Publications

Found 3 results
Filters: Author is S. Ghavami  [Clear All Filters]
2012
H. - R. Kouhpayeh, Hashemi, M., Hashemi, S. - A., Moazeni-Roodi, A., Naderi, M., Sharifi-Mood, B., Taheri, M., Mohammadi, M., and Ghavami, S., R620W functional polymorphism of protein tyrosine phosphatase non-receptor type 22 is not associated with pulmonary tuberculosis in Zahedan, southeast Iran, vol. 11, pp. 1075-1081, 2012.
Ban Y, Tozaki T, Taniyama M and Tomita M (2005). The codon 620 single nucleotide polymorphism of the protein tyrosine phosphatase-22 gene does not contribute to autoimmune thyroid disease susceptibility in the Japanese. Thyroid 15: 1115-1118. http://dx.doi.org/10.1089/thy.2005.15.1115 PMid:16279843 Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, et al. (2004). A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75: 330-337. http://dx.doi.org/10.1086/422827 PMid:15208781 Bellamy R, Beyers N, McAdam KP, Ruwende C, et al. (2000). Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc. Natl. Acad. Sci. U. S. A. 97: 8005-8009. http://dx.doi.org/10.1073/pnas.140201897 PMid:10859364 Bottini N, Musumeci L, Alonso A, Rahmouni S, et al. (2004). A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet. 36: 337-338. http://dx.doi.org/10.1038/ng1323 PMid:15004560 Bravo MJ, Colmenero JD, Queipo-Ortuno MI, Morata P, et al. (2009). PTPN22 C1858T polymorphism and human brucellosis. Scand J. Infect. Dis. 41: 109-112. http://dx.doi.org/10.1080/00365540802641864 PMid:19107641 Cervino AC, Lakiss S, Sow O, Bellamy R, et al. (2002). Fine mapping of a putative tuberculosis-susceptibility locus on chromosome 15q11-13 in African families. Hum. Mol. Genet. 11: 1599-1603. http://dx.doi.org/10.1093/hmg/11.14.1599 PMid:12075004 Chabchoub G, Maalej A, Petit-Teixeira E, Glikmans E, et al. (2006). Polymorphisms in the protein tyrosine phosphatase (PTPN22) gene is not associated with autoimmune thyroid in a large affected Tunisian family. Clin. Immunol. 120: 235-236. http://dx.doi.org/10.1016/j.clim.2006.04.565 PMid:16765647 Chabchoub G, Teixiera EP, Maalej A, Ben HM, et al. (2009). The R620W polymorphism of the protein tyrosine phosphatase 22 gene in autoimmune thyroid diseases and rheumatoid arthritis in the Tunisian population. Ann. Hum. Biol. 36: 342-349. http://dx.doi.org/10.1080/03014460902817968 PMid:19343596 Chelala C, Duchatelet S, Joffret ML, Bergholdt R, et al. (2007). PTPN22 R620W functional variant in type 1 diabetes and autoimmunity related traits. Diabetes 56: 522-526. http://dx.doi.org/10.2337/db06-0942 PMid:17259401 Cohen S, Dadi H, Shaoul E, Sharfe N, et al. (1999). Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 93: 2013-2024. Comstock GW (1978). Tuberculosis in twins: a re-analysis of the Prophit survey. Am. Rev. Respir. Dis. 117: 621-624. PMid:565607 Douroudis K, Prans E, Haller K, Nemvalts V, et al. (2008). Protein tyrosine phosphatase non-receptor type 22 gene variants at position 1858 are associated with type 1 and type 2 diabetes in Estonian population. Tissue Antigens 72: 425-430. http://dx.doi.org/10.1111/j.1399-0039.2008.01115.x PMid:18764813 Gomez LM, Anaya JM, Gonzalez CI, Pineda-Tamayo R, et al. (2005a). PTPN22 C1858T polymorphism in Colombian patients with autoimmune diseases. Genes Immun. 