Publications

Found 10 results
Filters: Author is Z.Q. Zhao  [Clear All Filters]
2016
G. X. E, Zhao, Y. J., Ma, Y. H., Cao, G. L., He, J. N., Na, R. S., Zhao, Z. Q., Jiang, C. D., Zhang, J. H., Arlvd, S., Chen, L. P., Qiu, X. Y., Hu, W., Huang, Y. F., E, G. X., Zhao, Y. J., Ma, Y. H., Cao, G. L., He, J. N., Na, R. S., Zhao, Z. Q., Jiang, C. D., Zhang, J. H., Arlvd, S., Chen, L. P., Qiu, X. Y., Hu, W., and Huang, Y. F., Desmoglein 4 diversity and correlation analysis with coat color in goat, vol. 15, p. -, 2016.
G. X. E, Zhao, Y. J., Ma, Y. H., Cao, G. L., He, J. N., Na, R. S., Zhao, Z. Q., Jiang, C. D., Zhang, J. H., Arlvd, S., Chen, L. P., Qiu, X. Y., Hu, W., Huang, Y. F., E, G. X., Zhao, Y. J., Ma, Y. H., Cao, G. L., He, J. N., Na, R. S., Zhao, Z. Q., Jiang, C. D., Zhang, J. H., Arlvd, S., Chen, L. P., Qiu, X. Y., Hu, W., and Huang, Y. F., Desmoglein 4 diversity and correlation analysis with coat color in goat, vol. 15, p. -, 2016.
X. G. Sheng, Zhao, Z. Q., Yu, H. F., Wang, J. S., Zheng, C. F., Gu, H. H., Sheng, X. G., Zhao, Z. Q., Yu, H. F., Wang, J. S., Zheng, C. F., and Gu, H. H., In-depth analysis of internal control genes for quantitative real-time PCR in Brassica oleracea var. botrytis, vol. 15, p. -, 2016.
X. G. Sheng, Zhao, Z. Q., Yu, H. F., Wang, J. S., Zheng, C. F., Gu, H. H., Sheng, X. G., Zhao, Z. Q., Yu, H. F., Wang, J. S., Zheng, C. F., and Gu, H. H., In-depth analysis of internal control genes for quantitative real-time PCR in Brassica oleracea var. botrytis, vol. 15, p. -, 2016.
Z. Q. Zhao, Bai, R., Liu, W. L., Feng, W., Zhao, A. Q., Wang, Y., Wang, W. X., Sun, L., Wu, L. S., Cui, S. X., Zhao, Z. Q., Bai, R., Liu, W. L., Feng, W., Zhao, A. Q., Wang, Y., Wang, W. X., Sun, L., Wu, L. S., Cui, S. X., Zhao, Z. Q., Bai, R., Liu, W. L., Feng, W., Zhao, A. Q., Wang, Y., Wang, W. X., Sun, L., Wu, L. S., and Cui, S. X., Roles of oxidative DNA damage of bone marrow hematopoietic cells in steroid-induced avascular necrosis of femoral head, vol. 15, p. -, 2016.
Z. Q. Zhao, Bai, R., Liu, W. L., Feng, W., Zhao, A. Q., Wang, Y., Wang, W. X., Sun, L., Wu, L. S., Cui, S. X., Zhao, Z. Q., Bai, R., Liu, W. L., Feng, W., Zhao, A. Q., Wang, Y., Wang, W. X., Sun, L., Wu, L. S., Cui, S. X., Zhao, Z. Q., Bai, R., Liu, W. L., Feng, W., Zhao, A. Q., Wang, Y., Wang, W. X., Sun, L., Wu, L. S., and Cui, S. X., Roles of oxidative DNA damage of bone marrow hematopoietic cells in steroid-induced avascular necrosis of femoral head, vol. 15, p. -, 2016.
