Publications
Found 10 results
Filters: Author is Z.Q. Zhao [Clear All Filters]
“Desmoglein 4 diversity and correlation analysis with coat color in goat”, vol. 15, p. -, 2016.
, “Desmoglein 4 diversity and correlation analysis with coat color in goat”, vol. 15, p. -, 2016.
, “In-depth analysis of internal control genes for quantitative real-time PCR in Brassica oleracea var. botrytis”, vol. 15, p. -, 2016.
, “In-depth analysis of internal control genes for quantitative real-time PCR in Brassica oleracea var. botrytis”, vol. 15, p. -, 2016.
, “Roles of oxidative DNA damage of bone marrow hematopoietic cells in steroid-induced avascular necrosis of femoral head”, vol. 15, p. -, 2016.
, , , “Low diversity of the major histocompatibility complex class II DRA gene in domestic goats (Capra hircus) in Southern China”, vol. 14. pp. 6925-6928, 2015.
, “Association of CD14 G(-1145)A and C(-159)T polymorphisms with reduced risk for tuberculosis in a Chinese Han population”, vol. 11, pp. 3425-3431, 2012.
,
Davila S, Hibberd ML, Hari DR, Wong HE, et al. (2008). Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet. 4: e1000218.
http://dx.doi.org/10.1371/journal.pgen.1000218
PMid:18927625 PMCid:2568981
Ding S, Li L and Zhu X (2008). Polymorphism of the interferon-gamma gene and risk of tuberculosis in a southeastern Chinese population. Hum. Immunol. 69: 129-133.
http://dx.doi.org/10.1016/j.humimm.2007.11.006
PMid:18361939
Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, et al. (2007). The toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21: 1375-1377.
http://dx.doi.org/10.1097/QAD.0b013e32814e6b2d
PMid:17545720
Gu W, Dong H, Jiang DP, Zhou J, et al. (2008). Functional significance of CD14 promoter polymorphisms and their clinical relevance in a Chinese Han population. Crit. Care Med. 36: 2274-2280.
http://dx.doi.org/10.1097/CCM.0b013e318180b1ed
PMid:18596635
Härtel C, Rupp J, Hoegemann A, Bohler A, et al. (2008). 159C>T CD14 genotype - functional effects on innate immune responses in term neonates. Hum. Immunol. 69: 338-443.
http://dx.doi.org/10.1016/j.humimm.2008.04.011
PMid:18571004
Hoheisel G, Zheng L, Teschler H, Striz I, et al. (1995). Increased soluble CD14 levels in BAL fluid in pulmonary tuberculosis. Chest 108: 1614-1616.
http://dx.doi.org/10.1378/chest.108.6.1614
PMid:7497770
Juffermans NP, Verbon A, van Deventer SJ, Buurman WA, et al. (1998). Serum concentrations of lipopolysaccharide activity-modulating proteins during tuberculosis. J. Infect Dis. 178: 1839-1842.
http://dx.doi.org/10.1086/314492
PMid:9815247
Kang HJ, Choi YM, Chae SW, Woo JS, et al. (2006). Polymorphism of the CD14 gene in perennial allergic rhinitis. Int. J. Pediatr. Otorhinolaryngol. 70: 2081-2085.
http://dx.doi.org/10.1016/j.ijporl.2006.07.024
PMid:16950521
Lawn SD, Labeta MO, Arias M, Acheampong JW, et al. (2000). Elevated serum concentrations of soluble CD14 in HIV-and HIV+ patients with tuberculosis in Africa: prolonged elevation during anti-tuberculosis treatment. Clin. Exp. Immunol. 120: 483-487.
http://dx.doi.org/10.1046/j.1365-2249.2000.01246.x
PMid:10844527 PMCid:1905566
Liang XH, Cheung W, Heng CK, Liu JJ, et al. (2006). CD14 promoter polymorphisms have no functional significance and are not associated with atopic phenotypes. Pharmacogenet. Genomics 16: 229-236.
http://dx.doi.org/10.1097/01.fpc.0000197466.14340.0f
PMid:16538169
Liu CP, Li XG, Lou JT, Xue Y, et al. (2009). Association analysis of the PHOX2B gene with Hirschsprung disease in the Han Chinese population of Southeastern China. J. Pediatr. Surg. 44: 1805-1811.