6: 628-631. http://dx.doi.org/10.1038/sj.gene.6364261 PMid:16163373 Gomez LM, Anaya JM and Martin J (2005b). Genetic influence of PTPN22 R620W polymorphism in tuberculosis. Hum. Immunol. 66: 1242-1247. http://dx.doi.org/10.1016/j.humimm.2005.11.008 PMid:16690411 Guide SV and Holland SM (2002). Host susceptibility factors in mycobacterial infection. Genetics and body morphotype. Infect. Dis. Clin. North Am. 16: 163-186. http://dx.doi.org/10.1016/S0891-5520(03)00051-5 Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, et al. (2010a). Lack of association between paraoxonase-1 Q192R polymorphism and rheumatoid arthritis in southeast Iran. Genet. Mol. Res. 9: 333-339. http://dx.doi.org/10.4238/vol9-1gmr728 PMid:20198589 Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, et al. (2010b). The L55M polymorphism of paraoxonase-1 is a risk factor for rheumatoid arthritis. Genet. Mol. Res. 9: 1735-1741. http://dx.doi.org/10.4238/vol9-3gmr893 PMid:20812194 Hashemi M, Hoseini H, Yaghmaei P, Moazeni-Roodi A, et al. (2011a). Association of polymorphisms in glutamate-cysteine ligase catalytic subunit and microsomal triglyceride transfer protein genes with nonalcoholic fatty liver disease. DNA Cell Biol. 30: 569-575. http://dx.doi.org/10.1089/dna.2010.1162 PMid:21438662 Hashemi M, Sharifi-Mood B, Nezamdoost M, Moazeni-Roodi A, et al. (2011b). Functional polymorphism of interferon-gamma (IFN-gamma) gene +874T/A polymorphism is associated with pulmonary tuberculosis in Zahedan, Southeast Iran. Prague Med. Rep. 112: 38-43. PMid:21470497 Hermiston ML, Xu Z, Majeti R and Weiss A (2002). Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J. Clin. Invest. 109: 9-14. PMid:11781344 PMCid:150828 Hill RJ, Zozulya S, Lu YL, Ward K, et al. (2002). The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation. Exp. Hematol. 30: 237-244. http://dx.doi.org/10.1016/S0301-472X(01)00794-9 Hinks A, Worthington J and Thomson W (2006). The association of PTPN22 with rheumatoid arthritis and juvenile idiopathic arthritis. Rheumatology 45: 365-368. http://dx.doi.org/10.1093/rheumatology/kel005 PMid:16418195 Ikegami H, Kawabata Y, Noso S, Fujisawa T, et al. (2007). Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res. Clin. Pract. 77 (Suppl 1): S116-S121. http://dx.doi.org/10.1016/j.diabres.2007.01.044 PMid:17452059 Jagiello P, Aries P, Arning L, Wagenleiter SE, et al. (2005). The PTPN22 620W allele is a risk factor for Wegener’s granulomatosis. Arthritis Rheum. 52: 4039-4043. http://dx.doi.org/10.1002/art.21487 Lamsyah H, Rueda B, Baassi L, Elaouad R, et al. (2009). Association of PTPN22 gene functional variants with development of pulmonary tuberculosis in Moroccan population. Tissue Antigens 74: 228-232. http://dx.doi.org/10.1111/j.1399-0039.2009.01304.x PMid:19563523 Lee YH, Rho YH, Choi SJ, Ji JD, et al. (2007). The PTPN22 C1858T functional polymorphism and autoimmune diseases - a meta-analysis. Rheumatology 46: 49-56. http://dx.doi.org/10.1093/rheumatology/kel170 PMid:16760194 Mori M, Yamada R, Kobayashi K, Kawaida R, et al. (2005). Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J. Hum. Genet. 