Z. Q. Zhao, Bai, R., Liu, W. L., Feng, W., Zhao, A. Q., Wang, Y., Wang, W. X., Sun, L., Wu, L. S., Cui, S. X., Zhao, Z. Q., Bai, R., Liu, W. L., Feng, W., Zhao, A. Q., Wang, Y., Wang, W. X., Sun, L., Wu, L. S., Cui, S. X., Zhao, Z. Q., Bai, R., Liu, W. L., Feng, W., Zhao, A. Q., Wang, Y., Wang, W. X., Sun, L., Wu, L. S., and Cui, S. X., Roles of oxidative DNA damage of bone marrow hematopoietic cells in steroid-induced avascular necrosis of femoral head, vol. 15, p. -, 2016.
2012
M. Y. Zhao, Xue, Y., Zhao, Z. Q., Li, F. J., Fan, D. P., Wei, L. L., Sun, X. J., Zhang, X., Wang, X. C., Zhang, Y. X., and Li, J. C., Association of CD14 G(-1145)A and C(-159)T polymorphisms with reduced risk for tuberculosis in a Chinese Han population, vol. 11, pp. 3425-3431, 2012.
Davila S, Hibberd ML, Hari DR, Wong HE, et al. (2008). Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet. 4: e1000218. http://dx.doi.org/10.1371/journal.pgen.1000218 PMid:18927625 PMCid:2568981   Ding S, Li L and Zhu X (2008). Polymorphism of the interferon-gamma gene and risk of tuberculosis in a southeastern Chinese population. Hum. Immunol. 69: 129-133. http://dx.doi.org/10.1016/j.humimm.2007.11.006 PMid:18361939   Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, et al. (2007). The toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21: 1375-1377. http://dx.doi.org/10.1097/QAD.0b013e32814e6b2d PMid:17545720   Gu W, Dong H, Jiang DP, Zhou J, et al. (2008). Functional significance of CD14 promoter polymorphisms and their clinical relevance in a Chinese Han population. Crit. Care Med. 36: 2274-2280. http://dx.doi.org/10.1097/CCM.0b013e318180b1ed PMid:18596635   Härtel C, Rupp J, Hoegemann A, Bohler A, et al. (2008). 159C>T CD14 genotype - functional effects on innate immune responses in term neonates. Hum. Immunol. 69: 338-443. http://dx.doi.org/10.1016/j.humimm.2008.04.011 PMid:18571004   Hoheisel G, Zheng L, Teschler H, Striz I, et al. (1995). Increased soluble CD14 levels in BAL fluid in pulmonary tuberculosis. Chest 108: 1614-1616. http://dx.doi.org/10.1378/chest.108.6.1614 PMid:7497770   Juffermans NP, Verbon A, van Deventer SJ, Buurman WA, et al. (1998). Serum concentrations of lipopolysaccharide activity-modulating proteins during tuberculosis. J. Infect Dis. 178: 1839-1842. http://dx.doi.org/10.1086/314492 PMid:9815247   Kang HJ, Choi YM, Chae SW, Woo JS, et al. (2006). Polymorphism of the CD14 gene in perennial allergic rhinitis. Int. J. Pediatr. Otorhinolaryngol. 70: 2081-2085. http://dx.doi.org/10.1016/j.ijporl.2006.07.024 PMid:16950521   Lawn SD, Labeta MO, Arias M, Acheampong JW, et al. (2000). Elevated serum concentrations of soluble CD14 in HIV-and HIV+ patients with tuberculosis in Africa: prolonged elevation during anti-tuberculosis treatment. Clin. Exp. Immunol. 120: 483-487. http://dx.doi.org/10.1046/j.1365-2249.2000.01246.x PMid:10844527 PMCid:1905566   Liang XH, Cheung W, Heng CK, Liu JJ, et al. (2006). CD14 promoter polymorphisms have no functional significance and are not associated with atopic phenotypes. Pharmacogenet. Genomics 16: 229-236. http://dx.doi.org/10.1097/01.fpc.0000197466.14340.0f PMid:16538169   Liu CP, Li XG, Lou JT, Xue Y, et al. (2009). Association analysis of the PHOX2B gene with Hirschsprung disease in the Han Chinese population of Southeastern China. J. Pediatr. Surg. 44: 1805-1811. http://dx.doi.org/10.1016/j.jpedsurg.2008.12.009 PMid:19735829   Manaster C, Zheng W, Teuber M, Wachter S, et al. (2005). InSNP: a tool for automated detection and visualization of SNPs and InDels. Hum. Mutat. 26: 11-19. http://dx.doi.org/10.1002/humu.20188 PMid:15931688   Nejentsev S, Thye T, Szeszko JS, Stevens H, et al. (2008). Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat. Genet. 