Publications
Found 2 results
Filters: Author is F. Ding [Clear All Filters]
“Pyrroloquinoline quinone rescues hippocampal neurons from glutamate-induced cell death through activation of Nrf2 and up-regulation of antioxidant genes”, vol. 11, pp. 2652-2664, 2012.
,
Aizenman E, Hartnett KA, Zhong C, Gallop PM, et al. (1992). Interaction of the putative essential nutrient pyrroloquinoline quinone with the N-methyl-D-aspartate receptor redox modulatory site. J. Neurosci. 12: 2362-2369.
PMid:1318959
Bauerly KA, Storms DH, Harris CB, Hajizadeh S, et al. (2006). Pyrroloquinoline quinone nutritional status alters lysine metabolism and modulates mitochondrial DNA content in the mouse and rat. Biochim. Biophys. Acta 1760: 1741- 1748.
http://dx.doi.org/10.1016/j.bbagen.2006.07.009
PMid:17029795
Biswas M and Chan JY (2010). Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol. Appl. Pharmacol. 244: 16-20.
http://dx.doi.org/10.1016/j.taap.2009.07.034
PMid:19665035 PMCid:2837788
Blank V (2008). Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators? J. Mol. Biol. 376: 913-925.
http://dx.doi.org/10.1016/j.jmb.2007.11.074
PMid:18201722
Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, et al. (2010). Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J. Biol. Chem. 285: 142-152.
http://dx.doi.org/10.1074/jbc.M109.030130
PMid:19861415 PMCid:2804159
Cross DA, Alessi DR, Cohen P, Andjelkovich M, et al. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785-789.
http://dx.doi.org/10.1038/378785a0
PMid:8524413
Dhakshinamoorthy S, Long DJ and Jaiswal AK (2000). Antioxidant regulation of genes encoding enzymes that detoxify xenobiotics and carcinogens. Curr. Top. Cell Regul. 36: 201-216.
http://dx.doi.org/10.1016/S0070-2137(01)80009-1
Franklin CC, Backos DS, Mohar I, White CC, et al. (2009). Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol. Aspects Med. 30: 86-98.
http://dx.doi.org/10.1016/j.mam.2008.08.009
PMid:18812186 PMCid:2714364
Griffith OW and Mulcahy RT (1999). The enzymes of glutathione synthesis: gamma-glutamylcysteine synthetase. Adv. Enzymol. Relat. Areas Mol. Biol. 73: 209-67, xii.
http://dx.doi.org/10.1002/9780470123195.ch7
PMid:10218110
Hara H, Hiramatsu H and Adachi T (2007). Pyrroloquinoline quinone is a potent neuroprotective nutrient against 6-hydroxydopamine-induced neurotoxicity. Neurochem. Res. 32: 489-495.
http://dx.doi.org/10.1007/s11064-006-9257-x
PMid:17268846
Hirakawa A, Shimizu K, Fukumitsu H and Furukawa S (2009). Pyrroloquinoline quinone attenuates iNOS gene expression in the injured spinal cord. Biochem. Biophys. Res. Commun. 378: 308-312.
http://dx.doi.org/10.1016/j.bbrc.2008.11.045
PMid:19026989
Huang HC, Nguyen T and Pickett CB (2002). Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J. Biol. Chem. 277: 42769-42774.
http://dx.doi.org/10.1074/jbc.M206911200
PMid:12198130
Ishii T, Itoh K, Takahashi S, Sato H, et al. (2000). Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 275: 16023-16029.
http://dx.doi.org/10.1074/jbc.275.21.16023
PMid:10821856
Itoh K, Chiba T, Takahashi S, Ishii T, et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236: 313-322.
http://dx.doi.org/10.1006/bbrc.1997.6943
PMid:9240432
Jung KA and Kwak MK (2010). The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules 15: 7266-7291.
http://dx.doi.org/10.3390/molecules15107266
PMid:20966874
Kaspar JW, Niture SK and Jaiswal AK (2009). Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med. 47: 1304-1309.
http://dx.doi.org/10.1016/j.freeradbiomed.2009.07.035
PMid:19666107 PMCid:2763938
Kumazawa T, Hiwasa T, Takiguchi M, Suzuki O, et al. (2007). Activation of Ras signaling pathways by pyrroloquinoline quinone in NIH3T3 mouse fibroblasts. Int. J. Mol. Med. 19: 765-770.