50: 264-266. http://dx.doi.org/10.1007/s10038-005-0246-8 PMid:15883854 Mustelin T, Brockdorff J, Rudbeck L, Gjorloff-Wingren A, et al. (1999). The next wave: protein tyrosine phosphatases enter T cell antigen receptor signalling. Cell Signal. 11: 637-650. http://dx.doi.org/10.1016/S0898-6568(99)00016-9 Mustelin T, Abraham RT, Rudd CE, Alonso A, et al. (2002). Protein tyrosine phosphorylation in T cell signaling. Front Biosci. 7: d918-d969. http://dx.doi.org/10.2741/musteli1 PMid:11897562 Naderi M, Hashemi M, Kouhpayeh H and Ahmadi R (2009). The status of serum procalcitonin in pulmonary tuberculosis and nontuberculosis pulmonary disease. J. Pak. Med. Assoc. 59: 647-648. PMid:19750868 Naderi M, Hashemi M, Mehdizadeh A and Mehrabifar H (2010). Serum adenosine deaminase activity and total antioxidant capacity of plasma in pulmonary tuberculosis and non-tuberculosis pulmonary disease. Turk. J. Med. Sci. 40: 701-706. North RJ and Jung YJ (2004). Immunity to tuberculosis. Annu. Rev. Immunol. 22: 599-623. http://dx.doi.org/10.1146/annurev.immunol.22.012703.104635 PMid:15032590 Orozco G, Sanchez E, Gonzalez-Gay MA, Lopez-Nevot MA, et al. (2005). Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum. 52: 219-224. http://dx.doi.org/10.1002/art.20771 Porter JD and McAdam KP (1994). The re-emergence of tuberculosis. Annu. Rev. Public Health 15: 303-323. http://dx.doi.org/10.1146/annurev.pu.15.050194.001511 PMid:8054087 Qu HQ, Fisher-Hoch SP and McCormick JB (2011). Molecular immunity to mycobacteria: knowledge from the mutation and phenotype spectrum analysis of Mendelian susceptibility to mycobacterial diseases. Int. J. Infect. Dis. 15: e305-e313. http://dx.doi.org/10.1016/j.ijid.2011.01.004 PMid:21330176 PMCid:3078969 Reddy MV, Johansson M, Sturfelt G, Jonsen A, et al. (2005). The R620W C/T polymorphism of the gene PTPN22 is associated with SLE independently of the association of PDCD1. Genes Immun. 6: 658-662. PMid:16052172 Seldin MF, Shigeta R, Laiho K, Li H, et al. (2005). Finnish case-control and family studies support PTPN22 R620W polymorphism as a risk factor in rheumatoid arthritis, but suggest only minimal or no effect in juvenile idiopathic arthritis. Genes Immun. 6: 720-722. PMid:16107870 Veillette A, Latour S and Davidson D (2002). Negative regulation of immunoreceptor signaling. Annu. Rev. Immunol. 20: 669-707. http://dx.doi.org/10.1146/annurev.immunol.20.081501.130710 PMid:11861615 Wipff J, Allanore Y, Kahan A, Meyer O, et al. (2006). Lack of association between the protein tyrosine phosphatase non-receptor 22 (PTPN22)*620W allele and systemic sclerosis in the French Caucasian population. Ann. Rheum. Dis. 65: 1230-1232. http://dx.doi.org/10.1136/ard.2005.048181 PMid:16464986 PMCid:1798267 Zhang ZH, Chen F, Zhang XL, Jin Y, et al. (2008). PTPN22 allele polymorphisms in 15 Chinese populations. Int. J. Immunogenet. 35: 433-437. http://dx.doi.org/10.1111/j.1744-313X.2008.00803.x PMid:19046301
2010
M. Hashemi, Moazeni-Roodi, A. K., Fazaeli, A., Sandoughi, M., Taheri, M., Bardestani, G. R., Zakeri, Z., Kordi-Tamandani, D. M., and Ghavami, S., The L55M polymorphism of paraoxonase-1 is a risk factor for rheumatoid arthritis, vol. 9, pp. 1735-1741, 2010.
