:15703037   Xu YR, Liu XE, Sun FM and Jiao RH (2006). The application of Mo17 and derived in Chinese. J. Jilin Agric. Sci. 31: 26-28.   Yan JB, Tang H, Huang YQ, Shi YG, et al. (2003). Genomic analysis of plant height in maize through molecular marker. Sci. Agric. Sinica 10: 1069-1075.   Zeng SX, Ren R and Liu XZ (1996). The important position of huangzaosi in maize breeding and production in China. J. Maize Sci. 4: 1-6.   Zhang SH (2005). Maize Production and Research in China: Advancement and Challenges, p. 3. In: Proceedings of the Ninth Asia Regional Maize Workshop, September 5-9, Beijing.   Zhang JH, Zhang JY, Yang XH, Jin H, et al. (2007). A study on genetic relationship of main maize inbred lines in Yunnan by SSR markers. J. Maize Sci. 15: 30-35.   Zhuang QS (2003). Chinese Wheat Improvement and Pedigree Analysis. Agricultural Publishing House, Beijing.