http://dx.doi.org/10.1016/j.jpedsurg.2008.12.009
PMid:19735829
Manaster C, Zheng W, Teuber M, Wachter S, et al. (2005). InSNP: a tool for automated detection and visualization of SNPs and InDels. Hum. Mutat. 26: 11-19.
http://dx.doi.org/10.1002/humu.20188
PMid:15931688
Nejentsev S, Thye T, Szeszko JS, Stevens H, et al. (2008). Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat. Genet. 40: 261-262.
http://dx.doi.org/10.1038/ng0308-261
PMid:18305471
Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, et al. (2007). CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J. Infect Dis. 196: 1698-1706.
http://dx.doi.org/10.1086/522147
PMid:18008256
Rosman MD and Oner-Eyupoglu AF (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman AP, ed.). McGraw-Hill, New York, 2483-2502.
Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54.
http://dx.doi.org/10.1002/humu.1380040107
PMid:7951258
Shams H, Wizel B, Lakey DL, Samten B, et al. (2003). The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes. FEMS Immunol. Med. Microbiol. 36: 63-69.
http://dx.doi.org/10.1016/S0928-8244(03)00039-7
Sugawara I, Yamada H, Li C, Mizuno S, et al. (2003a). Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol. Immunol. 47: 327-336.
PMid:12825894
Sugawara I, Yamada H, Mizuno S, Takeda K, et al. (2003b). Mycobacterial infection in MyD88-deficient mice. Microbiol. Immunol. 47: 841-847.
PMid:14638995
Triantafilou M and Triantafilou K (2002). Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 23: 301-304.
http://dx.doi.org/10.1016/S1471-4906(02)02233-0
Ulevitch RJ and Tobias PS (1995). Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13: 437-457.
http://dx.doi.org/10.1146/annurev.iy.13.040195.002253
PMid:7542010
Vercelli D, Baldini M and Martinez F (2001). The monocyte/IgE connection: may polymorphisms in the CD14 gene teach us about IgE regulation? Int. Arch. Allergy Immunol. 124: 20-24.
http://dx.doi.org/10.1159/000053658
PMid:11306916
Yim JJ, Lee HW, Lee HS, Kim YW, et al. (2006). The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun. 7: 150-155.
http://dx.doi.org/10.1038/sj.gene.6364274
PMid:16437124
Zhang G, Goldblatt J and LeSouef PN (2008). Does the relationship between IgE and the CD14 gene depend on ethnicity? Allergy 63: 1411-1417.
http://dx.doi.org/10.1111/j.1398-9995.2008.01804.x
PMid:18925877
“Lack of association between MD-2 promoter gene variants and tuberculosis”, vol. 9, pp. 1584-1590, 2010.
, Abel B, Thieblemont N, Quesniaux VJ, Brown N, et al. (2002). Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J. Immunol. 169: 3155-3162.
PMid:12218133
Abreu MT, Arnold ET, Thomas LS, Gonsky R, et al. (2002). TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J. Biol. Chem. 277: 20431-20437.
http://dx.doi.org/10.1074/jbc.M110333200
PMid:11923281
Branger J, Leemans JC, Florquin S, Weijer S, et al. (2004). Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int. Immunol. 16: 509-516.
http://dx.doi.org/10.1093/intimm/dxh052
PMid:14978024
Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, et al. (2005). Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J. Biol. Chem. 280: 20961-20967.
http://dx.doi.org/10.1074/jbc.M411379200
PMid:15809303
Cooke GS and Hill AV (2001). Genetics of susceptibility to human infectious disease. Nat. Rev. Genet. 2: 967-977.
http://dx.doi.org/10.1038/35103577
PMid:11733749
Davila S, Hibberd ML, Hari DR, Wong HE, et al. (2008). Genetic association and expression studies indicate a role of Toll-like receptor 8 in pulmonary tuberculosis. PLoS. Genet. 4: e1000218.
http://dx.doi.org/10.1371/journal.pgen.1000218
PMid:18927625 PMCid:2568981
Drage MG, Pecora ND, Hise AG, Febbraio M, et al. (2009). TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 258: 29-37.
http://dx.doi.org/10.1016/j.cellimm.2009.03.008
PMid:19362712 PMCid:2730726
Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, et al. (2007). The Toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21: 1375-1377.