Arnett FC, Edworthy SM, Bloch DA, McShane DJ, et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31: 315-324. http://dx.doi.org/10.1002/art.1780310302 PMid:3358796   Aviram M, Rosenblat M, Bisgaier CL, Newton RS, et al. (1998). Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J. Clin. Invest. 101: 1581-1590. http://dx.doi.org/10.1172/JCI1649 PMid:9541487 PMCid:508738   Aviram M, Hardak E, Vaya J, Mahmood S, et al. (2000). Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation 101: 2510-2517. http://dx.doi.org/10.1161/01.CIR.101.21.2510 PMid:10831526   Baskol G, Demir H, Baskol M, Kilic E, et al. (2005). Assessment of paraoxonase 1 activity and malondialdehyde levels in patients with rheumatoid arthritis. Clin. Biochem. 38: 951-955. http://dx.doi.org/10.1016/j.clinbiochem.2005.06.010 PMid:16055108   Bauerova K and Bezek A (1999). Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis. Gen. Physiol. Biophys. 18 (Spec No.): 15-20.   Blatter MC, James RW, Messmer S, Barja F, et al. (1993). Identification of a distinct human high-density lipoprotein subspecies defined by a lipoprotein-associated protein, K-45. Identity of K-45 with paraoxonase. Eur. J. Biochem. 211: 871-879. http://dx.doi.org/10.1111/j.1432-1033.1993.tb17620.x PMid:8382160   Deighton CM and Walker DJ (1991). The familial nature of rheumatoid arthritis. Ann. Rheum. Dis. 50: 62-65. http://dx.doi.org/10.1136/ard.50.1.62 PMid:1994873 PMCid:1004331   Feingold KR, Memon RA, Moser AH and Grunfeld C (1998). Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response. Atherosclerosis 139: 307-315. http://dx.doi.org/10.1016/S0021-9150(98)00084-7   Gambhir JK, Lali P and Jain AK (1997). Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin. Biochem. 30: 351-355. http://dx.doi.org/10.1016/S0009-9120(96)00007-0   Gan KN, Smolen A, Eckerson HW and La Du BN (1991). Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab. Dispos. 19: 100-106. PMid:1673382   Garin MC, James RW, Dussoix P, Blanche H, et al. (1997). Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J. Clin. Invest. 99: 62-66. http://dx.doi.org/10.1172/JCI119134 PMid:9011577 PMCid:507768   Griffiths HR and Lunec J (1996). The C1q binding activity of IgG is modified in vitro by reactive oxygen species: implications for rheumatoid arthritis. FEBS Lett. 388: 161-164. http://dx.doi.org/10.1016/0014-5793(96)00542-X   Halliwell B (1994). Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344: 721-724. http://dx.doi.org/10.1016/S0140-6736(94)92211-X   Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, et al. (2010). Lack of association between paraoxonase-1 Q192R polymorphism and rheumatoid arthritis in southeast Iran. Genet. Mol. Res. 9: 333-339. http://dx.doi.org/10.4238/vol9-1gmr728 PMid:20198589   Humbert R, Adler DA, Disteche CM, Hassett C, et al. (1993). The molecular basis of the human serum paraoxonase activity polymorphism. Nat. Genet. 3: 73-76. http://dx.doi.org/10.1038/ng0193-73 PMid:8098250   Isik A, Koca SS, Ustundag B, Celik H, et al. (2007). Paraoxonase and arylesterase levels in rheumatoid arthritis. Clin. Rheumatol. 26: 342-348. http://dx.doi.org/10.1007/s10067-006-0300-8 PMid:16642406   Jaswal S, Mehta HC, Sood AK and Kaur J (2003). Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clin. Chim. Acta 338: 123-129. http://dx.doi.org/10.1016/j.cccn.2003.08.011 PMid:14637276   Leviev I and James RW (2000). Promoter polymorphisms of human paraoxonase PON1 gene and serum paraoxonase activities and concentrations. Arterioscler. Thromb. Vasc. Biol. 20: 516-521. http://dx.doi.org/10.1161/01.ATV.20.2.516 PMid:10669651   Leviev I, Negro F and James RW (1997). Two alleles of the human paraoxonase gene produce different amounts of mRNA. An explanation for differences in serum concentrations of paraoxonase associated with the (Leu-Met54) polymorphism. Arterioscler. Thromb. Vasc. Biol. 17: 2935-2939. http://dx.doi.org/10.1161/01.ATV.17.11.2935 PMid:9409279   Mackness B, Mackness MI, Arrol S, Turkie W, et al. (1998). Effect of the human serum paraoxonase 55 and 192 genetic polymorphisms on the protection by high density lipoprotein against low density lipoprotein oxidative modification. FEBS Lett. 423: 57-60. http://dx.doi.org/10.1016/S0014-5793(98)00064-7   Mackness MI, Mackness B, Durrington PN, Connelly PW, et al. (1996). Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr. Opin. Lipidol. 7: 69-76. http://dx.doi.org/10.1097/00041433-199604000-00004 PMid:8743898   Maury CP, Junge W and Teppo AM (1984). Serum esterase activity in reactive systemic amyloidosis and its relation to amyloid A degrading activity. J. Lab. Clin. Med. 104: 761-766. PMid:6092501   McKeown MJ, Hall ND and Corvalan JR (1984). Defective monocyte accessory function due to surface sulphydryl (SH) oxidation in rheumatoid arthritis. Clin. Exp. Immunol. 56: 607-613. PMid:6744663 PMCid:1536001   Miesel R, Murphy MP and Kroger H (1996). Enhanced mitochondrial radical production in patients which rheumatoid arthritis correlates with elevated levels of tumor necrosis factor alpha in plasma. Free Radic. Res. 25: 161-169. http://dx.doi.org/10.3109/10715769609149921 PMid:8885334   Nurcombe HL, Bucknall RC and Edwards SW (1991). Activation of the neutrophil myeloperoxidase-H2O2 system by synovial fluid isolated from patients with rheumatoid arthritis. Ann. Rheum. Dis. 50: 237-242. http://dx.doi.org/10.1136/ard.50.4.237 PMid:1851410 PMCid:1004393   Popa C, van Tits LJ, Barrera P, Lemmers HL, et al. (2009). Anti-inflammatory therapy with tumour necrosis factor alpha inhibitors improves high-density lipoprotein cholesterol antioxidative capacity in rheumatoid arthritis patients. Ann. Rheum. Dis. 68: 868-872. http://dx.doi.org/10.1136/ard.2008.092171 PMid:18635596   Primo-Parmo SL, Sorenson RC, Teiber J and La Du BN (1996). The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics 33: 498-507. http://dx.doi.org/10.1006/geno.1996.0225 PMid:8661009   Ridderstad A, Abedi-Valugerdi M and Moller E (1991). Cytokines in rheumatoid arthritis. Ann. Med. 23: 219-223. http://dx.doi.org/10.3109/07853899109148051 PMid:1930911   Rozenberg O, Rosenblat M, Coleman R, Shih DM, et al. (2003). Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: studies in PON1-knockout mice. Free Radic. Biol. Med. 34: 774-784. http://dx.doi.org/10.1016/S0891-5849(02)01429-6   Sattar N, McCarey DW, Capell H and McInnes IB (2003). Explaining how "high-grade" systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 108: 2957-2963. http://dx.doi.org/10.1161/01.CIR.0000099844.31524.05 PMid:14676136   Shih DM, Gu L, Xia YR, Navab M, et al. (1998). Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 394: 284-287. http://dx.doi.org/10.1038/28406 PMid:9685159   Tanimoto N, Kumon Y, Suehiro T, Ohkubo S, et al. (2003). Serum paraoxonase activity decreases in rheumatoid arthritis. Life Sci. 72: 2877-2885. http://dx.doi.org/10.1016/S0024-3205(03)00195-4   Ye S, Dhillon S, Ke X, Collins AR, et al. (2001). An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 29: E88. http://dx.doi.org/10.1093/nar/29.17.e88 PMid:11522844 PMCid:55900   Zwerina J, Redlich K, Schett G and Smolen JS (2005). Pathogenesis of rheumatoid arthritis: targeting cytokines. Ann. N. Y. Acad. Sci. 1051: 716-729. http://dx.doi.org/10.1196/annals.1361.116 PMid:16127012
M. Hashemi, Moazeni-Roodi, A. K., Fazaeli, A., Sandoughi, M., Bardestani, G. R., Kordi-Tamandani, D. M., and Ghavami, S., Lack of association between paraoxonase-1 Q192R polymorphism and rheumatoid arthritis in southeast Iran, vol. 9, pp. 333-339, 2010.