PMid:17390081
Kwong M, Kan YW and Chan JY (1999). The CNC basic leucine zipper factor, Nrf1, is essential for cell survival in response to oxidative stress-inducing agents. Role for Nrf1 in gamma-gcs(l) and gss expression in mouse fibroblasts. J. Biol. Chem. 274: 37491-37498.
http://dx.doi.org/10.1074/jbc.274.52.37491
PMid:10601325
Lee JM and Johnson JA (2004). An important role of Nrf2-ARE pathway in the cellular defense mechanism. J. Biochem. Mol. Biol. 37: 139-143.
http://dx.doi.org/10.5483/BMBRep.2004.37.2.139
PMid:15469687
Liu S, Li H, Ou YJ, Peng H, et al. (2005). Enhanced rat sciatic nerve regeneration through silicon tubes filled with pyrroloquinoline quinone. Microsurgery 25: 329-337.
http://dx.doi.org/10.1002/micr.20126
PMid:15915445
Mebratu Y and Tesfaigzi Y (2009). How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 8: 1168-1175.
http://dx.doi.org/10.4161/cc.8.8.8147
PMid:19282669 PMCid:2728430
Meister A and Anderson ME (1983). Glutathione. Annu. Rev. Biochem. 52: 711-760.
http://dx.doi.org/10.1146/annurev.bi.52.070183.003431
PMid:6137189
Misra HS, Khairnar NP, Barik A, Indira PK, et al. (2004). Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria. FEBS Lett. 578: 26-30.
http://dx.doi.org/10.1016/j.febslet.2004.10.061
PMid:15581610
Motohashi H, O'Connor T, Katsuoka F, Engel JD, et al. (2002). Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294: 1-12.
http://dx.doi.org/10.1016/S0378-1119(02)00788-6
Murase K, Hattori A, Kohno M and Hayashi K (1993). Stimulation of nerve growth factor synthesis/secretion in mouse astroglial cells by coenzymes. Biochem. Mol. Biol. Int. 30: 615-621.
PMid:8401318
Niture SK, Kaspar JW, Shen J and Jaiswal AK (2010). Nrf2 signaling and cell survival. Toxicol. Appl. Pharmacol. 244: 37-42.
http://dx.doi.org/10.1016/j.taap.2009.06.009
PMid:19538984 PMCid:2837794
Ohtsuji M, Katsuoka F, Kobayashi A, Aburatani H, et al. (2008). Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. J. Biol. Chem. 283: 33554-33562.
http://dx.doi.org/10.1074/jbc.M804597200
PMid:18826952 PMCid:2662273
Pap M and Cooper GM (1998). Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J. Biol. Chem. 273: 19929-19932.
http://dx.doi.org/10.1074/jbc.273.32.19929
PMid:9685326
Poss KD and Tonegawa S (1997). Reduced stress defense in heme oxygenase 1-deficient cells. Proc. Natl. Acad. Sci. U. S. A. 94: 10925-10930.
http://dx.doi.org/10.1073/pnas.94.20.10925
PMid:9380736 PMCid:23533
Rojo AI, Rada P, Egea J, Rosa AO, et al. (2008). Functional interference between glycogen synthase kinase-3 beta and the transcription factor Nrf2 in protection against kainate-induced hippocampal cell death. Mol. Cell Neurosci. 39: 125-132.
http://dx.doi.org/10.1016/j.mcn.2008.06.007
PMid:18619545
Rucker R, Chowanadisai W and Nakano M (2009). Potential physiological importance of pyrroloquinoline quinone. Altern. Med. Rev. 14: 268-277.
PMid:19803551
Salazar M, Rojo AI, Velasco D, de Sagarra RM, et al. (2006). Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J. Biol. Chem. 281: 14841-14851.
http://dx.doi.org/10.1074/jbc.M513737200
PMid:16551619
Satoh T, Baba M, Nakatsuka D, Ishikawa Y, et al. (2003). Role of heme oxygenase-1 protein in the neuroprotective effects of cyclopentenone prostaglandin derivatives under oxidative stress. Eur. J. Neurosci. 17: 2249-2255.
http://dx.doi.org/10.1046/j.1460-9568.2003.02688.x
PMid:12814358
Scanlon JM, Aizenman E and Reynolds IJ (1997). Effects of pyrroloquinoline quinone on glutamate-induced production of reactive oxygen species in neurons. Eur. J. Pharmacol. 326: 67-74.
http://dx.doi.org/10.1016/S0014-2999(97)00137-4
Shih AY, Li P and Murphy TH (2005). A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J. Neurosci. 25: 10321-10335.
http://dx.doi.org/10.1523/JNEUROSCI.4014-05.2005
PMid:16267240
Stites T, Storms D, Bauerly K, Mah J, et al. (2006). Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice. J. Nutr. 136: 390-396.
PMid:16424117
Suh JH, Shenvi SV, Dixon BM, Liu H, et al. (2004). Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc. Natl. Acad. Sci. U. S. A. 101: 3381-3386.
http://dx.doi.org/10.1073/pnas.0400282101
PMid:14985508 PMCid:373470
Yang YC, Lii CK, Lin AH, Yeh YW, et al. (2011). Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. Free Radic. Biol. Med. 51: 2073-2081.
http://dx.doi.org/10.1016/j.freeradbiomed.2011.09.007
PMid:21964506
Zhang Q, Shen M, Ding M, Shen D, et al. (2011). The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway. Toxicol. Appl. Pharmacol. 252: 62-72.
http://dx.doi.org/10.1016/j.taap.2011.02.006
PMid:21320517
Zhang Y, Feustel PJ and Kimelberg HK (2006). Neuroprotection by pyrroloquinoline quinone (PQQ) in reversible middle cerebral artery occlusion in the adult rat. Brain Res. 1094: 200-206.
http://dx.doi.org/10.1016/j.brainres.2006.03.111
PMid:16709402
Zhu BQ, Simonis U, Cecchini G, Zhou HZ, et al. (2006). Comparison of pyrroloquinoline quinone and/or metoprolol on myocardial infarct size and mitochondrial damage in a rat model of ischemia/reperfusion injury. J. Cardiovasc. Pharmacol. Ther. 11: 119-128.
http://dx.doi.org/10.1177/1074248406288757
PMid:16891289
“The noggin2 gene of Gekko japonicus (Gekkonidae) is down-regulated in the spinal cord after tail amputation”, vol. 9, pp. 1606-1614, 2010.