http://dx.doi.org/10.1097/QAD.0b013e32814e6b2d
PMid:17545720
Gu W, Shan YA, Zhou J, Jiang DP, et al. (2007). Functional significance of gene polymorphisms in the promoter of myeloid differentiation-2. Ann. Surg. 246: 151-158.
http://dx.doi.org/10.1097/01.sla.0000262788.67171.3f
PMid:17592304 PMCid:1899213
Jo EK, Yang CS, Choi CH and Harding CV (2007). Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol. 9: 1087-1098.
http://dx.doi.org/10.1111/j.1462-5822.2007.00914.x
PMid:17359235
Kamath AB, Alt J, Debbabi H and Behar SM (2003). Toll-like receptor 4-defective C3H/HeJ mice are not more susceptible than other C3H substrains to infection with Mycobacterium tuberculosis. Infect. Immun. 71: 4112-4118.
http://dx.doi.org/10.1128/IAI.71.7.4112-4118.2003
PMid:12819102 PMCid:162027
Ma X, Liu Y, Gowen BB, Graviss EA, et al. (2007). Full-exon resequencing reveals Toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS. One 2: e1318.
http://dx.doi.org/10.1371/journal.pone.0001318
PMid:18091991 PMCid:2117342
Means TK, Jones BW, Schromm AB, Shurtleff BA, et al. (2001). Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J. Immunol. 166: 4074-4082.
PMid:11238656
Moller M, de Wit E and Hoal EG (2010). Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol. Med. Microbiol. 58: 3-26.
http://dx.doi.org/10.1111/j.1574-695X.2009.00600.x
PMid:19780822
Nagai Y, Akashi S, Nagafuku M, Ogata M, et al. (2002). Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3: 667-672.
PMid:12055629
Nishitani C, Takahashi M, Mitsuzawa H, Shimizu T, et al. (2009). Mutational analysis of Cys(88) of Toll-like receptor 4 highlights the critical role of MD-2 in cell surface receptor expression. Int. Immunol. 21: 925-934.
http://dx.doi.org/10.1093/intimm/dxp059
PMid:19556306
Pacheco E, Fonseca C, Montes C, Zabaleta J, et al. (2004). CD14 gene promoter polymorphism in different clinical forms of tuberculosis. FEMS Immunol. Med. Microbiol. 40: 207-213.
http://dx.doi.org/10.1016/S0928-8244(03)00369-9
Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, et al. (2007). CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J. Infect. Dis. 196: 1698-1706.
http://dx.doi.org/10.1086/522147
PMid:18008256
Rosman MD and Oner-Eyupoglu AF (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman AP, ed.). McGraw-Hill, New York, 2483-2502.
Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54.
http://dx.doi.org/10.1002/humu.1380040107
PMid:7951258
Sandanger O, Ryan L, Bohnhorst J, Iversen AC, et al. (2009). IL-10 enhances MD-2 and CD14 expression in monocytes and the proteins are increased and correlated in HIV-infected patients. J. Immunol. 182: 588-595.
PMid:19109192
Shim TS, Turner OC and Orme IM (2003). Toll-like receptor 4 plays no role in susceptibility of mice to Mycobacterium tuberculosis infection. Tuberculosis 83: 367-371.
http://dx.doi.org/10.1016/S1472-9792(03)00071-4
Tissieres P, Dunn-Siegrist I, Schappi M, Elson G, et al. (2008). Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria. Blood 111: 2122-2131.
http://dx.doi.org/10.1182/blood-2007-06-097782
PMid:18056837
Velez DR, Wejse C, Stryjewski ME, Abbate E, et al. (2010). Variants in Toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum. Genet. 127: 65-73.
http://dx.doi.org/10.1007/s00439-009-0741-7
PMid:19771452 PMCid:2902366
Visintin A, Iliev DB, Monks BG, Halmen KA, et al. (2006). MD-2. Immunobiology 211: 437-447.
http://dx.doi.org/10.1016/j.imbio.2006.05.010
PMid:16920483
Wolfs TG, Dunn-Siegrist I, van't Veer C, Hodin CM, et al. (2008). Increased release of sMD-2 during human endotoxemia and sepsis: a role for endothelial cells. Mol. Immunol. 45: 3268-3277.
http://dx.doi.org/10.1016/j.molimm.2008.02.014
PMid:18384879