Agrawal S, Tripathi G, Prajnya R, Sinha N, et al. (2009). Paraoxonase 1 gene polymorphisms contribute to coronary artery disease risk among north Indians. Indian J. Med. Sci. 63: 335-344. http://dx.doi.org/10.4103/0019-5359.55884 PMid:19770524   Arnett FC, Edworthy SM, Bloch DA, McShane DJ, et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31: 315-324. http://dx.doi.org/10.1002/art.1780310302 PMid:3358796   Aviram M, Rosenblat M, Bisgaier CL, Newton RS, et al. (1998). Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J. Clin. Invest. 101: 1581-1590. http://dx.doi.org/10.1172/JCI1649 PMid:9541487 PMCid:508738   Aviram M, Hardak E, Vaya J, Mahmood S, et al. (2000). Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation 101: 2510-2517. http://dx.doi.org/10.1161/01.CIR.101.21.2510 PMid:10831526   Baskol G, Demir H, Baskol M, Kilic E, et al. (2005). Assessment of paraoxonase 1 activity and malondialdehyde levels in patients with rheumatoid arthritis. Clin. Biochem. 38: 951-955. http://dx.doi.org/10.1016/j.clinbiochem.2005.06.010 PMid:16055108   Bauerova K and Bezek A (1999). Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis. Gen. Physiol. Biophys. 18 (Spec No.): 15-20.   Blatter MC, James RW, Messmer S, Barja F, et al. (1993). Identification of a distinct human high-density lipoprotein subspecies defined by a lipoprotein-associated protein, K-45. Identity of K-45 with paraoxonase. Eur. J. Biochem. 211: 871-879. http://dx.doi.org/10.1111/j.1432-1033.1993.tb17620.x PMid:8382160   Deighton CM and Walker DJ (1991). The familial nature of rheumatoid arthritis. Ann. Rheum. Dis. 50: 62-65. http://dx.doi.org/10.1136/ard.50.1.62 PMid:1994873 PMCid:1004331   Feingold KR, Memon RA, Moser AH and Grunfeld C (1998). Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response. Atherosclerosis 139: 307-315. http://dx.doi.org/10.1016/S0021-9150(98)00084-7   Gambhir JK, Lali P and Jain AK (1997). Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin. Biochem. 30: 351-355. http://dx.doi.org/10.1016/S0009-9120(96)00007-0   Gan KN, Smolen A, Eckerson HW and La Du BN (1991). Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab. Dispos. 19: 100-106. PMid:1673382   Garin MC, James RW, Dussoix P, Blanche H, et al. (1997). Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J. Clin. Invest. 99: 62-66. http://dx.doi.org/10.1172/JCI119134 PMid:9011577 PMCid:507768   Griffiths HR and Lunec J (1996). The C1q binding activity of IgG is modified in vitro by reactive oxygen species: implications for rheumatoid arthritis. FEBS Lett. 388: 161-164. http://dx.doi.org/10.1016/0014-5793(96)00542-X   Halliwell B (1994). Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344: 721-724. http://dx.doi.org/10.1016/S0140-6736(94)92211-X   Humbert R, Adler DA, Disteche CM, Hassett C, et al. (1993). The molecular basis of the human serum paraoxonase activity polymorphism. Nat. Genet. 3: 73-76. http://dx.doi.org/10.1038/ng0193-73 PMid:8098250   Isik A, Koca SS, Ustundag B, Celik H, et al. (2007). Paraoxonase and arylesterase levels in rheumatoid arthritis. Clin. Rheumatol. 26: 342-348. http://dx.doi.org/10.1007/s10067-006-0300-8 PMid:16642406   Jaswal S, Mehta HC, Sood AK and Kaur J (2003). Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clin. Chim. Acta 338: 123-129. http://dx.doi.org/10.1016/j.cccn.2003.08.011 PMid:14637276   Leduc V and Poirier J (2008). Polymorphisms at the paraoxonase 1 L55M and Q192R loci affect the pathophysiology of Alzheimer's disease: emphasis on the cholinergic system and beta-amyloid levels. Neurodegener. Dis. 5: 225-227. http://dx.doi.org/10.1159/000113709 PMid:18322397   Leduc V, Theroux L, Dea D, Robitaille Y, et al. (2009). Involvement of paraoxonase 1 genetic variants in Alzheimer's disease neuropathology. Eur. J. Neurosci. 