Found 1 results
Filters: Author is M.A.S. Dehwah  [Clear All Filters]
M. A. S. Dehwah, Wang, M., and Huang, Q. - Y., CDKAL1 and type 2 diabetes: a global meta-analysis, vol. 9, pp. 1109-1120, 2010.
Anonymous (2008). Diagnosis and classification of diabetes mellitus. Diabetes Care 31: (S55-S60). PMid:18165338   Boutayeb A and Boutayeb S (2005). The burden of non communicable diseases in developing countries. Int. J. Equity. Health 4: 2. PMid:15651987 PMCid:546417   Cauchi S, Meyre D, Durand E, Proenca C, et al. (2008a). Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS. One 3: e2031. PMid:18461161 PMCid:2346547   Cauchi S, Proenca C, Choquet H, Gaget S, et al. (2008b). Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. study. J. Mol. Med. 86: 341-348. PMid:18210030   Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, et al. (2006). Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38: 320-323. PMid:16415884   Groenewoud MJ, Dekker JM, Fritsche A, Reiling E, et al. (2008). Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 51: 1659-1663. PMid:18618095   Hertel JK, Johansson S, Raeder H, Midthjell K, et al. (2008). Genetic analysis of recently identified type 2 diabetes loci in 1,638 unselected patients with type 2 diabetes and 1,858 control participants from a Norwegian population-based cohort (the HUNT study). Diabetologia 51: 971-977. PMid:18437351   Horikawa Y, Miyake K, Yasuda K, Enya M, et al. (2008). Replication of genome-wide association studies of type 2 diabetes susceptibility in Japan. J. Clin. Endocrinol. Metab. 93: 3136-3141. PMid:18477659   Horikoshi M, Hara K, Ito C, Shojima N, et al. (2007). Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population. Diabetologia 50: 2461-2466. PMid:17928989   Kirchhoff K, Machicao F, Haupt A, Schafer SA, et al. (2008). Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51: 597-601. PMid:18264689   Lee YH, Kang ES, Kim SH, Han SJ, et al. (2008). Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J. Hum. Genet. 53: 991-998. PMid:18991055   Lew J, Huang QQ, Qi Z, Winkfein RJ, et al. (1994). A brain-specific activator of cyclin-dependent kinase 5. Nature 371: 423-426. PMid:8090222   Lewis JP, Palmer ND, Hicks PJ, Sale MM, et al. (2008). Association analysis in African Americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies. Diabetes 57: 2220-2225. PMid:18443202 PMCid:2494685   Liu Y, Yu L, Zhang D, Chen Z, et al. (2008). Positive association between variations in CDKAL1 and type 2 diabetes in Han Chinese individuals. Diabetologia 51: 2134-2137. PMid:18766326   Ng MC, Park KS, Oh B, Tam CH, et al. (2008). Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes 57: 2226-2233. PMid:18469204 PMCid:2494677   Omori S, Tanaka Y, Takahashi A, Hirose H, et al. (2008). Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 57: 791-795. PMid:18162508   Palmer ND, Goodarzi MO, Langefeld CD, Ziegler J, et al. (2008). Quantitative trait analysis of type 2 diabetes susceptibility loci identified from whole genome association studies in the Insulin Resistance Atherosclerosis Family Study. Diabetes 57: 1093-1100. PMid:18252897   Pascoe L, Tura A, Patel SK, Ibrahim IM, et al. (2007). Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic β-cell function. Diabetes 56: 3101-3104. PMid:17804762   Ramachandran A, Snehalatha C, Latha E, Vijay V, et al. (1997). Rising prevalence of NIDDM in an urban population in India. Diabetologia 40: 232-237. PMid:9049486   Ramachandran A, Snehalatha C, Kapur A, Vijay V, et al. (2001). High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey. Diabetologia 44: 1094-1101. PMid:11596662   Rong R, Hanson RL, Ortiz D, Wiedrich C, et al. (2009). Association analysis of variation in/near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B with type 2 diabetes and related quantitative traits in Pima Indians. Diabetes 58: 478-488. PMid:19008344 PMCid:2628623   Rosales JL and Lee KY (2006). Extraneuronal roles of cyclin-dependent kinase 5. Bioessays 28: 1023-1034. PMid:16998837   Sanghera DK, Ortega L, Han S, Singh J, et al. (2008). Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med. Genet. 9: 59. PMid:18598350 PMCid:2481250   Saxena R, Voight BF, Lyssenko V, Burtt NP, et al. (2007). Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331-1336. PMid:17463246   Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, et al. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341-1345. PMid:17463248 PMCid:3214617   Stancáková A, Pihlajamaki J, Kuusisto J, Stefan N, et al. (2008). Single-nucleotide polymorphism rs7754840 of CDKAL1 is associated with impaired insulin secretion in nondiabetic offspring of type 2 diabetic subjects and in a large sample of men with normal glucose tolerance. J. Clin. Endocrinol. Metab. 93: 1924-1930. PMid:18285412   Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, et al. (2007). A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39: 770-775. PMid:17460697   Tabara Y, Osawa H, Kawamoto R, Onuma H, et al. (2009). Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes 58: 493-498. PMid:19033397 PMCid:2628625   Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T, et al. (2009). Confirmation of multiple risk loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes 58: 1690-1699. PMid:19401414 PMCid:2699880   Teo YY, Sim X, Ong RT, Tan AK, et al. (2009). Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations. Genome Res. 19: 2154-2162. PMid:19700652 PMCid:2775604   Tong Y, Lin Y, Zhang Y, Yang J, et al. (2009). Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Med. Genet. 10: 15. PMid:19228405 PMCid:2653476   Ubeda M, Rukstalis JM and Habener JF (2006). Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J. Biol. Chem. 281: 28858-28864. PMid:16887799   Wang K, Li T and Xiang H (1998). Study on the epidemiological characteristics of diabetes mellitus and IGT in China. Zhonghua Liu Xing. Bing. Xue. Za Zhi. 19: 282-285. PMid:10322687   Wu Y, Li H, Loos RJ, Yu Z, et al. (2008). Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/ IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes 57: 2834-2842. PMid:18633108 PMCid:2551696   Zeggini E, Weedon MN, Lindgren CM, Frayling TM, et al. (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316: 1336-1341. PMid:17463249