40: 261-262. http://dx.doi.org/10.1038/ng0308-261 PMid:18305471   Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, et al. (2007). CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J. Infect Dis. 196: 1698-1706. http://dx.doi.org/10.1086/522147 PMid:18008256   Rosman MD and Oner-Eyupoglu AF (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman AP, ed.). McGraw-Hill, New York, 2483-2502.   Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54. http://dx.doi.org/10.1002/humu.1380040107 PMid:7951258   Shams H, Wizel B, Lakey DL, Samten B, et al. (2003). The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes. FEMS Immunol. Med. Microbiol. 36: 63-69. http://dx.doi.org/10.1016/S0928-8244(03)00039-7   Sugawara I, Yamada H, Li C, Mizuno S, et al. (2003a). Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol. Immunol. 47: 327-336. PMid:12825894   Sugawara I, Yamada H, Mizuno S, Takeda K, et al. (2003b). Mycobacterial infection in MyD88-deficient mice. Microbiol. Immunol. 47: 841-847. PMid:14638995   Triantafilou M and Triantafilou K (2002). Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 23: 301-304. http://dx.doi.org/10.1016/S1471-4906(02)02233-0   Ulevitch RJ and Tobias PS (1995). Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13: 437-457. http://dx.doi.org/10.1146/annurev.iy.13.040195.002253 PMid:7542010   Vercelli D, Baldini M and Martinez F (2001). The monocyte/IgE connection: may polymorphisms in the CD14 gene teach us about IgE regulation? Int. Arch. Allergy Immunol. 124: 20-24. http://dx.doi.org/10.1159/000053658 PMid:11306916   Yim JJ, Lee HW, Lee HS, Kim YW, et al. (2006). The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun. 7: 150-155. http://dx.doi.org/10.1038/sj.gene.6364274 PMid:16437124   Zhang G, Goldblatt J and LeSouef PN (2008). Does the relationship between IgE and the CD14 gene depend on ethnicity? Allergy 63: 1411-1417. http://dx.doi.org/10.1111/j.1398-9995.2008.01804.x PMid:18925877
2010
Y. Xue, Zhao, Z. Q., Hong, D., Zhao, M. Y., Zhang, Y. X., Wang, H. J., Wang, Y., and Li, J. C., Lack of association between MD-2 promoter gene variants and tuberculosis, vol. 9, pp. 1584-1590, 2010.
Abel B, Thieblemont N, Quesniaux VJ, Brown N, et al. (2002). Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J. Immunol. 169: 3155-3162. PMid:12218133   Abreu MT, Arnold ET, Thomas LS, Gonsky R, et al. (2002). TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J. Biol. Chem. 277: 20431-20437. http://dx.doi.org/10.1074/jbc.M110333200 PMid:11923281   Branger J, Leemans JC, Florquin S, Weijer S, et al. (2004). Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int. Immunol. 16: 509-516. http://dx.doi.org/10.1093/intimm/dxh052 PMid:14978024   Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, et al. (2005). Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J. Biol. Chem. 280: 20961-20967. http://dx.doi.org/10.1074/jbc.M411379200 PMid:15809303   Cooke GS and Hill AV (2001). Genetics of susceptibility to human infectious disease. Nat. Rev. Genet. 2: 967-977. http://dx.doi.org/10.1038/35103577 PMid:11733749   Davila S, Hibberd ML, Hari DR, Wong HE, et al. (2008). Genetic association and expression studies indicate a role of Toll-like receptor 8 in pulmonary tuberculosis. PLoS. Genet. 4: e1000218. http://dx.doi.org/10.1371/journal.pgen.1000218 PMid:18927625 PMCid:2568981   Drage MG, Pecora ND, Hise AG, Febbraio M, et al. (2009). TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 258: 29-37. http://dx.doi.org/10.1016/j.cellimm.2009.03.008 PMid:19362712 PMCid:2730726   Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, et al. (2007). The Toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21: 1375-1377. http://dx.doi.org/10.1097/QAD.0b013e32814e6b2d PMid:17545720   Gu W, Shan YA, Zhou J, Jiang DP, et al. (2007). Functional significance of gene polymorphisms in the promoter of myeloid differentiation-2. Ann. Surg. 246: 151-158. http://dx.doi.org/10.1097/01.sla.0000262788.67171.3f PMid:17592304 PMCid:1899213   Jo EK, Yang CS, Choi CH and Harding CV (2007). Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol. 9: 1087-1098. http://dx.doi.org/10.1111/j.1462-5822.2007.00914.x PMid:17359235   Kamath AB, Alt J, Debbabi H and Behar SM (2003). Toll-like receptor 4-defective C3H/HeJ mice are not more susceptible than other C3H substrains to infection with Mycobacterium tuberculosis. Infect. Immun. 71: 4112-4118. http://dx.doi.org/10.1128/IAI.71.7.4112-4118.2003 PMid:12819102 PMCid:162027   Ma X, Liu Y, Gowen BB, Graviss EA, et al. (2007). Full-exon resequencing reveals Toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS. One 2: e1318. http://dx.doi.org/10.1371/journal.pone.0001318 PMid:18091991 PMCid:2117342   Means TK, Jones BW, Schromm AB, Shurtleff BA, et al. (2001). Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J. Immunol. 166: 4074-4082. PMid:11238656   Moller M, de Wit E and Hoal EG (2010). Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol. Med. Microbiol. 58: 3-26. http://dx.doi.org/10.1111/j.1574-695X.2009.00600.x PMid:19780822   Nagai Y, Akashi S, Nagafuku M, Ogata M, et al. (2002). Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3: 667-672. PMid:12055629   Nishitani C, Takahashi M, Mitsuzawa H, Shimizu T, et al. (2009). Mutational analysis of Cys(88) of Toll-like receptor 4 highlights the critical role of MD-2 in cell surface receptor expression. Int. Immunol. 21: 925-934. http://dx.doi.org/10.1093/intimm/dxp059 PMid:19556306   Pacheco E, Fonseca C, Montes C, Zabaleta J, et al. (2004). CD14 gene promoter polymorphism in different clinical forms of tuberculosis. FEMS Immunol. Med. Microbiol. 40: 207-213. http://dx.doi.org/10.1016/S0928-8244(03)00369-9   Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, et al. (2007). CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J. Infect. Dis. 196: 1698-1706. http://dx.doi.org/10.1086/522147 PMid:18008256   Rosman MD and Oner-Eyupoglu AF (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman AP, ed.). McGraw-Hill, New York, 2483-2502.   Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54. http://dx.doi.org/10.1002/humu.1380040107 PMid:7951258   Sandanger O, Ryan L, Bohnhorst J, Iversen AC, et al. (2009). IL-10 enhances MD-2 and CD14 expression in monocytes and the proteins are increased and correlated in HIV-infected patients. J. Immunol. 182: 588-595. PMid:19109192   Shim TS, Turner OC and Orme IM (2003). Toll-like receptor 4 plays no role in susceptibility of mice to Mycobacterium tuberculosis infection. Tuberculosis 83: 367-371. http://dx.doi.org/10.1016/S1472-9792(03)00071-4   Tissieres P, Dunn-Siegrist I, Schappi M, Elson G, et al. (2008). Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria. Blood 111: 2122-2131. http://dx.doi.org/10.1182/blood-2007-06-097782 PMid:18056837   Velez DR, Wejse C, Stryjewski ME, Abbate E, et al. (2010). Variants in Toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum. Genet. 127: 65-73. http://dx.doi.org/10.1007/s00439-009-0741-7 PMid:19771452 PMCid:2902366   Visintin A, Iliev DB, Monks BG, Halmen KA, et al. (2006). MD-2. Immunobiology 211: 437-447. http://dx.doi.org/10.1016/j.imbio.2006.05.010 PMid:16920483   Wolfs TG, Dunn-Siegrist I, van't Veer C, Hodin CM, et al. (2008). Increased release of sMD-2 during human endotoxemia and sepsis: a role for endothelial cells. Mol. Immunol. 45: 3268-3277. http://dx.doi.org/10.1016/j.molimm.2008.02.014 PMid:18384879