30: 1823-1830. http://dx.doi.org/10.1111/j.1460-9568.2009.06983.x PMid:19863653   Mackness B, Mackness MI, Arrol S, Turkie W, et al. (1998). Effect of the human serum paraoxonase 55 and 192 genetic polymorphisms on the protection by high density lipoprotein against low density lipoprotein oxidative modification. FEBS Lett. 423: 57-60. http://dx.doi.org/10.1016/S0014-5793(98)00064-7   Mackness MI, Mackness B, Durrington PN, Connelly PW, et al. (1996). Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr. Opin. Lipidol. 7: 69-76. http://dx.doi.org/10.1097/00041433-199604000-00004 PMid:8743898   Maury CP, Junge W and Teppo AM (1984). Serum esterase activity in reactive systemic amyloidosis and its relation to amyloid A degrading activity. J. Lab. Clin. Med. 104: 761-766. PMid:6092501   McKeown MJ, Hall ND and Corvalan JR (1984). Defective monocyte accessory function due to surface sulphydryl (SH) oxidation in rheumatoid arthritis. Clin. Exp. Immunol. 56: 607-613. PMid:6744663 PMCid:1536001   Miesel R, Murphy MP and Kroger H (1996). Enhanced mitochondrial radical production in patients which rheumatoid arthritis correlates with elevated levels of tumor necrosis factor alpha in plasma. Free Radic. Res. 25: 161-169. http://dx.doi.org/10.3109/10715769609149921 PMid:8885334   Newton CR, Graham A, Heptinstall LE, Powell SJ, et al. (1989). Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17: 2503-2516. http://dx.doi.org/10.1093/nar/17.7.2503 PMid:2785681 PMCid:317639   Nurcombe HL, Bucknall RC and Edwards SW (1991). Activation of the neutrophil myeloperoxidase-H2O2 system by synovial fluid isolated from patients with rheumatoid arthritis. Ann. Rheum. Dis. 50: 237-242. http://dx.doi.org/10.1136/ard.50.4.237 PMid:1851410 PMCid:1004393   Popa C, van Tits LJ, Barrera P, Lemmers HL, et al. (2009). Anti-inflammatory therapy with tumour necrosis factor alpha inhibitors improves high-density lipoprotein cholesterol antioxidative capacity in rheumatoid arthritis patients. Ann. Rheum. Dis. 68: 868-872. http://dx.doi.org/10.1136/ard.2008.092171 PMid:18635596   Primo-Parmo SL, Sorenson RC, Teiber J and La Du BN (1996). The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics 33: 498-507. http://dx.doi.org/10.1006/geno.1996.0225 PMid:8661009   Rozenberg O, Rosenblat M, Coleman R, Shih DM, et al. (2003). Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: studies in PON1-knockout mice. Free Radic. Biol. Med. 34: 774-784. http://dx.doi.org/10.1016/S0891-5849(02)01429-6   Saremi MA, Saremi M and Tavallaei M (2008). Rapid genomic DNA extraction (RGDE). Forensic Sci. Int. Genet. Suppl. Ser. 1: 63-65.   Sattar N, McCarey DW, Capell H and McInnes IB (2003). Explaining how "high-grade" systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 108: 2957-2963. http://dx.doi.org/10.1161/01.CIR.0000099844.31524.05 PMid:14676136   Shih DM, Gu L, Xia YR, Navab M, et al. (1998). Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 394: 284-287. http://dx.doi.org/10.1038/28406 PMid:9685159   Sidoti A, Antognelli C, Rinaldi C, D'Angelo R, et al. (2007). Glyoxalase I A111E, paraoxonase 1 Q192R and L55M polymorphisms: susceptibility factors of multiple sclerosis? Mult. Scler. 13: 446-453. PMid:17463067   Tanimoto N, Kumon Y, Suehiro T, Ohkubo S, et al. (2003). Serum paraoxonase activity decreases in rheumatoid arthritis. Life Sci. 72: 2877-2885. http://dx.doi.org/10.1016/S0024-3205(03)00195-4   Ye S, Dhillon S, Ke X, Collins AR, et al. (2001). An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 29: E88. http://dx.doi.org/10.1093/nar/29.17.e88 PMid:11522844 PMCid:55900