, Alibardi L (1995). Muscle differentiation and morphogenesis in the regenerating tail of lizards. J. Anat. 186: 143-151.
PMid:7649809 PMCid:1167280
Aspenberg P, Jeppsson C and Economides AN (2001). The bone morphogenetic proteins antagonist noggin inhibits membranous ossification. J. Bone Miner. Res. 16: 497-500.
http://dx.doi.org/10.1359/jbmr.2001.16.3.497
PMid:11277267
Bachiller D, Klingensmith J, Kemp C, Belo JA, et al. (2000). The organizer factors chordin and noggin are required for mouse forebrain development. Nature 403: 658-661.
http://dx.doi.org/10.1038/35001072
PMid:10688202
Brockes JP (1997). Amphibian limb regeneration: rebuilding a complex structure. Science 276: 81-87.
http://dx.doi.org/10.1126/science.276.5309.81
PMid:9082990
Chernoff EA, Stocum DL, Nye HL and Cameron JA (2003). Urodele spinal cord regeneration and related processes. Dev. Dyn. 226: 295-307.
http://dx.doi.org/10.1002/dvdy.10240
PMid:12557207
Echeverri K and Tanaka EM (2002). Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 298: 1993-1996.
http://dx.doi.org/10.1126/science.1077804
PMid:12471259
Egar M, Simpson SB and Singer M (1970). The growth and differentiation of the regenerating spinal cord of the lizard, Anolis carolinensis. J. Morphol. 131: 131-151.
http://dx.doi.org/10.1002/jmor.1051310202
PMid:5425076
Eroshkin FM, Ermakova GV, Bayramov AV and Zaraisky AG (2006). Multiple noggins in vertebrate genome: cloning and expression of noggin2 and noggin4 in Xenopus laevis. Gene Expr. Patterns 6: 180-186.
http://dx.doi.org/10.1016/j.modgep.2005.06.007
PMid:16168719
Fletcher RB, Watson AL and Harland RM (2004). Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod. Gene Expr. Patterns 5: 225-230.
http://dx.doi.org/10.1016/j.modgep.2004.08.001
PMid:15567718
Fürthauer M, Thisse B and Thisse C (1999). Three different noggin genes antagonize the activity of bone morphogenetic proteins in the zebrafish embryo. Dev. Biol. 214: 181-196.
http://dx.doi.org/10.1006/dbio.1999.9401
PMid:10491267
Kulessa H, Turk G and Hogan BL (2000). Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J. 19: 6664-6674.
http://dx.doi.org/10.1093/emboj/19.24.6664
PMid:11118201 PMCid:305899
Lamb TM, Knecht AK, Smith WC, Stachel SE, et al. (1993). Neural induction by the secreted polypeptide noggin. Science 262: 713-718.
http://dx.doi.org/10.1126/science.8235591
PMid:8235591
Liu Y, Ding F, Liu M, Jiang M, et al. (2006). EST-based identification of genes expressed in brain and spinal cord of Gekko japonicus, a species demonstrating intrinsic capacity of spinal cord regeneration. J. Mol. Neurosci. 29: 21-28.
http://dx.doi.org/10.1385/JMN:29:1:21
McMahon JA, Takada S, Zimmerman LB, Fan CM, et al. (1998). Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12: 1438-1452.
http://dx.doi.org/10.1101/gad.12.10.1438
PMid:9585504 PMCid:316831
Reddi AH (2001). Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development: noggin, chordin and DAN. Arthritis Res. 3: 1-5.
http://dx.doi.org/10.1186/ar133
PMid:11178121 PMCid:128877
Simpson SB Jr (1968). Morphology of the regenerated spinal cord in the lizard, Anolis carolinensis. J. Comp. Neurol. 134: 193-210.
http://dx.doi.org/10.1002/cne.901340207
PMid:5712416
Smith WC and Harland RM (1992). Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829-840.
http://dx.doi.org/10.1016/0092-8674(92)90316-5
Valenzuela DM, Economides AN, Rojas E, Lamb TM, et al. (1995). Identification of mammalian noggin and its expression in the adult nervous system. J. Neurosci. 15: 6077-6084.
PMid:7666191
Zimmerman LB, De Jesus-Escobar JM and Harland RM (1996). The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86: 599-606.
http://dx.doi.org/10.1016/S0092-8674(00)80133-6